ANALYSE FONCTIONNELLE I

Série 1

Corrigé

12 septembre 2024

Notation: $\mathbb{N} = \{1, 2, 3, 4, \ldots\}.$

1. Pour $x=(x_1,x_2,\ldots)\in l_{\mathbb{R}}^{\infty}$, soit $Sx=(x_2,x_3,x_4,\ldots)$. Observons qu'en effectuant cette opération n fois, on obtient $S^nx=(x_{1+n},x_{2+n},x_{3+n},\ldots)$ pour $n\in\mathbb{N}$.

Si $n_1, \ldots, n_k \in \mathbb{N}$, on a

$$F(x) = \frac{1}{k} \sum_{i=1}^{k} F(x) = \frac{1}{k} \sum_{i=1}^{k} F(S^{n_i}x) = F\left(\frac{1}{k} \sum_{i=1}^{k} S^{n_i}x\right) \le \limsup_{j \to \infty} \frac{1}{k} \sum_{i=1}^{k} x_{j+n_i}$$

D'où

$$F(x) \le \inf \limsup_{j \to \infty} \frac{1}{k} \sum_{i=1}^k x_{j+n_i} := q(x).$$

Finalement

$$F(x) = -F(-x) \ge -q(-x) = \sup \liminf_{j \to \infty} \frac{1}{k} \sum_{i=1}^{k} x_{j+n_i}$$

- 2. i) Supposons d'abord que $M \setminus F$ n'est pas ouvert et montrons que F n'est pas séquentiellement fermé. Par hypothèse il existe $a \in M \setminus F$ tel que $B(a,r) \not\subset M \setminus F$ pour tout r > 0. Pour $n \in \mathbb{N}$, on choisit r = 1/n et il existe donc $a_n \in B(a,1/n) \cap F$. Ceci étant possible pour chaque n, on définit ainsi une suite $(a_n)_{n\geq 1} \subset F$ telle que $d(a_n,a) < 1/n \to 0$. La suite $(a_n) \subset F$ converge donc vers a dans (M,d), mais $a \in M \setminus F$. Ainsi F n'est pas séquentiellement fermé.
 - ii) Supposons maintenant que F n'est pas séquentiellement fermé et montrons que $M \setminus F$ n'est pas ouvert. Par hypothèse, il existe une suite $(a_n) \subset F$ et $a \notin F$ tels que $a_n \to a$ dans (M, d). Pour tout r > 0, il existe $N \in \mathbb{N}$ tel que $\forall n \geq N \ d(a_n, a) < r$. Ainsi $a_N \in B(a, r) \cap F$ et donc $B(a, r) \not\subset M \setminus F$, ceci pour tout r > 0. Donc $M \setminus F$ n'est pas ouvert.
- 3. i) Supposons que (A, d_A) est complet et soient $(a_n) \subset A$ et $a \in M$ tels que $a_n \to a$ dans (M, d). Alors (a_n) , étant convergente, est une suite de Cauchy dans (M, d) et donc une suite de Cauchy dans (A, d_A) (car $d_A(a_m, a_n) = d(a_m, a_n)$). Comme (A, d_A) est complet, (a_n) converge dans (A, d_A) vers un certain $b \in A$. Mais alors $a_n \to b$ dans (M, d) et ainsi $a = b \in A$. D'où A est séquentiellement fermé, et donc fermé.

Remarque: une suite convergente $(a_n) \subset M$ est de Cauchy. En effet, pour tout $\epsilon > 0$, il existe $N \in \mathbb{N}$ tel que $d(a_n, a) < \epsilon/2$ pour tout $n \geq N$. D'où, pour tous $m, n \geq N$,

$$d(a_m, a_n) \le d(a_m, a) + d(a, a_n) < \epsilon/2 + \epsilon/2 = \epsilon.$$

- ii) Supposons que (M, d) est complet et que A est fermé. Considérons une suite de Cauchy $(a_n) \subset A$ pour (A, d_A) . C'est aussi une suite de Cauchy pour (M, d) et donc $a_n \to a$ dans l'espace métrique complet (M, d) pour un certain $a \in M$. Comme A est séquentiellement fermé, $a \in A$ et ainsi $a_n \to a$ dans (A, d_A) .
- 4. (a) $\mathcal{B}(X,\mathbb{R})$ n'est pas vide car la fonction constante f définie par f(x)=0 pour tout $x\in X$ est bornée. De plus $\rho(f,g)<+\infty$ car

 $\sup\{|f(x) - g(x)| : x \in X\} \le \sup\{|f(x)| + |g(x)| : x \in X\}$ $\le \sup\{|f(x)| : x \in X\} + \sup\{|g(x)| : x \in X\} < \infty$

puisque f et g sont bornées.

