ANALYSE FONCTIONNELLE I

Corrigé

Série 14 19 décembre 2024

- 1. Supposons d'abord que T est fermé. Par définition, G(T) est fermé dans $(X \times Y, ||\cdot||_{X \times Y})$. Supposons encore que $x_n \to x$ et $Tx_n \to y$. Alors $(x_n, Tx_n) \in G(T)$ (pour tout $n \in \mathbb{N}$) et $(x_n, Tx_n) \to (x, y)$ dans $X \times Y$. Comme G(T) est fermé, $(x, y) \in G(T)$ et ainsi y = Tx.
 - Supposons ensuite que T n'est pas fermé, c'est-à-dire que G(T) n'est pas fermé dans $X \times Y$. Il existe donc une suite $\{(x_n, y_n)\}_{n \in \mathbb{N}} \subset G(T)$ telle que $x_n \to x$, $y_n \to y$ et $(x, y) \notin G(T)$. En conséquence, $x_n \to x$, $Tx_n = y_n \to y$ et $y \neq Tx$.
- 2. Supposons que le Théorème du Graphe Fermé est vrai et soient des espaces de Banach X et Y. Considérons un opérateur bijectif $T \in \mathcal{L}(X,Y)$. Comme T est continu, G(T) est fermé dans $(X \times Y, ||\cdot||_{X \times Y})$ (cette affirmation constitue la partie facile du Théorème du Graphe Fermé, partie dont la preuve donnée au cours ne repose pas sur le Théorème de l'Inverse Borné). Comme $G(T^{-1}) = \{(y,x) : (x,y) \in G(T)\}$, il est facile de vérifier que $G(T^{-1})$ est alors aussi fermé dans $(Y \times X, ||\cdot||_{Y \times X})$. Par le Théorème du Graphe Fermé, $T^{-1} : Y \to X$ est borné.
- 3. Vérifions que $C: X \to Y$ est linéaire. Soient $\alpha_1, \alpha_2 \in \mathbb{F}$ et $x_1, x_2 \in X$ quelconques, et posons $y_1 = Cx_1$ et $y_2 = Cx_2$. On obtient

$$A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2 = \alpha_1 B y_1 + \alpha_2 B y_2 = B(\alpha_1 y_1 + \alpha_2 y_2)$$

et on en déduit $C(\alpha_1x_1 + \alpha_2x_2) = \alpha_1y_1 + \alpha_2y_2 = \alpha_1Cx_1 + \alpha_2Cx_2$.

Vérifions que C est fermé. Supposons que $x_n \to x$ et $Cx_n \to y$ et montrons que y = Cx (cf le problème 1). Posons $y_n = Cx_n$, de sorte que $y_n \to y$. Comme A et B sont continus, $Ax_n \to Ax$ et $By_n \to By$. Or $Ax_n = By_n$ pour tout $n \in \mathbb{N}$ (car $y_n = Cx_n$), et donc Ax = By. Ainsi y = Cx.

Comme X et Y sont des espaces de Banach, le Théorème du Graphe Fermé garantit que C est borné.

- 4. D'après le Problème 1, T est fermé et, par le Théorème du Graphe Fermé, T est borné. Clairement, T est bijectif et donc T^{-1} est borné, d'après le Théorème de l'Inverse Borné. Par conséquent, pour tout $x \in X$, $||x||_2 = ||Tx||_2 \le ||T|| \, ||x||_1$ et $||x||_1 = ||T^{-1}x||_1 \le ||T^{-1}|| \, ||x||_2$. D'où $||T^{-1}||^{-1}||x||_1 \le ||x||_2 \le ||T|| \, ||x||_1$ pour tout $x \in X$.
- 5. Supposons le théorème VI.20 vrai. Soient des espaces de Banach X et Y, et soit un opérateur surjectif $T \in \mathcal{L}(X,Y)$. Comme T est continu, G(T) est un sous-espace vectoriel fermé de $(X \times Y, ||\cdot||_{X \times Y})$ (c'est la partie facile du Théorème du Graphe Fermé). De plus $X \times \{0\}$ est un sous-espace vectoriel fermé de $X \times Y$. La surjectivité de T implique que $X \times Y = (X \times \{0\}) + G(T)$. Comme $X \times Y$ est un espace de Banach, le théorème VI.20 assure qu'il existe $\beta > 0$ tel que chaque $(x, y) \in X \times Y$ peut être représenté comme

