ANALYSE FONCTIONNELLE I

Corrigé

Série 5 10 octobre 2024

1. Pour tous $n \in \mathbb{N}$ et $x \in X$, si $x = T_{\lambda}^{n+1}z$ pour un certain $z \in X$, alors $x = T_{\lambda}^{n}(T_{\lambda}z) \in R(T_{\lambda}^{n})$. Ceci montre que, pour tout $n \in \mathbb{N}$, $R(T_{\lambda}^{n+1}) \subset R(T_{\lambda}^{n})$. Le cas n = 0 est évident.

Nous avons déjà vu (cf (*) du §3.18 du cours) que, pour chaque $n \in \mathbb{N}$, $T_{\lambda}^{n} = T \circ S_{n} + (-\lambda)^{n}I$ pour un certain opérateur linéaire borné S_{n} et que $T \circ S_{n}$ est compact. En appliquant le §3.20 du cours à l'opérateur compact $T \circ S_{n}$, on obtient que $R(T \circ S_{n} + (-\lambda)^{n}I)$ est fermé.

2. Supposons que $n \in \mathbb{N}_0$ et $R(T_\lambda^n) = R(T_\lambda^{n+1})$. Nous savons déjà (cf exercice 1) que $R(T_\lambda^{n+1}) \supset R(T_\lambda^{n+2})$. Soit d'autre part $x \in R(T_\lambda^{n+1})$. Alors $x = T_\lambda^{n+1}z$ pour un certain $z \in X$, $T_\lambda^n z \in R(T_\lambda^n) = R(T_\lambda^{n+1})$ et il existe donc $w \in X$ tel que $T_\lambda^n z = T_\lambda^{n+1}w$. D'où $x = T_\lambda^{n+2}w \in R(T_\lambda^{n+2})$. Ceci prouve que $R(T_\lambda^{n+1}) \subset R(T_\lambda^{n+2})$, et donc ces deux sous-espaces vectoriels sont égaux.

Par l'absurde, supposons que, pour tout $n \in \mathbb{N}_0$, $R(T_{\lambda}^{n+1})$ est un sous-espace vectoriel fermé (§3.20) strictement inclus dans $R(T_{\lambda}^n)$. Par le lemme de Riesz, il existe $x_n \in R(T_{\lambda}^n) \setminus R(T_{\lambda}^{n+1})$ tel que

$$||x_n|| = 1$$
 et $\forall x \in R(T_\lambda^{n+1}) ||x_n - x|| \ge \frac{1}{2}$. (\bullet)

Pour $m > n \ge 0$, on obtient

$$Tx_n - Tx_m = (T_{\lambda}x_n + \lambda x_n) - (T_{\lambda}x_m + \lambda x_m) = \lambda \left(x_n + \lambda^{-1}T_{\lambda}x_n - \lambda^{-1}T_{\lambda}x_m - x_m\right)$$
$$:= \lambda \left(x_n - z_n\right) \qquad (\bullet \bullet)$$

avec

$$z_n = -\lambda^{-1} T_{\lambda} x_n + \lambda^{-1} T_{\lambda} x_m + x_m \in R(T_{\lambda}^{n+1})$$

car $T_{\lambda}x_n \in R(T_{\lambda}^{n+1})$ et $x_m \in R(T_{\lambda}^m) \subset R(T_{\lambda}^{n+1})$. Ainsi

$$||Tx_n - Tx_m|| \stackrel{(\bullet \bullet)}{=} |\lambda| ||x_n - z_n|| \stackrel{(\bullet)}{\geq} \frac{|\lambda|}{2}$$

pour tous $m > n \ge 0$ et la suite $\{Tx_n\}$ n'a aucune sous-suite de Cauchy. D'autre part la suite $\{x_n\}$ est bornée et donc, puisque T est compact, la suite $\{Tx_n\}$ admet une sous-suite convergente, et nous avons ainsi obtenu une contradiction.

