Transhipment

Problem definition and properties

Michel Bierlaire

Introduction to optimization and operations research
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The transhipment problem

Motivation

» The transhipment problem is probably the most typical network optimization
problem.

» It is also known as the min-cost flow problem.
» We start by formulating it.
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Motivation

Logistics
» Goods have to be transported

» from the warehouses,
» to the clients.

» They can be transshipped anywhere on the network.

» Transportation costs must be minimum.
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Data

Nodes

» Supply (warehouses).
» Demand (customers).

» Transhipment.

i
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Data

Supply/demand

» s; > 0 if supply node.
» s; < 0 if demand node.

» s; = 0 is transhipment node.

Validity

ZS,':O.

i
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Data

Links
» Costs.

» Capacities.

Validity
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Decision variables

Flow vector

x € R".
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Objective function

Total costs

E C,'jX,'j.

(if)eA
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Constraints

Capacity

gij S X,:,' S U,'J', V(I,_/) S .A

9/74



Constraints

Flow conservation V

div(x); = s, Vi € N.

Z Xjj — Z Xk,'ZS,',VI.GN.

Jl(ig)eA k|(k,i)eA

/

diV(X),' =S5
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Linear optimization problem

(ij)eA
subject to @

Z Xjj — Z Xk;:S;,ViEN.

Jl(ij)eA k|(k,i)eA
gij S X,'J' S U,'j, V(I,_j) S .A
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Standard form

Motivation
» The transhipment problem is a linear optimization problem.

» The simplex algorithm that we have seen requires the problem to be written
in standard form.

» We would like the problem in standard form to have an underlying network
structure.
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Linear optimization problem

(ij)eA
subject to @

Z Xjj — Z Xk;:S;,ViEN.

Jl(ij)eA k|(k,i)eA
gij S X,'J' S U,'j, V(I,_j) S .A
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Set the lower bounds to zero

I _ !
X--—X,'J'—EU,XU—XU—{—KU

y
)Erew]ang CijX; +E C’JgU_g]'RnnE CUU

(ij)eA (ij)eA (ij)eA

subject to

dDoxi— Y xu=si+ Y. bi— > ly=s VieC,

jl(ij)eA k|(k,i)eA k|(k,i)eA jl(ij)eA

OSXIZ < U,‘j—g,'j: U,{J-, v(’aJ) €A
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Slack variables

(ij)eA

Z Xj; — Z x.. = s Vi eC,
JI(i)eA k|(k,i)eA
0 <x; <up, V(i j) € A

U’

subject to
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Slack variables

D
0<x; <uy V(i,j)eA
Slack variables: y;
/ o
Xij + Yij = uj,
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Interpretation

/ o

s! , st
; x%(0, uj;
i e
<::> Cij <:Z:>
-, K
S y;i(0, +00) A x;(0, +00) ~
<:Z:>‘ 0 ~ CU '<:Z:>
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[[lustration: initial formulation

Si 5j
- xi (L, ujj) O
@ C,'j "\

X,'J' = S, —X,'j = Sj, EU S X,'J' S U,‘j.

'““z‘ . 3(___5’ 5) -
@ Cij V@
3=3, -3=-3, -5<3<L5.
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[llustration: change of variables

0 0l
C,'J' J
X;J'—EUZS;—E,'J', —X,'j—i—f,'j:Sj—i—E;j, OSX,J—KU S U;j—f,'j.
-8

8(0, 10) .
Cij ‘@

3 (-5)=3—(=5), -3-5=-3-50<3—(-5) <5 (-5).
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[[lustration: slack variables

s — uj; uj; : ¥/
) Q ¥ii(0, +00) A x;;(0, +00) O
) 0 -/ C,'j J
S — Uy = =Yg, Xj+ Yy = uj, 5 =—X.
) 10 ._8
7 O : (3)
0 i

8—-10=-2,8+2=10, -8 = —8.
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[llustration: summary

3 —3
- 3(-5,5) ~
<:Z:> Cij ‘<:z:>
8 —8
, 8(0,10) ~
<:Z:> Cjj ‘<:z:>
-2 10 -8

8(0, +00)

L 2(0. +50)
@‘ 0

O

Cij
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Standard form

Comments

» Transforming the problem in standard form is equivalent to transforming the
network.

» Main motivation: keep the structure of the matrix A.
» This can be done for any transhipment problem as pre-processing.

