ANALYSE FONCTIONNELLE I

Exercices

Série 6 17 octobre 2024

- 1. Soient des evn X et Y, et soit $T \in \mathcal{L}(X,Y)$. Prouver que T est compact si $T|_Z$ est compact pour un certain sous-espace vectoriel dense $Z \subset X$.
- 2. Soit X=C[0,1] muni de la norme $||\cdot||_{\infty}$. Prouver que l'opérateur linéaire $T\in\mathcal{L}(C[0,1],l^1)$ défini pour tout $f\in C[0,1]$ par

$$Tf = \left(\int_{1/(k+1)}^{1/k} f(t)dt\right)_{k>1}$$

est compact.

Indication: appliquer le Théorème III.13 et le problème 5 de la série 4.

3. Soit l'opérateur linéaire $T: l^2 \to l^2$ défini par $T\xi = \eta$ si $\eta_k = \sum_{l=1}^{\infty} \lambda_{k,l} \xi_l$ pour tout $k \in \mathbb{N}$, où les $\lambda_{k,l} \in \mathbb{F}$ satisfont $\sum_{k,l=1}^{\infty} |\lambda_{k,l}|^2 < \infty$.

Prouver que T est compact.

Indication: appliquer le Théorème III.13 et les problèmes 1 et 5 de la série 4.

- 4. Montrer que l'opérateur intégral $K: (C[a,b], <\cdot, \cdot>) \to (C[a,b], <\cdot, \cdot>)$ défini au paragraphe III.2 est symétrique si $k(s,t) = \overline{k(t,s)}$ pour tous $s,t \in [a,b]$.
- 5. Si X est un espace préhilbertien et $A \in \mathcal{L}(X)$ est symétrique, montrer que

$$N(A) = R(A)^{\perp} := \{ x \in X : \langle x, z \rangle = 0 \text{ pour tout } z \in R(A) \}.$$

6. Soit un evn X sur \mathbb{F} , un opérateur linéaire compact $T: X \to X$, $\lambda \in \mathbb{F} \setminus \{0\}$ et $T_{\lambda} := T - \lambda I$, où $I: X \to X$ est l'opérateur identité. Prouver que

$$N(T_{\lambda}) = \{0\} \Rightarrow R(T_{\lambda}) = X.$$

7. Avec les mêmes hypothèses et notations que ci-dessus, prouver que, pour tout $n \in \mathbb{N}_0$,

$$N(T_{\lambda}^n) = N(T_{\lambda}^{n+1}) \iff R(T_{\lambda}^n) = R(T_{\lambda}^{n+1}).$$