Série 13

12 décembre 2024

1. Clairement ϕ_g est linéaire. Pour tout $f \in X$,

$$|\phi_g(f)| = \left| \int_a^b f(s)g(s)ds \right| \le ||f||_{\infty} \int_a^b |g(s)|ds$$

D'où $\phi_g \in X^*$ et $||\phi_g|| \le \int_a^b |g(s)| ds$.

Pour $n \in \mathbb{N}$, posons

$$f_n(s) = \begin{cases} n\overline{g(s)} & \text{si } |g(s)| \le 1/n, \\ \overline{g(s)}/|g(s)| & \text{si } |g(s)| \ge 1/n \end{cases}$$

Notons que $f_n \in X$, $||f_n||_{\infty} \le 1$, $f_n(s)g(s) \in [0, \infty[$ pour tout $s \in [a, b]$, $f_n(s)g(s) \ge 0 \ge |g(s)| - \frac{1}{n}$ si $|g(s)| \le 1/n$, $|g(s)| \ge |g(s)| - \frac{1}{n}$ si $|g(s)| \ge 1/n$

$$f_n(s)g(s) = |g(s)| \ge |g(s)| - \frac{1}{n} \text{ si } |g(s)| \ge 1/n$$

et
$$|\phi_g(f_n)| = \int_a^b f_n(s)g(s)ds \ge \int_a^b |g|ds - \frac{1}{n} \int_a^b ds.$$

Par conséquent

$$||\phi_g|| \ge |\phi_g(f_n)| \ge \int_a^b |g| ds - \frac{1}{n} (b-a) \to \int_a^b |g(s)| ds$$

et $||\phi_q|| \geq \int_a^b |g| ds$.

2. Posons $g_n(t) = \frac{1}{\pi} \{ \frac{1}{2} + \sum_{m=1}^n \cos mt \}$. En utilisant l'indication de l'énoncé, nous obtenons

$$g_n(t) = \frac{1}{\pi} \left\{ \frac{1}{2} + \frac{\sin(n + \frac{1}{2})t - \sin\frac{t}{2}}{2\sin\frac{1}{2}t} \right\} = \frac{1}{2\pi} \frac{\sin(n + \frac{1}{2})t}{\sin\frac{1}{2}t}$$

pour tout $t \in [-\pi, \pi] \setminus \{0\}$ (et $g_n(0) = \pi^{-1} \left(\frac{1}{2} + n\right)$).

Par l'exercice 1 de la présente série, $\phi_n \in X^*$ et

$$\begin{aligned} ||\phi_n|| &= \int_{-\pi}^{\pi} |g_n(t)| dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin(n + \frac{1}{2})t}{\sin\frac{1}{2}t} \right| dt \ge \frac{1}{\pi} \int_{-\pi}^{\pi} \left| \frac{\sin(n + \frac{1}{2})t}{t} \right| dt \\ &= \frac{2}{\pi} \int_{0}^{\pi} \left| \frac{\sin(n + \frac{1}{2})t}{t} \right| dt \stackrel{(n + \frac{1}{2})t = s}{=} \frac{2}{\pi} \int_{0}^{\pi(n + \frac{1}{2})} \left| \frac{\sin(s)}{s} \right| ds \ge \frac{2}{\pi} \sum_{k=1}^{n} \int_{(k-1)\pi}^{k\pi} \frac{|\sin s|}{k\pi} ds = \frac{4}{\pi^2} \sum_{k=1}^{n} \frac{1}{k} \end{aligned}$$

D'où $\sup_{n\in\mathbb{N}} ||\phi_n|| = \infty$. Prouvons qu'il existe $f\in X$ telle que la suite $\{\phi_n(f)\}$ ne converge pas. Supposons le contraire: $\{\phi_n(f)\}$ converge et est donc une suite bornée pour tout $f \in X$. En appliquant le principe de la borne uniforme à l'espace de Banach $X = C([-\pi, \pi], \mathbb{R})$ (voir VI.3, VI.4 et aussi VI.9), nous obtenons $\sup_{n\in\mathbb{N}} ||\phi_n|| < \infty$, ce qui est une contradiction.

Conclusion: la série de Fourier d'une fonction continue $f: [-\pi, \pi] \to \mathbb{R}$ ne converge pas nécessairement en $\tau = 0$ (!).

3. Remarquons d'abord que $g \circ T : X \to \mathbb{F}$ est bien linéaire et continue en tant que composée de deux applications linéaires et continues, et donc T'g est bien dans X^* . De plus, pour tout $x \in X$,

$$|(T'g)(x)| = |g(Tx)| \le ||g||_{Y^*} ||Tx||_Y \le ||g||_{Y^*} ||T||_{\mathcal{L}(X,Y)} ||x||_X$$

et donc $||T'g||_{X^*} \le ||T||_{\mathcal{L}(X,Y)}||g||_{Y^*}$ pour tout $g \in Y^*$. Puisque T' est clairement linéaire (en g), ceci montre que $T' \in \mathcal{L}(Y^*, X^*)$ et que $||T'||_{\mathcal{L}(Y^*, X^*)} \le ||T||_{\mathcal{L}(X,Y)}$.