» Without loss of generality, we can therefore assume that the transhipment
problem is written in standard form.
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Problem in standard form: modified network

. T
min Cii X;i min ¢’ x
XGR" Z 7ty XER"
(ij)eA .
biect t subject to
subject to
J Ax = s,
. x>0
E Xij — E Xk,'ZS,',VIGN, -
JI(ij)eA k|(k,)eA

x; > 0,(i,j) € A.
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Incidence matrix

Z Xij — Z Xk;ISi,ViEN.

Jl(ij)eA k|(k,i)eA

For each arc (i,) of index k,

ajx = 1 and aj = —1.
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Incidence matrix

1 2 3 4 5

SN
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Optimality conditions

Motivation

» The transhipment problem is a linear optimization problem, where the
constraints have a special structure.

» \We analyze now the dual problem and the dual variables.

» We introduce the optimality conditions called “complementarity slackness”.
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Transhipment problem in standard form

: T
min CiiXij min ¢’ x
XGR" Z urty XER"
(ij)eA )
biect t subject to
subject to
J Ax = s,
. x>0
E Xij — E Xk,'ZS,',VIGN, -
Jjlij)eA k|(k,i)eA

x; > 0,(i,j) € A.
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Lagrangian

min Z Cii Xjj
eRP ijRij
(ij)eA
subject to
Z Xjj — Z Xk;ZS;,ViEN,
Jlij)eA k|(k,i)eA

le Z 07 V(I,_]) €

A

Lagrangian: L(x, A\, u) =

E Cij Xij

(ij)eA
+Z)\, Z Xij — Z Xki — Si
ieN jl(ij)eA k|(k,i)eA
- Z Hij Xij -
(ig)eA
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Optimality conditions

L(x,\, ) = ZCUXU

(ij)eA

2N 2 ks
ieN Jlij)eA

- Z :uUXIﬁ
(ij)eA

Coefficients of x; must be 0:

oL
8X,J

E Xki — Si

[(k,i)eA

=cj+ AN — A —pj=0.

u,-j:c,-j—i—)\,-—)\j

Lij 20 and IU’UXU:O
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Complementarity slackness

For all (/,))
Cij 4—,X; —-,Xj Ef 0.
For all (i,/) such that x;; > 0

Cij %—,Xi —-,Xj =0.

Sufficient and necessary optimality conditions.
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Total unimodularity

Motivation

» The incidence matrix defining the constraints of a transhipment problem has
a special structure.

» It also has a great property called “total unimodularity”.

» It is great because it guarantees to generate an integer solution, if the data
is integer.

» We now formally define this property.
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Transhipment problem in standard form

: T
min CiiXij min ¢’ x
XGR" Z urty XER"
(ij)eA )
biect t subject to
subject to
J Ax = s,
. x>0
E Xij — E Xk,'ZS,',VIGN, -
Jjlij)eA k|(k,i)eA

x; > 0,(i,j) € A.
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Incidence matrix

0 -1 -1 O

0
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Optimal solution

Cramer's rule

1
det(B)
Each entry of the matrix is 0, 1 or -1.
Each entry of C(B) is an integer.
If s is integer, C(B)'s is integer.
If det(B) is 1 or -1, x; is integer.

C(B)"s

Xg =
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Total unimodularity

Definition
The matrix A € Z™*" is totally unimodular
if the determinant of each square submatrix of A is

0,—1or +1.
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Total unimodularity

Definition

The matrix A € Z™*" is totally unimodular

if the determinant of each square submatrix of A is
0,—1or +1.

In particular,
every entry of the matrix is 0, —1 or +1.
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Example

Each square submatrix of size 1, that is
each element of the matrix, is 0, —1 or
+1. Each square submatrix of size 2
is unimodular:

A_ (-1 01 da(_é_?>:L
L0 -11 )
-1 1
det( 0 1)_—1,
01
det(_1 1):1.
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Integrality of the basic solutions

Consider the polyhedron represented in standard form
{x e R"|Ax = b, x > 0},

where A€ Z™" and b € Z™.
If A is totally unimodular, then every basic solution is integer.

Proof

1
det(B)

X = Bilb. X — C(B)Tb,
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Total unimodularity of the incidence matrix

Motivation

» Total unimodularity of the matrix defining the constraints of a linear
optimization problem guarantees that the basic solutions are integer if the
data are integer.

» Therefore, the optimal solution is also integer.
» This is a great property, given the difficulty of discrete optimization.

