EPFL - automne 2024

ANALYSE FONCTIONNELLE I

Exercices

Série 9 14 novembre 2024

- 1. Soient un espace hilbertien $(H, <\cdot, \cdot>)$ de dimension infinie et un opérateur linéaire $A \in \mathcal{L}(H)$ symétrique, compact et tel que le sous-espace $(N(A), <\cdot, \cdot>)$ soit séparable. Prouver que $\lambda \neq 0$ est dans $\sigma(A)$ ssi λ est une valeur propre de A. Montrer aussi que $0 \in \sigma(A)$.
- 2. Soient un espace hilbertien $(H, <\cdot, \cdot>)$ de dimension infinie et un opérateur linéaire $A \in \mathcal{L}(H)$ symétrique, compact et tel que le sous-espace $(N(A), <\cdot, \cdot>)$ soit séparable. Soient encore une suite orthonormée totale $\{u_n\}_{n\in\mathbb{N}}$ de H consistant en vecteurs propres de A et la suite $\{\lambda_n\}_{n\in\mathbb{N}}$ des valeurs propres correspondantes.

Pour $f \in C(\mathbb{R}, \mathbb{R})$, on définit $f(A) : H \to H$ par

$$\forall x \in H \ f(A)x = \sum_{n \in \mathbb{N}} f(\lambda_n) < x, u_n > u_n$$

- (a) Expliquer la signification de la somme et montrer que $f(A) \in \mathcal{L}(H)$, $||f(A)|| = \sup_{n \in \mathbb{N}} |f(\lambda_n)|$ et f(A) est symétrique.
- (b) Prouver que $\{f(\lambda_n): n \in \mathbb{N}\}$ est l'ensemble des valeurs propres de f(A).
- (c) Prouver que f(A) est compact ssi f(0) = 0.
- 3. Soit une limite de Banach $F: l^{\infty}_{\mathbb{R}} \to \mathbb{R}$. Prouver qu'il n'y a aucun $\alpha \in l^1_{\mathbb{R}}$ tel que

$$\forall \xi \in l_{\mathbb{R}}^{\infty} \ F(\xi) = \sum_{n=1}^{\infty} \alpha_n \xi_n$$