$$(x,y) = (x_1,0) + (x_2, Tx_2), \ x_1 \in X, \ x_2 \in X, ||(x_1,0)||_{X\times Y} \le \beta ||(x,y)||_{X\times Y} \text{ et } ||(x_2, Tx_2)||_{X\times Y} \le \beta ||(x,y)||_{X\times Y}.$$
 (1)

Choisissons $y \in Y$ tel que $||y||_Y < 1/\beta$. Pour x = 0, soient $x_1, x_2 \in X$ donnés par (1). Nous obtenons

$$0 = x = x_1 + x_2, \quad y = Tx_2, \quad ||x_2||_X = ||x_1||_X \le \beta ||(x, y)||_{X \times Y} = \beta ||y||_Y < 1.$$

D'où $y \in T(B_X(0,1))$, ce qui montre que $B_Y(0,1/\beta) \subset T(B_X(0,1))$.

- 6. Si $Y = \{0\}$, alors T est clairement surjectif. Supposons maintenant que $Y \neq \{0\}$. Comme la boule $B_X(0,1)$ dans X est un ouvert, $T(B_X(0,1))$ est un ouvert dans Y (l'application T étant ouverte par hypothèse). Comme $0 = T0 \in T(B_X(0,1))$, il existe r > 0 tel que $B_Y(0,r) \subset T(B_X(0,1))$. Il en résulte que T est surjectif: si $y \in Y \setminus \{0\}$, alors $r||2y||_Y^{-1}y \in B_Y(0,r)$ et donc il existe $x \in B_X(0,1)$ tel que $r||2y||_Y^{-1}y = Tx$. Ainsi $y = T\left((2||y||_Y/r)x\right) \in R(T)$.
- 7. Soit des evn X et Y sur \mathbb{F} avec $X \neq \{0\}$. Choisissons $x_0 \in X$ de norme 1. Par le §5.14 du cours, il existe $F \in X^*$ telle que $F(x_0) = ||F||_{X^*} = 1$. Pour $y \in Y$, soit l'opérateur linéaire $L_y : X \to Y$ défini par $L_y x = F(x)y$ (linéaire en x). Il satisfait $y = L_y x_0$ et il est borné car

$$\forall x \in X \ ||L_y x||_Y \le ||F||_{X^*} ||x||_X ||y||_Y = ||x||_X ||y||_Y$$

et de plus $||L_y|| \le ||y||_Y$. Comme $||y||_Y = ||L_yx_0||_Y \le ||L_y|| \, ||x_0||_X = ||L_y||$, on a $||L_y|| = ||y||_Y$. Ainsi l'application linéaire $y \to L_y \in \mathcal{L}(X,Y)$ préserve les normes et est donc injective. Il s'ensuit que Y est congruent avec le sous-espace vectoriel $A = \{L_y : y \in Y\}$ de $\mathcal{L}(X,Y)$. Finalement A est fermé dans $\mathcal{L}(X,Y)$: si la suite $\{y_n\} \subset Y$ est telle que $L_{y_n} \to L \in \mathcal{L}(X,Y)$, alors $L = L_y \in A$ avec $y = Lx_0$. En effet, pour tout $x \in X$,

$$Lx \stackrel{(*)}{=} \lim_{n \to \infty} (L_{y_n} x) = \lim_{n \to \infty} (F(x) y_n) = F(x) \lim_{n \to \infty} (L_{y_n} x_0) \stackrel{(**)}{=} F(x) Lx_0 = F(x) y = L_y x.$$

L'égalité (*) résulte de

$$||L_{y_n}x - Lx||_Y \le ||L_{y_n} - L|| ||x||_X$$

qui tend vers 0 quand $n \to \infty$. L'argument pour (**) est le même.

Conclusion: si $\mathcal{L}(X,Y)$ est complet, alors A aussi (cf exercice 3 de la série 1) et donc Y aussi.