» We show now that the incidence matrix of the transhipment problem is
totally unimodular.
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Transhipment problem in standard form

: T
min CiiXij min ¢’ x
XGR" Z urty XER"
(ij)eA )
biect t subject to
subject to
J Ax = s,
. x>0
E Xij — E Xk,'ZS,',VIGN, -
Jjlij)eA k|(k,i)eA

x; > 0,(i,j) € A.
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Incidence matrix

0 -1 -1 O

0
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Theorem 22.6

The incidence matrix of a network is totally unimodular.

Proof
» By contradiction, assume that it is not the case.
» There exist square matrices with determinant ¢ {0,1, —1}.
» Among all of them, consider the one with minimum size k: B.
» Note that kK > 1.
» Number of non-zero entries in a column of B: 0, 1 or 2.
» \We treat each case separately.
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No non-zero entry

Context
» Bis k x k.
> det(B) £ {0,1,—1}.
» V ¢ x { submatrices B': det(B’) € {0,1, —1}.

» One column of B contains only zeros.

Impossible, because it would mean that det(B) = 0.
Therefore, no column of B contains only Os.
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One non-zero entry

Context
» Bis k X k.
> det(B) £ {0,1,—1}.
» V ( x { submatrices B": det(B’) € {0, 1, —1}.
» One column of B contains only one non-zero entry.

bir bio- -+ bik
0
B = :
: B’
0
det(B) = by; det(B') = det(B’) or — det(B’)

Impossible as B is the smallest matrix.
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Two non-zero entries

Context
» Bis k x k.
> det(B) ¢ {0,1, —1}.
» V ( x { submatrices B': det(B’) € {0,1, —1}.
» Each column of B contains exactly two non-zero entries.

The two non zero entries are 1 and -1.

If you sum the elements of each column, it is equal to zero.
So, summing all the rows of B gives 0

B is singular, and its determinant is zero.

Contradiction.
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Corollary

If the supply vector s of the transhipment problem is integer, that is, if s € Z™,
and if the problem is bounded, then it has an optimal solution which is integer.
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The shortest path problem

Motivation
» The transhipment problems embeds a variety of other problems.
» These problems inherit the properties of the transhipment problem.
» In particular, the integrality of the optimal solution if the data is integer.

» We first introduce the shortest path problem as an instance of the
transhipment problem.
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Shortest path

definition
sider a network with
es and arcs.

h arc is associated with
st.

sider an origin and a
tination.

d a simple forward path
o to d with the
|lest cost.
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Shortest paths problems

» Single origin — single destination. (this lecture)
» Single origin — all destinations. (next topic)
» All origins — single destination.

» All origins — all destinations.
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Cost of a path

Definition

C(P) = Z CijXij — Z CijXij-

(ij)eP~ (iJ)eP

Forward path

C(P) = Z CijiXij = Z CiXij

(ij)eP—~ (ig)eP
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Transhipment

Flow

Send one unit of flow from o to d. Cost of a path

Supply at 0: s, =1

Supply at d: sy, = —1 .
Supply at any other node: s; =0 ,§P = (,,j)ZeP i
Total unimodularity: if there is a

solution, flow on (/,j): O or 1
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Transhipment

cost on each arc: ¢

supply at the origin: s, =1

supply at the destination: s; = —1
supply at any other node: 0

lower bound on each arc: 0

vVvyYVvyvyYyvyy

upper bound on each arc: oo
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Transhipment

(ij)eA

subject to

Z Xoj — Z Xko = 17

jl(og)eA k|(k,0)eA
Z Xdj — Z Xkd = _17
Jjl(dj)eA k|(k,d)eA
Z Xij — Z in:O)‘v’iE,/\/’7i§£O,l.7éd,
Jl(i,j)eA k|(k,i)eA

Xij > 0, V(I,J) S A
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The maximum flow problem

Motivation

>

vy

The maximum flow problem was motivated by the analysis performed by the
American army of the railway network operated by the Soviet Union across
Eastern Europe during the Cold War.

We have a network, where each arc has a capacity.
Consider an origin o and a destination d.

