EPFL - automne 2024

ANALYSE FONCTIONNELLE I

Corrigé

17 octobre 2024

Série 6

Rappel du cours: le théorème III.13.

Soient des evn X et Y sur \mathbb{F} , avec Y complet. Soient une suite $\{T_n\}_{n\geq 1}\subset \mathcal{L}(X,Y)$ et $T\in \mathcal{L}(X,Y)$ tels que $\|T_n-T\|\to 0$ lorsque $n\to\infty$. Si T_n est compact pour tout $n\in\mathbb{N}$, alors T est compact.

Rappel: l'exercice 5 de la série 4.

Soient des evn X et Y, et soit $T \in \mathcal{L}(X,Y)$. Alors T est compact si dim $R(T) < \infty$.

1. Soit une suite bornée $\{x_n\} \subset X$ et choisissons $\{z_n\} \subset Z$ telle que $||x_n - z_n||_X < 1/n$. Clairement $\{z_n\}$ est bornée. Comme $T|_Z$ est compact, il existe une sous-suite $\{z_{n_k}\}$ telle que $\{Tz_{n_k}\}$ converge vers un certain $y \in Y$. Nous obtenons

$$||Tx_{n_k} - y||_Y \le ||Tx_{n_k} - Tz_{n_k}||_Y + ||Tz_{n_k} - y||_Y \le ||T|| \frac{1}{n_k} + ||Tz_{n_k} - y||_Y \to 0$$

lorsque $k \to \infty$. Ainsi $\{Tz_{n_k}\}$ converge (en fait vers y).

2. Pour $n \in \mathbb{N}$, définissons $L_n : C[0,1] \to l^1$ par

$$L_n f = \left(0, \dots, 0, \int_{1/(n+1)}^{1/n} f(t)dt, \int_{1/(n+2)}^{1/(n+1)} f(t)dt, \int_{1/(n+3)}^{1/(n+2)} f(t)dt, \dots\right),$$

où les n-1 premiers éléments de la suite sont nuls. Remarquons que $L_1=T$ et

$$||L_n f||_1 \le \sum_{k=n}^{\infty} \int_{1/(k+1)}^{1/k} |f(t)| dt \le ||f||_{\infty} \sum_{k=n}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \frac{||f||_{\infty}}{n}$$

D'où $L_n \in \mathcal{L}(C[0,1], l^1)$ et $||L_n|| \leq \frac{1}{n}$.

Pour $n \in \mathbb{N}$, soit $T_n := T - L_n = L_1 - L_n$. Alors $T_n \in \mathcal{L}(C[0,1], l^1)$ et

$$R(T_n) \subset \{(\xi_k) : \xi_k = 0 \text{ pour tout } k \ge n\}.$$

Comme l'image de T_n est un espace vectoriel de dimension finie, l'exercice 5 de la série 4 assure que T_n est un opérateur compact. Nous pouvons appliquer le théorème III.13 à la suite $\{T_n\}$ et à T, car $||T - T_n|| = ||L_n|| \to 0$, chaque T_n est compact et l^1 est complet. Ainsi T est compact.

3. Pour $n \in \mathbb{N}$, définissons $\lambda_{k,l}^{(n)}$ par

$$\lambda_{k,l}^{(n)} = \begin{cases} 0 & \text{si } k < n, \\ \lambda_{k,l} & \text{si } k \ge n \end{cases}$$

et l'opérateur linéaire $L_n: l^2 \to l^2$ par $L_n \xi = \eta$ si $\eta_k = \sum_{l=1}^{\infty} \lambda_{k,l}^{(n)} \xi_l$ pour tout $k \in \mathbb{N}$. Par le problème 1 de la série 4, $L_n \in \mathcal{L}(l^2)$ et $||L_n||^2 \leq \sum_{k \geq n} \sum_{l \in \mathbb{N}} |\lambda_{k,l}^{(n)}|^2 \to 0$ lorsque $n \to \infty$.

