Exercices

Série 13 12 décembre 2024

1. Soient a < b et $X = C([a, b], \mathbb{F})$ muni de la norme $||\cdot||_{\infty}$. Pour $g \in C([a, b], \mathbb{F})$, montrer que $\phi_g : X \to \mathbb{F}$ définie par

$$\phi_g(f) = \int_a^b f(s)g(s)ds$$

appartient à X^* et que $||\phi_g|| = \int_a^b |g(s)| ds$.

2. Soit $X = C([-\pi, \pi], \mathbb{R})$ muni de la norme $||\cdot||_{\infty}$. La *n*-ième somme partielle de la série de Fourier de $f \in X$ est donnée par

$$\tau \to \frac{1}{2} a_0 + \sum_{m=1}^{n} (a_m \cos m\tau + b_m \sin m\tau),$$

où

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos mt \, dt \quad (m \ge 0) \quad \text{et} \quad b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin mt \, dt \quad (m \ge 1).$$

Soit $\phi_n(f) \in \mathbb{R}$, la *n*-ième somme partielle évaluée en $\tau = 0$:

$$\phi_n(f) = \frac{1}{2}a_0 + \sum_{m=1}^n a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left\{ \frac{1}{2} + \sum_{m=1}^n \cos mt \right\} dt$$

Montrer que $\phi_n \in X^*$ pour tout $n \in \mathbb{N}$ et que $\sup_{n \in \mathbb{N}} ||\phi_n|| = \infty$. En déduire que la série de Fourier d'une fonction continue $f : [-\pi, \pi] \to \mathbb{R}$ ne converge pas nécessairement en $\tau = 0$.

Indications: exercice 1 et

$$2\sin\left(\frac{t}{2}\right)\sum_{m=1}^{n}\cos mt = \sum_{m=1}^{n}\left\{\sin\left(m+\frac{1}{2}\right)t - \sin\left(m-\frac{1}{2}\right)t\right\} = \sin\left(n+\frac{1}{2}\right)t - \sin\frac{1}{2}t$$

3. Soient des evn X et Y sur \mathbb{F} , et un opérateur linéaire borné $T \in \mathcal{L}(X,Y)$. L'opérateur dual $T': Y^* \to X^*$ est défini par $T'g = g \circ T$ pour tout $g \in Y^*$.

Prouver que $T' \in \mathcal{L}(Y^*, X^*)$ et $||T'||_{\mathcal{L}(Y^*, X^*)} = ||T||_{\mathcal{L}(X, Y)}$.

4. Soient des espaces hilbertiens $(X, \langle \cdot, \cdot \rangle_X)$ et $(Y, \langle \cdot, \cdot \rangle_Y)$ sur \mathbb{F} , et un opérateur linéaire borné $T \in \mathcal{L}(X,Y)$. Pour $y \in Y$, l'application linéaire $x \to \langle Tx, y \rangle_Y$ est bornée $(x \in X)$. Le théorème de représentation de Riesz (série 10, exercice 3) assure qu'il existe un unique $a \in X$ tel que

$$\forall x \in X \quad \langle Tx, y \rangle_Y = \langle x, a \rangle_X$$
.

En posant $T^*y := a$, on a ainsi défini une application $T^*: Y \to X$ telle que

$$\forall x \in X \ \forall y \in Y \ < Tx, y >_{Y} = < x, T^*y >_{X}$$

et, pour tous $a \in X$ et $y \in Y$,

$$(\forall x \in X < Tx, y >_Y = < x, a >_X) \Rightarrow a = T^*y.$$

Prouver que $T^* \in \mathcal{L}(Y, X)$ et $||T^*||_{\mathcal{L}(Y, X)} = ||T||_{\mathcal{L}(X, Y)}$.

Terminologie: T^* est l'opérateur adjoint de T.

5. Soit une énumération de \mathbb{Q} : $\mathbb{Q} = \{q_k : k \in \mathbb{N}\}$. Prouver que l'ensemble

$$E = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}}]q_k - 2^{-(k+n)}, q_k + 2^{-(k+n)}[$$

est de mesure de Lebesgue nulle, mais qu'il est dense et qu'il n'est pas maigre.