Série 9

14 novembre 2024

1. On sait déjà que toute valeur propre de A est dans $\sigma(A)$ (cf la fin du chapitre IV). Par IV.10, il existe une suite orthonormée totale $\{f_n\}_{n\geq 1}$ de H faite de vecteurs propres de A et la suite $\{\mu_n\}_{n\geq 1}\subset\mathbb{R}$ des valeurs propres correspondantes satisfait $\lim_{n\to\infty}\mu_n=0$. De plus

$$Ax = \lim_{n \to \infty} \sum_{k=1}^{n} \mu_k < x, f_k > f_k$$

pour tout $x \in H$. Supposons que $\lambda \neq 0$ n'est pas une valeur propre de A. Alors, pour tous $x, y \in H$,

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} \langle x, f_k \rangle f_k , \quad y = \lim_{n \to \infty} \sum_{k=1}^{n} \langle y, f_k \rangle f_k$$

(voir IV.9) et

$$Ax - \lambda x = y$$

$$\Leftrightarrow \lim_{n \to \infty} \sum_{k=1}^{n} (\mu_k - \lambda) < x, f_k > f_k = \lim_{n \to \infty} \sum_{k=1}^{n} < y, f_k > f_k$$

$$\Leftrightarrow < x, f_k > = \frac{< y, f_k >}{\mu_k - \lambda}$$
 pour tout $k \in \mathbb{N}$.

Pour $y \in H$ donné, si $x \in H$ vérifie $Ax - \lambda x = y$, alors nécessairement $x = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\langle y, f_k \rangle}{\mu_k - \lambda} f_k$.

D'autre part, pour $y \in H$, $\left\{\sum_{k=1}^{n} \frac{\langle y, f_k \rangle}{\mu_k - \lambda} f_k\right\}_{n \geq 1}$ est une suite de Cauchy. Ceci découle de

$$\sum_{k=1}^{\infty} \left| \frac{\langle y, f_k \rangle}{\mu_k - \lambda} \right|^2 \le \left\{ \inf_{j \in \mathbb{N}} |\mu_j - \lambda| \right\}^{-2} \sum_{k=1}^{\infty} |\langle y, f_k \rangle|^2 \stackrel{Bessel}{\le} \left\{ \inf_{j \in \mathbb{N}} |\mu_j - \lambda| \right\}^{-2} ||y||^2$$

En effet, plus généralement, si $\{e_n\}_{n\in\mathbb{N}}$ est une suite orthonormée dans un espace préhilbertien et si $\{\alpha_n\}_{n\in\mathbb{N}}\subset\mathbb{F}$ satisfait $\sum_{k=1}^{\infty}|\alpha_k|^2<\infty$, alors $\{\sum_{k=1}^{n}\alpha_ke_k\}_{n\in\mathbb{N}}$ est une suite de Cauchy. Pour le voir, fixons $\epsilon>0$ et choisissons $N\in\mathbb{N}$ tel que $\sum_{k=N+1}^{\infty}|\alpha_k|^2<\epsilon^2$. Pour tout $m>n\geq N$, on obtient

$$\left\| \sum_{k=1}^{m} \alpha_k e_k - \sum_{k=1}^{n} \alpha_k e_k \right\|^2 = \left\| \sum_{k=n+1}^{m} \alpha_k e_k \right\|^2 = \sum_{k=n+1}^{m} |\alpha_k|^2 < \epsilon^2.$$

Dans notre cas, la suite en question converge dans l'espace de Hilbert H vers une certaine limite, notée $R_{\lambda}(y)$. Pour tout $j \in \mathbb{N}$, on a

$$\langle R_{\lambda}(y), f_j \rangle = \left\langle \lim_{n \to \infty} \sum_{k=1}^n \frac{\langle y, f_k \rangle}{\mu_k - \lambda} f_k, f_j \right\rangle = \frac{\langle y, f_j \rangle}{\mu_j - \lambda}$$

et donc, pour tous $x, y \in H$,

$$(A - \lambda I)x = y \Leftrightarrow x = R_{\lambda}(y).$$

Ainsi $A - \lambda I$ est bijectif d'application réciproque $R_{\lambda}: H \to H$, qui est linéaire. Nous obtenons aussi

$$||R_{\lambda}(y)||^{2} \stackrel{Parseval}{=} \sum_{k=1}^{\infty} \left| \frac{\langle y, f_{k} \rangle}{\mu_{k} - \lambda} \right|^{2} \le \{\inf_{j \in \mathbb{N}} |\mu_{j} - \lambda|\}^{-2} ||y||^{2},$$

prouvant que $R_{\lambda} \in \mathcal{L}(H)$. En conclusion, $(A - \lambda I)^{-1} = R_{\lambda}$ existe dans $\mathcal{L}(H)$ et donc $\lambda \in \rho(A)$. D'autre part, $\mu_n \in \sigma(A)$ pour tout $n \in \mathbb{N}$, $\lim_{n \to \infty} \mu_n = 0$ et $0 \in \sigma(A)$ car $\sigma(A)$ est fermé (cf la fin du chapitre IV).