3. (a) Si une suite $\xi = (\xi_n) \in l^1$ s'écrit sous la forme $\xi = \lim_{n \to \infty} \sum_{k=1}^n \alpha_k h_k$ dans l^1 pour une certaine suite $\{\alpha_n\} \subset \mathbb{F}$, alors nécessairement que, pour $n \geq 2$,

$$|\alpha_n| = \frac{1}{2} (|-\alpha_n| + |\alpha_n|) = \frac{1}{2} ||-\alpha_n e_{n-1} + \alpha_n e_n||_1 = \frac{1}{2} ||\alpha_n h_n||_1 \to 0.$$

De plus

$$\xi = \lim_{n \to \infty} \sum_{k=1}^{n} \alpha_k h_k = \lim_{n \to \infty} \left(\alpha_1 e_1 + \sum_{k=2}^{n} \alpha_k (e_k - e_{k-1}) \right) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \alpha_k e_k - \sum_{j=1}^{n-1} \alpha_{j+1} e_j \right)$$
$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} (\alpha_k - \alpha_{k+1}) e_k + \alpha_{n+1} e_n \right) = \lim_{n \to \infty} \sum_{k=1}^{n} (\alpha_k - \alpha_{k+1}) e_k.$$

Comme $\{e_n\}_{n\geq 1}$ est une base de Schauder et $\xi=\lim_{n\to\infty}\sum_{k=1}^n\xi_ke_k$ dans l^1 (voir le corrigé de l'exercice 1 de la série 3), nécessairement aussi que $\xi_n=\alpha_n-\alpha_{n+1}$ pour tout $n\geq 1$ et donc $\sum_{n=1}^\infty |\alpha_n-\alpha_{n+1}|<\infty$ (puisque $\xi\in l^1$).

De plus, nécessairement que $\sum_{k=1}^{n} \xi_k = \alpha_1 - \alpha_{n+1}$ et $\alpha_1 = \sum_{k=1}^{\infty} \xi_k$ (la série converge absolument car $\xi \in l^1$). Ainsi nécessairement

$$\alpha_{n+1} = \alpha_1 - \sum_{k=1}^{n} \xi_k = \sum_{k=n+1}^{\infty} \xi_k \quad (n \ge 1).$$

(b) Nous venons de voir que la suite $\{\alpha_n\}$ est unique si elle existe. Réciproquement, étant donné $\xi = (\xi_n) \in l^1$, on pose $\alpha_n = \sum_{k=n}^{\infty} \xi_k$ pour tout $n \ge 1$ et on a (mêmes calculs que ci-dessus)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \alpha_k h_k = \lim_{n \to \infty} \left(\sum_{k=1}^{n} (\alpha_k - \alpha_{k+1}) e_k + \alpha_{n+1} e_n \right) = \lim_{n \to \infty} \sum_{k=1}^{n} (\alpha_k - \alpha_{k+1}) e_k$$

car $\alpha_n = \sum_{k=n}^{\infty} \xi_k \to 0$ lorsque $n \to \infty$. Comme $\alpha_k - \alpha_{k+1} = \sum_{\ell=k}^{\infty} \xi_\ell - \sum_{\ell=k+1}^{\infty} \xi_\ell = \xi_k$, la dernière limite existe bien dans l^1 et vaut ξ (par le rappel ci-dessus de la série 3). Ceci prouve que $\{h_n\}$ est une base de Schauder.

(c) En choisissant en particulier $\xi = (\xi_n) = (n^{-1} - (n+1)^{-1}) \in l^1$, on obtient $\alpha_n = \sum_{k=n}^{\infty} \xi_k = 1/n$ pour tout $n \ge 1$. Si $\lim_{n \to \infty} \sum_{k=1}^{n} \alpha_{2k} h_{2k}$ convergeait dans l^1 , on a vu dans la partie (a) que

$$\sum_{k=1}^{\infty} (|0 - \alpha_{2k}| + |\alpha_{2k} - 0|) < \infty,$$

ce qui n'est pas vrai:

$$\sum_{k=1}^{\infty} 2|\alpha_{2k}| = 2\sum_{k=1}^{\infty} (2k)^{-1} = \sum_{k=1}^{\infty} k^{-1} = \infty.$$

Voir par exemple le livre de I. Singer, Bases in Banach spaces I, Springer, 1970.