What is the maximum amount of flow that the network can carry from o to
d?
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The maximum flow problem

% 7
2 3 N 2
O OOt

3

> 0 -2 =>4 —>d: 1 unit of flow.
» o — 3 —d: 2 units of flow.
» 02— 3 d: saturated.
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Transhipment




Transhipment
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Transhipment

vvyyVvyyvyy

v

cost on the artificial arc: —1
cost on every other arc: 0
supply/demand for each node: 0
lower bound on each arc: 0

upper bound on the artificial arc:
00

upper bound on every other arc:
from the problem definition
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Transhipment

min_ —Xgo
x€Rn+1

subject to

Z Xijj — Z Xii = 0, VIEN, (1)

JI(ij)eAU(d,0) k|(k,i)eAU(d,0)
Xij S ujj, V(I,J) € -’47 (2)
Xij > Oa V(’a]) < Aa (3)
Xdo Z 0. (4)
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The transportation problem

Motivation

» The transportation problem is somehow a transhipment problem where
transhipment is not allowed.

» We have suppliers and customers.
» There is a cost to transport items from a supplier to a customer.

» We need to decide how much each supplier will deliver to each customer.
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Electricity in Switzerland

Suppliers

» Miihleberg: 3110 GWh/year
» Beznau: 3198 GWh/year
» Leibstadt: 10205 GWh /year

Customers
» Ziirich: 8961 GWh /year
» Geneva: 3777 GWh/year
» Lausanne: 2517 GWh /year
» Bern: 1258 GWh/year
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Electricity in Switzerland

Unit costs
\ Zurich Geneva Lausanne Bern
Mtuhleberg 18 6 10 9
Beznau 9 16 13 7

Leibstadt 14 9 16 5
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Network

Comments
» No “real” network.
» \We create a network representation.
» One set of nodes for the suppliers.

» One set of nodes for the customers.
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Network

Leibstadt @

Beznau @

Mihleberg @

@® Benn

@ Lausanne

@ Geneva

@ Zirich
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Network

5
Leibstadt .<

16
9

Mihleberg .\ . 9
@ Zirich
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Transhipment

Bern
_ o » cost on each arc: ¢
Leibstadt @ .
» supply for supplier nodes: s;
@ Lausanne
5 P » supply for customer nodes: —t;
eznau
» lower bound on each arc: 0
@ Geneva > bound A N
. upper bound on each arc: +oo
Miihleberg @ PP

\. Ziirich
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Transhipment

mo Mg
i=1 j=1
subject to
my
z :XU_S’7 I:]'a , Mo,
Jj=1
mo
inj—tﬁ J:17 » M4,
i=1
xj > 0, r=1....my, j=1, ..., my,
xj =0, if / does not serve j.
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The assignment problem

Motivation
The assignment problem consists in assignment n tasks to n resources at minimal
cost.
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Heirs

v

After the death of her husband, my grandmother has discovered four
masterpieces in her attic.

She does not want to keep them.
She would like to sell each of them to one of her four children.
Each child made an offer for the masterpieces of interest.

She wants to sell exactly one masterpiece to each child.

vvyvyvyy

Which masterpiece should she sell to which child, to maximize her revenues?
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Kandinsky, 1923

Bruegel, 1558

T
f%f” ”QHHW

Bierlaire, 1971
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Offers (kEuros)

Botticelli Bruegel Kandinsky Bierlaire
Harry 8000 11000 — —
Ron 9000 13000 12000 —
Hermione 9000 — 11000 0.01

Ginny

— 14000 12000
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Network

@ Harry

@ Ron

@ Hermione

@ Ginny

70/74



Network

—8000 —@ Harry
—11000

—9000
—9000

—13000 ® Ron

—11000 @ Hermione

@ Ginny
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Transhipment

@ Harry

@ Ron

@ Hermione
@ Ginny

vvyVvyVvyy

cost on each arc: ¢ = —pj

supply for each resource node:

supply for each task node:
lower bound on each arc:

upper bound on each arc:

-1
0
1

1
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Transhipment

n n
m|n2 E E Cij Xij

x€R™ 1 o1

subject to

D x=1, i=1,...,n, (5)
j=1

Sox=1, j=1...n, (6)
i=1
x;j > 0, i=1,....n, j=1,...,n, (7)
x; <1, i=1,...,n,j=1...,n (8)

The variable Xx;; is to take on the value 1 if resource i is assigned to task j, and 0
otherwise.
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Summary

Transhipment problem: linear optimization problem.

Special structure.

Property: total unimodularity of the incidence matrix.

Consequence: if the data is integer, the optimal solution is also integer.
Shortest path problem.

Maximum flow problem.

Transportation problem.

vVvvyvVvvVYyVvYvVyy

Assignment problem.
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