Pour $n \in \mathbb{N}$, soit $T_n := T - L_n$. Alors $T_n \in \mathcal{L}(l^2)$ et

$$R(T_n) \subset \{(\eta_k) : \eta_k = 0 \text{ pour tout } k \ge n\}.$$

Comme l'image de T_n est un espace vectoriel de dimension finie, l'exercice 5 de la série 4 assure que T_n est un opérateur compact. Nous pouvons appliquer le théorème III.13 à la suite $\{T_n\}$ et à T, car $||T - T_n|| = ||L_n|| \to 0$, chaque T_n est compact et l^2 est complet. Ainsi T est compact.

$$4. < Kf, g > = \int_{a}^{b} \left\{ \int_{a}^{b} k(s, t) f(t) dt \right\} \overline{g(s)} ds = \int_{a}^{b} f(t) \overline{\left\{ \int_{a}^{b} \overline{k(s, t)} g(s) ds \right\}} dt$$
$$= \int_{a}^{b} f(t) \overline{\left\{ \int_{a}^{b} k(t, s) g(s) ds \right\}} dt = < f, Kg >$$
pour tous $f, g \in C[a, b]$.

- 5. $x \in N(A) \Leftrightarrow Ax = 0 \Leftrightarrow \langle Ax, Ax \rangle = 0 \Leftrightarrow \forall y \in X \langle Ax, y \rangle = 0$ $\Leftrightarrow \forall y \in X \langle x, Ay \rangle = 0 \Leftrightarrow x \in R(A)^{\perp}$
- 6. Supposons que $N(T_{\lambda}) = \{0\}$ et soit n > 0 tel que $R(T_{\lambda}^n) = R(T_{\lambda}^{n+1})$. Pour tout $x \in X$, il existe donc $y \in X$ tel que $T_{\lambda}^n x = T_{\lambda}^{n+1} y$. On obtient alors $T_{\lambda}(T_{\lambda}^{n-1} x T_{\lambda}^n y) = 0$ et donc $T_{\lambda}^{n-1} x = T_{\lambda}^n y$. Ainsi, pour tout $x \in X$, il existe $y \in X$ tel que $T_{\lambda}^{n-1} x = T_{\lambda}^n y$, autrement dit, $R(T_{\lambda}^{n-1}) \subset R(T_{\lambda}^n)$. Comme on sait déjà (exercice 1 de la série 5) que $R(T_{\lambda}^{n-1}) \supset R(T_{\lambda}^n)$, il y a en fait égalité. En bref, pour tout n > 0,

$$R(T_{\lambda}^n) = R(T_{\lambda}^{n+1}) \Rightarrow R(T_{\lambda}^{n-1}) = R(T_{\lambda}^n).$$

Soit $k \in \mathbb{N}_0$ tel que $R(T_{\lambda}^k) = R(T_{\lambda}^{k+1})$ (un tel k existe par l'exercice 2 de la série 5). Par ce qui précède, on en déduit que $R(T_{\lambda}^0) = R(T_{\lambda}^1)$, c'est-à-dire, $X = R(T_{\lambda})$.

7. Le cas n=0 a déjà été prouvé (voir l'exercice précédent et le §3.21 du cours); supposons donc $n \ge 1$. Observons d'abord que $T(R(T_{\lambda}^n)) \subset R(T_{\lambda}^n)$: pour tout $x \in X$,

$$T(T_{\lambda}^{n}x) = (T_{\lambda} + \lambda I)(T_{\lambda}^{n}x) = T_{\lambda}^{n}((T_{\lambda} + \lambda I)x) \in R(T_{\lambda}^{n}).$$

Comme $R(T_{\lambda}^n)$ est un fermé de X (§3.20 du cours) et T est compat, $T|_{R(T_{\lambda}^n)}: R(T_{\lambda}^n) \to R(T_{\lambda}^n)$ est aussi compact. Par l'exercice précédent et le §3.21 du cours,

$$N\left((T_{\lambda})|_{R(T_{\lambda}^{n})}\right) = \{0\} \iff R\left((T_{\lambda})|_{R(T_{\lambda}^{n})}\right) = R(T_{\lambda}^{n}).$$

Or $R\left((T_{\lambda})|_{R(T_{\lambda}^{n})}\right) = R(T_{\lambda}^{n+1})$. De plus $N\left((T_{\lambda})|_{R(T_{\lambda}^{n})}\right) = \{0\}$ ssi

$$\forall x \in X \ \left(T_{\lambda}(T_{\lambda}^n x) = 0 \Rightarrow T_{\lambda}^n x = 0 \right),$$

autrement dit, ssi

$$\forall x \in X \ \left(T_{\lambda}^{n+1} x = 0 \Leftrightarrow T_{\lambda}^{n} x = 0 \right),$$

c'est-à-dire, ssi $N(T_{\lambda}^n) = N(T_{\lambda}^{n+1})$.