Corrigé

Série 4 3 octobre 2024

1. Comme

$$|\eta_k| \le \sum_{l=1}^{\infty} |\lambda_{k,l}| |\xi_l| \le \left\{ \sum_{l=1}^{\infty} |\lambda_{k,l}|^2 \right\}^{1/2} ||\xi||_2$$

pour tout $k \in \mathbb{N}$, nous obtenons

$$\sum_{k=1}^{\infty} |\eta_k|^2 \le ||\xi||_2^2 \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |\lambda_{k,l}|^2$$

pour tout $\xi \in l^2$. Ceci montre que T est borné et que $||T|| \leq \{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |\lambda_{k,l}|^2\}^{1/2}$

2. Pour $t \in \mathbb{R}$ et $n \in \mathbb{N} \cup \{0\}$, posons $\sigma_n(t) = \sum_{k=0}^n \frac{1}{k!} t^k$. Pour m > n,

$$||S_m(T) - S_n(T)|| = ||\sum_{k=n+1}^m \frac{T^k}{k!}|| \le \sum_{k=n+1}^m \frac{||T||^k}{k!} = \sigma_m(||T||) - \sigma_n(||T||).$$

Comme la limite $\lim_{n\to\infty} \sigma_n(||T||) = e^{||T||}$ existe, la suite $\{\sigma_n(||T||)\}$ est de Cauchy dans \mathbb{R} et il en résulte que la suite $\{S_n(T)\}$ est de Cauchy dans $\mathcal{L}(X)$. Comme $\mathcal{L}(X)$ est un espace de Banach, $\{S_n(T)\}$ converge vers une certaine limite, notée $\exp(T) \in \mathcal{L}(X)$. De plus $S_n(0) = I$ pour tout $n \geq 0$ et donc $\exp(0) = I$. Il reste à vérifier que $\exp(L + T) = \exp(L) \circ \exp(T)$. Comme $L \circ T = T \circ L$, on obtient

$$S_n(L) \circ S_n(T) = \sum_{0 \le k, l \le n} \frac{1}{k! l!} L^k \circ T^l$$

 et

$$(L+T)^m = \sum_{0 \le k, l \le m, \ k+l=m} \frac{m!}{k! l!} L^k \circ T^l$$

(cf la formule du binôme). D'où

$$||S_{n}(L) \circ S_{n}(T) - S_{n}(L+T)|| = ||\sum_{0 \leq k, l \leq n} \frac{1}{k! l!} L^{k} \circ T^{l} - \sum_{m=0}^{n} \frac{1}{m!} \sum_{0 \leq k, l \leq n, \ k+l=m} \frac{m!}{k! l!} L^{k} \circ T^{l}||$$

$$= ||\sum_{0 \leq k, l \leq n, \ k+l \geq n+1} \frac{1}{k! l!} L^{k} \circ T^{l}|| \leq \sum_{0 \leq k, l \leq n, \ k+l \geq n+1} \frac{1}{k! l!} ||L||^{k} ||T||^{l}$$

$$= \sigma_{n}(||L||) \sigma_{n}(||T||) - \sigma_{n}(||L|| + ||T||) \rightarrow e^{||L||} e^{||T||} - e^{||L|| + ||T||} = 0$$

$$||\operatorname{corsque} n \to \infty. \text{ Finalement}$$

$$||\exp(L) \circ \exp(T) - \exp(L+T)|| \leq ||\{\exp(L) - S_{n}(L)\} \circ \exp(T)|| + ||S_{n}(L) \circ \{\exp(T) - S_{n}(T)\}|| + ||S_{n}(L) \circ S_{n}(T) - S_{n}(L+T)|| + ||S_{n}(L) \cap S_{n}(T)|| + ||S_{n}(L) \cap S_{n}(T) - S_{n}(L+T)|| + ||S_{n}(L) \cap S_{n}(T) - S_{n}(L+T)|| + ||S_{n}(L+T) - \exp(L+T)|| \rightarrow 0$$

3. Soit $(X, ||\cdot||) = (l^p, ||\cdot||_p)$, $1 \le p < \infty$, et soit la base canonique de Schauder $\{e_n\}_{n\ge 1}$ vue à l'exercice 1 de la série 3. Alors $\{e_n\}$ est une suite bornée dans l^p sans sous-suite convergente. Donc l'opérateur identité $I: l^p \to l^p$ n'est pas compact.

