28 novembre 2024

Série 11

- 1. Il s'agit de prouver que
 - (a) si $x_0 \notin Y$, alors il existe $f, g \in X^*$ tels que $f|_Y = g|_Y$ et $f(x_0) \neq g(x_0)$;
 - (b) si $Y \neq X$, alors il existe $f \in X^* \setminus \{0\}$ tel que $f|_Y = 0$.

Pour la première partie, on peut choisir d'une part g=0 et d'autre part $f \in X^*$ donné par le théorème V.13 tel que $f(x_0)=1 \neq 0=g(x_0)$ et $f|_Y=0=g|_Y$

Pour la seconde partie, on peut choisir d'abord $x_0 \in X \setminus Y$ et ensuite $f \in X^*$ donné par le théorème V.13 tel que $f(x_0) = 1$ et $f|_Y = 0$.

2. Soient un espace hilbertien $(H, <\cdot, \cdot>)$ sur $\mathbb{F} = \mathbb{R}$ ou \mathbb{C} , et l'application $T: H \to H^*$ telle que (Ta)(x) = < x, a > pour tout $x \in H$, qui est une bijection satisfaisant $||Ta||_{H^*} = ||a||_H$ pour tout $a \in H$ (voir la série 10, exercice 3). Lorsque $\mathbb{F} = \mathbb{R}$, T est linéaire alors que, lorsque $\mathbb{F} = \mathbb{C}$, $T(\lambda a) = \overline{\lambda}T(a)$ pour tous $\lambda \in \mathbb{F}$, $a \in H$. Nous définissons un produit scalaire sur H^* par

$$\langle f, g \rangle_* = \langle T^{-1}g, T^{-1}f \rangle$$
.

Comme

$$\langle f, f \rangle_* = ||T^{-1}f||_H^2 = ||f||_{H^*}^2$$

pour tout $f \in H^*$, la norme engendrée par $\langle \cdot, \cdot \rangle_*$ est la norme $||\cdot||_{H^*}$.

Soit $\phi \in H^{**}$. Le théorème de représentation de Riesz (série 10, exercice 3) appliqué à $(H^*, <\cdot,\cdot,>_*)$ assure l'existence de $f \in H^*$ tel que

$$\phi(g) = \langle g, f \rangle_* = \langle T^{-1}f, T^{-1}g \rangle = g(T^{-1}f)$$

pour tout $g \in H^*$. D'où $J(T^{-1}f) = \phi$ et l'injection canonique J est surjective.

3. Dans cet exercice, $1 . Au cours (§V.3), nous avons vu que <math>(l^p)^*$ et l^q sont congruents, où $\frac{1}{p} + \frac{1}{q} = 1$, une congruence $T_q : l^q \to (l^p)^*$ étant définie par $(T_q \alpha)(\xi) = \sum_{k=1}^{\infty} \alpha_k \xi_k$ pour tous $\alpha \in l^q, \xi \in l^p$. Dans ce qui suit, on considère aussi la congruence $T_p : l^p \to (l^q)^*$.

Choisissons $\phi \in (l^p)^{**}$. Comme $\phi \circ T_q \in (l^q)^*$, il existe $\xi \in l^p$ tel que $\phi \circ T_q = T_p \xi$. Vérifions que $\phi = J\xi$. Pour tout $f \in (l^p)^*$, posons $\alpha = T_q^{-1}f \in l^q$ en sorte que

$$\phi(f) = (\phi \circ T_q)(T_q^{-1}f) = (T_p\xi)(\alpha) = \sum_{k=1}^{\infty} \xi_k \alpha_k = (T_q\alpha)(\xi) = f(\xi).$$

D'où $\phi = J\xi$ et l'injection canonique J est surjective.

4. Montrons que $Y := \overline{\operatorname{span}\{x_n : n \in \mathbb{N}\}}$ vaut X. Supposons le contraire et choisissons $x_0 \in X \setminus Y$. D'après le paragraphe V.13, il existe $F \in X^*$ tel que $F(x_0) = 1$ et $F|_Y = 0$. Par densité, il existe une suite d'indices $\{n_j\}_{j\geq 1} \subset \mathbb{N}$ telle que $\lim_{j\to\infty} ||f_{n_j} - F|| = 0$. D'une part,

$$\limsup_{j \to \infty} |f_{n_j}(x_{n_j}) - F(x_{n_j})| \le \limsup_{j \to \infty} ||f_{n_j} - F|| \, ||x_{n_j}|| \le \limsup_{j \to \infty} ||f_{n_j} - F|| = 0,$$

mais d'autre part

$$\liminf_{j \to \infty} |f_{n_j}(x_{n_j}) - F(x_{n_j})| = \liminf_{j \to \infty} |f_{n_j}(x_{n_j})| \ge \liminf_{j \to \infty} \frac{1}{2} ||f_{n_j}|| = \frac{1}{2} ||F|| > 0.$$