Réciproquement, choisissons x_0 quelconque dans X et montrons que

$$||Tx_0||_Y \le ||T'||_{\mathcal{L}(Y^*,X^*)}||x_0||_X$$

ce qui établira l'inégalité $||T||_{\mathcal{L}(X,Y)} \leq ||T'||_{\mathcal{L}(Y^*,X^*)}$ puisque x_0 est arbitraire. Si $Tx_0=0$, c'est évident et supposons donc que $Tx_0\neq 0$. La Proposition V.14 donne $G\in Y^*$ telle que $||G||_{Y^*}=1$ et $G(Tx_0)=||Tx_0||_Y$. D'où

$$||Tx_0||_Y = G(Tx_0) = (T'G)(x_0) \le ||T'G||_{X^*} ||x_0||_X \le ||T'||_{\mathcal{L}(Y^*,X^*)} ||G||_{Y^*} ||x_0||_X = ||T'||_{\mathcal{L}(Y^*,X^*)} ||x_0||_X$$

4. Soit $\lambda_1, \lambda_2 \in \mathbb{F}$ et $y_1, y_2 \in Y$. Alors, pour tout $x \in X$,

$$\langle x, T^*(\lambda_1 y_1 + \lambda_2 y_2) \rangle_X = \langle Tx, \lambda_1 y_1 + \lambda_2 y_2 \rangle_Y = \overline{\lambda_1} \langle Tx, y_1 \rangle_Y + \overline{\lambda_2} \langle Tx, y_2 \rangle_Y$$

$$= \overline{\lambda_1} \langle x, T^* y_1 \rangle_X + \overline{\lambda_2} \langle x, T^* y_2 \rangle_X = \langle x, \lambda_1 T^* y_1 + \lambda_2 T^* y_2 \rangle_X ,$$

$$\langle x, T^*(\lambda_1 y_1 + \lambda_2 y_2) - \lambda_1 T^* y_1 - \lambda_2 T^* y_2 \rangle_X = 0$$

et, en choisissant $x = T^*(\lambda_1 y_1 + \lambda_2 y_2) - \lambda_1 T^* y_1 - \lambda_2 T^* y_2$, on obtient la linéarité de T^* : $T^*(\lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 T^* y_1 + \lambda_2 T^* y_2$. Si $\mathbb{F} = \mathbb{R}$, on peut omettre la conjugaison complexe.

Pour tout $y \in Y$, on a

$$\forall x \in X \mid \langle x, T^*y \rangle_X \mid = |\langle Tx, y \rangle_Y \mid \leq ||T|| \, ||x||_X ||y||_Y.$$

En choisissant $x = T^*y$, on a donc $||T^*y||_X^2 \le ||T|| \, ||T^*y||_X ||y||_Y$ et $||T^*y||_X \le ||T|| \, ||y||_Y$. D'où $T^* \in \mathcal{L}(Y,X)$ et $||T^*|| \le ||T||$. Les normes de T et T^* sont ici simplement notées par ||T|| et $||T^*||$.

De même, pour tout $x \in X$, on a

$$\forall y \in Y \mid \langle Tx, y \rangle_Y \mid = |\langle x, T^*y \rangle_X \mid \leq ||x||_X ||T^*y||_X \leq ||x||_X ||T^*|| ||y||_Y.$$

En choisissant y = Tx, on a donc $||Tx||_Y^2 \le ||x||_X ||T^*|| ||Tx||_Y$ et $||Tx||_Y \le ||T^*|| ||x||_X$. D'où $||T|| \le ||T^*||$.

5. Notons par m(A) la mesure de Lebesgue de l'ensemble mesurable A. Alors l'ouvert

$$U_n := \bigcup_{k \in \mathbb{N}}]q_k - 2^{-(k+n)}, q_k + 2^{-(k+n)}[$$

satisfait $m(U_n) \leq \sum_{k=1}^{\infty} 2^{1-k-n} = 2^{1-n}$. Comme $E \subset U_n$, on a $m(E) \leq 2^{1-n}$ pour tout $n \in \mathbb{N}$ et donc m(E) = 0.

Clairement $\mathbb{Q} \subset U_n$ pour tout $n \in \mathbb{N}$, $\mathbb{Q} \subset E$ et donc E est dense.

Si E était maigre, $\mathbb{R}\backslash E \supset \cap_{n\in\mathbb{N}} V_n$ pour une certaine famille $\{V_n : n\in\mathbb{N}\}$ d'ouverts denses, et donc

$$\emptyset = E \cap (\mathbb{R} \backslash E) \supset (\cap_{n \in \mathbb{N}} U_n) \cap (\cap_{n \in \mathbb{N}} V_n).$$

Ainsi l'ensemble vide serait une intersection dénombrable d'ouverts denses, en contradiction avec le théorème de Baire appliqué à l'espace métrique complet \mathbb{R} (muni de la distance usuelle).