- Positivité. Pour tous $f, g \in \mathcal{B}(X, \mathbb{R})$, clairement $\rho(f, g) \geq 0$ avec égalité ssi f = g.
- Symétrie. Clairement

$$\rho(f,g) = \sup\{|f(x) - g(x)| : x \in X\} = \sup\{|g(x) - f(x)| : x \in X\} = \rho(g,f).$$

- Inégalité du triangle.

$$\begin{split} & \rho(f,g) = \sup\{|f(x) - g(x)| : x \in X\} = \sup\{|f(x) - h(x) + h(x) - g(x)| : x \in X\} \\ & \leq \sup\{|f(x) - h(x)| + |h(x) - g(x)| : x \in X\} \\ & \leq \sup\{|f(x) - h(x)| : x \in X\} + \sup\{|h(x) - g(x)| : x \in X\} = \rho(f,h) + \rho(h,g). \end{split}$$

(b) Soit une suite de Cauchy $\{f_n\}_{n\geq 1}$ dans $\mathcal{B}(X,\mathbb{R})$:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m \ge N \ \forall n \ge N \ \rho(f_m, f_n) < \epsilon.$$

Pour $x \in X$ fixé, on en déduit

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m \ge N \ |f_m(x) - f_n(x)| < \epsilon$$

puisque $|f_m(x) - f_n(x)| \leq \rho(f_m, f_n)$. Ainsi $\{f_n(x)\}_{n\geq 1}$ est une suite de Cauchy dans \mathbb{R} . Comme la droite euclidienne est complète, cette suite converge vers un certain $f(x) \in \mathbb{R}$. En effectuant cet argument pour tout $x \in X$, ceci définit une application $f: X \to \mathbb{R}$ telle que $f(x) = \lim_{n\to\infty} f_n(x)$ pour tout $x \in X$. A ce stade, on ne sait pas encore si f est bornée.

Fixons $\epsilon > 0$. Puisque la suite $\{f_n\}$ est de Cauchy, il existe $N \in \mathbb{N}$ tel que

$$\forall m \geq N \ \forall n \geq N \ \forall x \in X \ |f_n(x) - f_m(x)| < \epsilon,$$

ce qui s'écrit aussi

$$\forall n \geq N \ \forall x \in X \ \forall m \geq N \ |f_n(x) - f_m(x)| < \epsilon.$$

Pour tout $n \geq N$ et tout $x \in X$, on obtient donc

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \epsilon.$$

Nous avons donc montré que

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ \ \forall x \in X \ \ |f_n(x) - f(x)| \le \epsilon$$

et ainsi $\lim_{n\to\infty} \sup\{|f_n(x) - f(x)| : x \in X\} = 0.$

En particulier, en prenant $\epsilon = 1$ par exemple, on obtient $N \in \mathbb{N}$ tel que $|f_N(x) - f(x)| \le 1$ pour tout $x \in X$ et donc $|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| \le 1 + \sup\{|f_N(y)| : y \in X\}$ pour tout $x \in X$. D'où f est bien bornée. En résumé, nous avons montré

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; \; \rho(f_n, f) < \epsilon,$$

et donc $f_n \to f$ dans $(\mathcal{B}(X,\mathbb{R}), \rho)$.

(c) Commençons par prouver l'inégalité donnée dans l'indication. Pour $u, v, w \in X$, l'inégalité du triangle donne $d(u, v) \leq d(u, w) + d(w, v)$ et $d(u, w) \leq d(u, v) + d(v, w)$. Ces deux inégalités s'écrivent aussi

$$-d(v,w) \le d(u,v) - d(u,w) \le d(v,w)$$
 ou encore $|d(u,v) - d(u,w)| \le d(v,w)$

Comme première conséquence, ceci montre que $|\phi_a(x)| = |d(x, a) - d(x, x_0)| \le d(a, x_0)$ pour tout $x \in X$ et donc $\phi_a \in \mathcal{B}(X, \mathbb{R})$.

Pour $a, b \in X$, on a $|\phi_a(x) - \phi_b(x)| = |d(x, a) - d(x, b)| \le d(a, b)$ pour tout $x \in X$, et ainsi $\rho(\phi_a, \phi_b) \le d(a, b)$. Pour x = a, on a l'égalité $|\phi_a(a) - \phi_b(a)| = |d(a, a) - d(a, b)| = d(a, b)$ et donc en fait $\rho(\phi_a, \phi_b) = d(a, b)$.