ANALYSE FONCTIONNELLE I

Exercices

12 septembre 2024 Série 1

Notation: $\mathbb{N} = \{1, 2, 3, 4, \ldots\}.$

1. Soit une limite de Banach $F:l^\infty_\mathbb{R} \to \mathbb{R}$. Par définition d'une limite de Banach, F est linéaire, $\liminf_{n\to\infty} x_n \le F(x) \le \limsup_{n\to\infty} x_n \text{ et } F(x) = F(Sx) \text{ pour tout } x = (x_1, x_2, \dots) \in l_{\mathbb{R}}^{\infty},$ où $Sx = (x_2, x_3, ...)$.

Montrer que, pour tout $x \in l_{\mathbb{R}}^{\infty}$, $F(x) \leq \inf \limsup_{j \to \infty} \frac{1}{k} \sum_{i=1}^{k} x_{j+n_i}$, où l'infimum est pris sur $k \in \mathbb{N}$

et tous les choix d'entiers $n_1, \ldots, n_k \in \mathbb{N}$.

En déduire que $F(x) \ge \sup \liminf_{j \to \infty} \frac{1}{k} \sum_{i=1}^{k} x_{j+n_i}$

2. Soit un espace métrique (M, d).

Un sous-ensemble $F \subset M$ est dit fermé si $M \setminus F$ est ouvert, et il est dit séquentiellement fermé si toute suite $(a_n) \subset F$ qui converge dans M a sa limite dans F.

Prouver que F est séquentiellement fermé ssi il est fermé.

- 3. Soit un espace métrique (M,d) et un sous-ensemble non vide $A \subset M$. La restriction de d à $A \times A$, notée $d_A := d|_{A \times A}$, est une distance sur A. On dit que l'espace métrique (A, d_A) est un sous-espace métrique de (M, d).
 - i) Si (A, d_A) est complet, prouver que A est fermé.
 - ii) Si (M, d) est complet et A est fermé, prouver que (A, d_A) est complet.
- 4. Soit un espace métrique (X,d). Une application $f:X\to\mathbb{R}$ est dite bornée si f(X) est un sous-ensemble borné de \mathbb{R} . On note par $\mathcal{B}(X,\mathbb{R})$ l'ensemble des applications bornées $f:X\to\mathbb{R}$ et on définit $\rho(f,g) = \sup\{|f(x) - g(x)| : x \in X\}$ pour $f,g \in \mathcal{B}(X,\mathbb{R})$.
 - (a) Montrer que $(\mathcal{B}(X,\mathbb{R}),\rho)$ est un espace métrique.
 - (b) Soit une suite de Cauchy $\{f_n\}_{n\geq 1}$ dans $\mathcal{B}(X,\mathbb{R})$. Montrer qu'il existe une fonction f: $X \to \mathbb{R}$ telle que

$$\forall x \in X \quad \lim_{n \to \infty} f_n(x) = f(x).$$

Montrer ensuite que $\lim_{n\to\infty} \sup\{|f_n(x)-f(x)|: x\in X\}=0$. En déduire que f est bornée et que $f_n \to f$ dans $(\mathcal{B}(X,\mathbb{R}), \rho)$.

Indication: vous pouvez utiliser sans preuve la complétude de la droite euclidienne.

(c) Soit $x_0 \in X$ fixé. Pour $a \in X$, on définit l'application $\phi_a : X \to \mathbb{R}$ par

$$\phi_a(x) = d(x, a) - d(x, x_0).$$

Montrer que $\phi_a \in \mathcal{B}(X,\mathbb{R})$ et que

$$\forall a \in X \ \forall b \in X \ \rho(\phi_a, \phi_b) = d(a, b).$$

Indication: $|d(u,v) - d(u,w)| \le d(v,w)$ pour tous $u,v,w \in X$.