EPFL - automne 2024 ANALYSE FONCTIONNELLE I

Exercices

Série 14 19 décembre 2024

- 1. Prouver que l'opérateur linéaire $T: X \to Y$ est fermé ssi $x_n \to x$ et $Tx_n \to y$ impliquent y = Tx.
- 2. Le Théorème de l'Inverse Borné implique le Théorème du Graphe Fermé (voir la preuve de ce dernier). Montrer que, réciproquement, le Théorème du Graphe Fermé implique le Théorème de l'Inverse Borné.
- 3. Soient des espaces de Banach X, Y, Z et des opérateurs linéaires $A \in \mathcal{L}(X, Z)$ et $B \in \mathcal{L}(Y, Z)$. On suppose que, pour tout $x \in X$, il existe un unique $y \in Y$ tel que Ax = By, que l'on note y = Cx. Montrer que ceci définit un opérateur linéaire $C \in \mathcal{L}(X, Y)$.

 Indication: Théorème du Graphe Fermé.
- 4. Soient deux normes $||\cdot||_1$ et $||\cdot||_2$ sur l'espace vectoriel $X \neq \{0\}$ telles que $(X, ||\cdot||_1)$ et $(X, ||\cdot||_2)$ sont des espaces de Banach. Nous supposons que $||x_n y||_1 \to 0$ et $||x_n z||_2 \to 0$ impliquent y = z. Montrer que l'application identité $T: (X, ||\cdot||_1) \to (X, ||\cdot||_2)$ est fermée et déduire que les deux normes sont équivalentes.
- 5. Le théorème VI.12 implique le théorème VI.20 (voir la preuve de ce dernier). Montrer que, réciproquement, le théorème VI.20 implique le théorème VI.12.
- 6. Soit deux evn X et Y sur \mathbb{F} , et un opérateur linéaire $T:X\to Y$. Si T est une application ouverte, prouver que $T:X\to Y$ est surjectif.
- 7. Soit des evn X et Y sur \mathbb{F} avec $X \neq \{0\}$. Si $\mathcal{L}(X,Y)$ est complet, prouver que Y l'est aussi.