- 4. (a) Soient $T, L \in \mathcal{L}(X, Y)$ compacts et soient $\alpha, \beta \in \mathbb{F}$. Nous devons montrer que $\alpha T + \beta L$ est compact. Soit une suite bornée $\{x_n\} \subset X$. Comme T est compact, il existe une sous-suite $\{x_{n_j}\}$ telle que $\{Tx_{n_j}\} \subset Y$ est convergente. Comme L est compact, nous pouvons extraire de $\{x_{n_j}\}$ une sous-suite $\{x_{n_{j_k}}\}$ telle que $\{Lx_{n_{j_k}}\}$ converge dans Y. Mais alors $\{(\alpha T + \beta L)x_{n_{j_k}}\}$ converge dans Y.
 - (b) Supposons que S est compact et considérons une suite bornée quelconque $\{x_n\} \subset X$. Comme S est compact, il existe une sous-suite $\{x_{n_k}\}$ telle que $\{Sx_{n_k}\}$ converge dans Y. Mais alors $\{(T \circ S)x_{n_k}\}$ converge dans Z car $T:Y \to Z$ est continu. Supposons que T est compact et considérons une suite bornée quelconque $\{x_n\} \subset X$. Comme S est borné, la suite $\{Sx_n\} \subset Y$ est bornée. Comme T est compact, il existe une sous-suite $\{Sx_{n_k}\} \subset Y$ telle que $\{T(Sx_{n_k})\}$ converge dans Z.
- 5. Soit $n = \dim R(T) \in \mathbb{N}$ (si cette dimension est nulle, T est l'opérateur nul et donc compact). Le sous-espace vectoriel normé $(R(T), ||\cdot||_Y)$ étant de dimension finie, il peut être identifié avec $(\mathbb{F}^n, ||\cdot||_{\mathbb{F}^n})$ pour une certaine norme $||\cdot||_{\mathbb{F}^n}$. Cette norme est équivalente à la norme usuelle $||\cdot||_2$ sur \mathbb{F}^n définie par $||(a_1, \ldots, a_n)||_2 = \sqrt{|a_1|^2 + \ldots + |a_n|^2}$ (voir l'exercice 2 de la série 3). Comme toute suite bornée dans $(\mathbb{F}^n, ||\cdot||_2)$ admet une sous-suite qui converge, on déduit que toute suite bornée dans $(R(T), ||\cdot||_Y)$ admet une sous-suite qui converge. Soit maintenant une suite $\{x_n\}$ bornée dans X. Alors $\{Tx_n\} \subset R(T)$ est une suite bornée puisque T est un opérateur linéaire borné. Il existe donc une sous-suite $\{x_{n_k}\}$ telle que $\{Tx_{n_k}\}$ est convergente.

Attention: une suite bornée dans un evn de dimension infinie n'admet pas forcément une sous-suite convergente! Voir le corrigé de l'exercice 3 ci-dessus.

6. Pour tout $x \in l^{\infty}$, on a

$$||Sx||_{\infty} \le ||x||_{\infty}, \quad ||Tx||_{\infty} = ||x||_{\infty}, \quad ||Px||_{\infty} \le ||x||_{\infty},$$

et donc S,T,P sont bornés avec $||S||,||P|| \le 1$ et ||T|| = 1. De plus, en posant $z = (0,1,0,0,0,\ldots)$, on obtient

$$||Sz||_{\infty} = ||Pz||_{\infty} = 1$$

avec $||z||_{\infty} = 1$, et ainsi ||S|| = ||P|| = 1.

Clairement S est surjectif mais pas injectif (par exemple $S(1,0,0,\ldots)=(0,0,0,\ldots)$), T est injectif mais pas surjectif (par exemple $(1,0,0,\ldots) \notin R(T)$), et P n'est ni injectif ni surjectif. De plus

$$S \circ T = I \neq P = T \circ S$$
.

Remarque. Si X est \mathbb{F}^n muni de n'importe quelle norme, avec $n \in \mathbb{N}$ fixé, alors tout opérateur linéaire $A: X \to X$ est borné (voir l'exercice 5 de la série 3), et même compact (conséquence de l'exercice 5 ci-dessus). Un résultat d'algèbre linéaire assure que, pour un opérateur linéaire $A: X \to X$ avec X de dimension finie, on a les équivalences

$$A \text{ injectif} \Leftrightarrow A \text{ surjectif} \Leftrightarrow A \text{ bijectif.}$$

On voit ici que sans l'hypothèse que X est de dimension finie, ces équivalences ne sont plus vraies en général. Supposons que X est de dimension finie et $A \circ B = I$ avec $A, B \in \mathcal{L}(X)$. Alors A est surjectif car x = A(Bx) pour tout $x \in X$ et donc A est bijectif (X étant supposé de dimension finie). L'application réciproque $A^{-1}: X \to X$ est linéaire et $A^{-1} \circ A = A \circ A^{-1} = I$, d'où

$$B = (A^{-1} \circ A) \circ B = A^{-1} \circ (A \circ B) = A^{-1} \circ I = A^{-1}.$$