2. (a) Remarquons d'abord que $\sup_{n\in\mathbb{N}}|\lambda_n|<\infty$ et donc $\sup_{n\in\mathbb{N}}|f(\lambda_n)|<\infty$ puisque f est continue. Comme

$$\sum_{k=1}^{\infty} |f(\lambda_k)|^2 | < x, u_k > |^2 \le \left(\sup_{n \in \mathbb{N}} |f(\lambda_n)| \right)^2 \sum_{k=1}^{\infty} | < x, u_k > |^2 < \infty,$$

la suite $\{\sum_{k=1}^n f(\lambda_k) < x, u_k > u_k\}_{n \in \mathbb{N}}$ est de Cauchy (même argument que ci-dessus) et converge donc dans l'espace complet H vers une certaine limite

 $\lim_{n \to \infty} \sum_{k=1}^n f(\lambda_k) < x, u_k > u_k$ notée plus simplement $\sum_{n=1}^\infty f(\lambda_n) < x, u_n > u_n$

Clairement, f(A) est un opérateur linéaire. Pour tout $x \in H$, nous avons grâce à l'égalité de Parseval

$$||f(A)x||^2 = \sum_{n \in \mathbb{N}} f(\lambda_n)^2| < x, u_n > |^2 \le (\sup_n |f(\lambda_n)|)^2 \sum_{n \in \mathbb{N}} | < x, u_n > |^2 = (\sup_n |f(\lambda_n)|)^2 ||x||^2$$

et donc $f(A) \in \mathcal{L}(H)$ avec $||f(A)|| \le \sup_n |f(\lambda_n)|$.

En considérant $x = u_n$, on obtient $f(\lambda_n)^2 = ||f(A)u_n||^2 \le ||f(A)||^2 ||u_n||^2 = ||f(A)||^2$ et donc $\sup_{n \in \mathbb{N}} |f(\lambda_n)| \le ||f(A)||$. D'où $||f(A)|| = \sup_{n \in \mathbb{N}} |f(\lambda_n)|$.

Finalement

Find einent
$$< f(A)x, y >= \lim_{n \to \infty} \sum_{k=1}^{n} < f(\lambda_k) < x, u_k > u_k, y >$$

 $= \lim_{n \to \infty} \sum_{k=1}^{n} f(\lambda_k) < x, u_k > < u_k, y >= \lim_{n \to \infty} \sum_{k=1}^{n} < x, f(\lambda_k) < y, u_k > u_k >$
 $= < x, f(A)y >$

pour tous $x, y \in H$, et donc f(A) est symétrique.

(b) La suite orthonormée totale $\{u_n\}$ est aussi constituée de vecteurs propres de f(A), les valeurs propres correspondantes étant $\{f(\lambda_n)\}$:

$$f(A)u_n = \sum_{k \in \mathbb{N}} f(\lambda_k) < u_n, u_k > u_k = f(\lambda_n)u_n$$

pour tout $n \in \mathbb{N}$. De plus observons que si $x \in H$ satisfait $f(A)x = \mu x$ avec $\mu \notin \{f(\lambda_n) : n \in \mathbb{N}\}$, alors $\langle x, u_n \rangle = 0$ pour tout $n \in \mathbb{N}$ (voir IV.4) et donc x = 0 (voir l'exercice 4 de la série 7). D'où μ n'est pas une valeur propre de f(A).

(c) Rappel: la compacité de A assure que $\lambda_n \to 0$ (voir IV.10). Comme $\lambda_n \to 0$, on a $f(\lambda_n) \to f(0)$. Puisque les valeurs propres de f(A) sont exactement les $f(\lambda_n)$, si f(A) est compact alors $f(\lambda_n) \to 0$. Donc f(0) = 0 si f(A) est compact. D'autre part, si f(0) = 0, alors $f(\lambda_n) \to 0$. Posons $B_n x = \sum_{k=1}^n f(\lambda_k) < x, u_k > u_k$, qui définit un opérateur linéaire et borné B_n . Comme $R(B_n)$ est de plus de dimension finie, B_n est compact (cf le problème 5 de la série 4). Notons encore que $f(A) - B_n$ est un opérateur linéaire borné, $||f(A) - B_n|| = \sup_{k>n} |f(\lambda_k)|$ (en suivant le même argument qu'en (a)) et $\lim_{n\to\infty} ||f(A) - B_n|| = 0$ puisque $f(\lambda_n) \to 0$. Ceci montre que f(A) est compact (cf III.13). 3. Par définition d'une limite de Banach, F est linéaire, $\liminf_{n\to\infty} x_n \leq F(x) \leq \limsup_{n\to\infty} x_n$ et F(x) = F(Sx) pour tout $x = (x_1, x_2, \ldots) \in l_{\mathbb{R}}^{\infty}$, où $Sx = (x_2, x_3, \ldots)$.

En raisonnant par contradiction, supposons qu'une suite $\alpha \in l^1_{\mathbb{R}}$ comme dans l'énoncé existe. Pour tout $k \in \mathbb{N}$, soit $e_k = (\delta_{k,n})_{n \geq 1}$. Nous obtenons

$$\forall k \in \mathbb{N} \ \alpha_k = \sum_{n=1}^{\infty} \alpha_n \delta_{k,n} = F(e_k) = \lim_{n \to \infty} \delta_{k,n} = 0$$

car $F(\xi) = \lim_{n \to \infty} \xi_n$ si ξ converge. D'où $\alpha = 0$ et $F(\xi) = 0$ pour tout $\xi \in l_{\mathbb{R}}^{\infty}$. Contradiction.