ANALYSE FONCTIONNELLE I

Exercices

Série 10 21 novembre 2024

1. Soit c_0 , le sous-espace vectoriel de l^{∞} consistant en toutes les suites qui convergent vers 0. Montrer que le dual de $(c_0, ||\cdot||_{\infty})$ est congruent à l^1 .

Indication: s'inspirer de la preuve du §5.3.

- 2. **Théorème de la projection.** Soient un espace hilbertien $(H, <\cdot, \cdot>)$ et un sous-espace vectoriel fermé $M \subset H$. Fixons $x_0 \in H$, posons $d = \inf\{||x_0 y|| : y \in M\}$ et considérons une suite $\{y_n\}_{n>1} \subset M$ telle que $\lim_{n\to\infty} ||x_0 y_n|| = d$.
 - (a) Montrer que $\{y_n\}$ est une suite de Cauchy, qu'elle converge vers un certain $y_0 \in M$ et que $||x_0 y_0|| = d$.

Indication: $||(y_n - x_0) - (y_m - x_0)||^2 = 2||y_n - x_0||^2 + 2||y_m - x_0||^2 - ||(y_n - x_0) + (y_m - x_0)||^2$ et donc $||y_n - y_m||^2 = 2||y_n - x_0||^2 + 2||y_m - x_0||^2 - 4||x_0 - (y_n + y_m)/2||^2$

(b) Vérifier que y_0 est uniquement déterminé.

Indication: $||\tilde{y}_0 - y_0||^2 = 2||\tilde{y}_0 - x_0||^2 + 2||y_0 - x_0||^2 - 4||x_0 - (\tilde{y}_0 + y_0)/2||^2$

(c) Montrer que $\langle v, x_0 - y_0 \rangle = 0$ pour tout $v \in M$.

Indication: si ||v|| = 1, alors $|\langle v, x_0 - y_0 \rangle|^2 = d^2 - ||x_0 - y_0 - \langle x_0 - y_0, v \rangle|^2$

3. Théorème de représentation de Riesz. Soient un espace hilbertien $(H, <\cdot, \cdot>)$ et $f \in H^*$. Montrer qu'il existe un unique $a \in H$ tel que f(x) = < x, a > pour tout $x \in H$. Montrer aussi que $||a||_{H} = ||f||_{H^*}$.

Indication. Si $f \neq 0$, choisir $x_0 \in H \setminus N(f)$ tel que $f(x_0) = 1$, et considérer

$$a = ||x_0 - y_0||^{-2}(x_0 - y_0),$$

où $y_0 \in N(f)$ est donné par l'exercice précédent appliqué à M = N(f) et à x_0 . Remarquer aussi que $x - f(x)(x_0 - y_0) \in N(f)$ pour tout $x \in H$.

- 4. Prouver que tout espace hilbertien réel est congruent à son dual (en tant qu'espaces vectoriels normés).
- 5. Soit la fonctionnelle sous-linéaire $p: l_{\mathbb{R}}^{\infty} \to \mathbb{R}$ définie par $p(x) = \limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k$. Donner explicitement une suite $x \in l_{\mathbb{R}}^{\infty}$ telle que

$$p(x) + p(-x) \neq 0 = p(x + (-x)).$$

6. Soit une limite de Banach $F: l_{\mathbb{R}}^{\infty} \to \mathbb{R}$. Donner une suite $x = (x_n) \in l_{\mathbb{R}}^{\infty}$ telle que, pour toute sous-suite convergente $(x_{n_k}) \in l_{\mathbb{R}}^{\infty}$, $F((x_{n_k})_{k \in \mathbb{N}}) \neq F(x)$. Justifiez votre réponse.