Cette contradiction prouve que Y = X. Si $\mathbb{F} = \mathbb{R}$, le sous-ensemble des combinaisons linéaires des x_n à coefficients dans \mathbb{Q} est donc dense dans X et, si $\mathbb{F} = \mathbb{C}$, le sous-ensemble des combinaisons linéaires des x_n à coefficients dans $\mathbb{Q} + i\mathbb{Q}$ est dense dans X. Ainsi X est séparable.

Il en découle que l^1 n'est pas réflexif. En effet, l^∞ est congruent à $(l^1)^*$ et donc $(l^1)^{**}$ est congruent à $(l^\infty)^*$. Plus explicitement, si $T: l^\infty \to (l^1)^*$ est une congruence, alors l'opérateur linéaire $T^*: (l^1)^{**} \to (l^\infty)^*$ défini par $T^*\phi = \phi \circ T$ pour $\phi \in (l^1)^{**}$ est aussi une congruence. En effet T^* est bijectif, son opérateur inverse $(T^*)^{-1}: (l^\infty)^* \to (l^1)^{**}$ étant donné par $(T^*)^{-1}\psi = \psi \circ T^{-1}$ pour $\psi \in (l^\infty)^*$. De plus

$$||\phi \circ T||_{(l^{\infty})^{*}} = ||\phi \circ T||_{\mathcal{L}(l^{\infty},\mathbb{F})} \le ||\phi||_{\mathcal{L}((l^{1})^{*},\mathbb{F})} ||T||_{\mathcal{L}(l^{\infty},(l^{1})^{*})} = ||\phi||_{(l^{1})^{**}}$$

et

$$||\phi||_{(l^1)^{**}} = ||(\phi \circ T) \circ (T^{-1})||_{\mathcal{L}((l^1)^*, \mathbb{F})} \leq ||\phi \circ T||_{\mathcal{L}(l^\infty, \mathbb{F})}||T^{-1}||_{\mathcal{L}((l^1)^*, l^\infty)} = ||\phi \circ T||_{(l^\infty)^*}$$

pour tout $\phi \in (l^1)^{**}$, ce qui prouve que T^* est une congruence.

Si l^1 était réflexif, l^1 serait ainsi congruent à $(l^{\infty})^*$. Comme l^1 est séparable, il en serait de même de l^{∞} . Or l^{∞} n'est pas séparable (voir l'exercice 5 de la série 2).

5. Soit l'injection canonique $J: B \to B^{**}$. Posons $\phi_n = Jx_n \in B^{**}$ pour tout $n \in \mathbb{N}$ et appliquons le Théorème V.23 à l'evn séparable B^* et à la suite $\{\phi_n\} \subset B^{**} = \mathcal{L}(B^*, \mathbb{F})$, qui est bornée puisque $\{x_n\}$ est bornée dans B (§V.17). Donnons explicitement la preuve que $\{\phi_n\}$ est bornée (elle n'utilise pas le théorème d'extension de Hahn-Banach pour les fonctionnelles linéaires bornées): pour chaque $n \in \mathbb{N}$

$$\forall f \in B^* \ |\phi_n(f)| = |(Jx_n)(f)| = |f(x_n)| \le ||f|| \, ||x_n||$$

et donc $||\phi_n|| \le ||x_n|| \le \sup_{\ell \in \mathbb{N}} ||x_\ell|| < \infty$.

Par le Théorème V.23, il existe donc une sous-suite $\{\phi_{n_k}\}$ qui converge faiblement* vers un certain $\phi \in B^{**}$, autrement dit, $\phi_{n_k}(f) \to \phi(f)$ pour tout $f \in B^*$. Comme J est surjective (hypothèse de réflexivité), il existe $x \in B$ tel que $Jx = \phi$. D'où, pour tout $f \in B^*$,

$$\lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} (Jx_{n_k})(f) = \lim_{k \to \infty} \phi_{n_k}(f) = \phi(f) = (Jx)(f) = f(x),$$

ce qui prouve $x_{n_k} \stackrel{wk}{\to} x$.

Remarque: ce résultat reste vrai sans hypothèse de séparabilité. Voir le §V.24 du cours.