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The transhipment problem

Motivation
◮ The transhipment problem is probably the most typical network optimization

problem.

◮ It is also known as the min-cost flow problem.

◮ We start by formulating it.

2 / 74



Motivation

Logistics
◮ Goods have to be transported

◮ from the warehouses,

◮ to the clients.

◮ They can be transshipped anywhere on the network.

◮ Transportation costs must be minimum.

3 / 74



Data

Nodes
◮ Supply (warehouses).

◮ Demand (customers).

◮ Transhipment. La

Be
Ne

Fr
Or

Si
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Data

Supply/demand

◮ si > 0 if supply node.

◮ si < 0 if demand node.

◮ si = 0 is transhipment node.

Validity

∑

i∈N

si = 0.
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Data

Links
◮ Costs.

◮ Capacities.

Validity

ℓij ≤ uij .
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[ℓ ij
, u ij

]

c ij
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Decision variables

Flow vector

x ∈ R
n.
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x ij
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Objective function

Total costs
∑

(i ,j)∈A

cijxij .
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x ij
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Constraints

Capacity

ℓij ≤ xij ≤ uij , ∀(i , j) ∈ A.
La
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ℓ ij
≤ x ij

≤ u ij
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Constraints

Flow conservation

div(x)i = si , ∀i ∈ N .
∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N .
La

div(x)i = si

Be
Ne
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Or
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Linear optimization problem

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N .

ℓij ≤ xij ≤ uij , ∀(i , j) ∈ A.
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Standard form

Motivation
◮ The transhipment problem is a linear optimization problem.

◮ The simplex algorithm that we have seen requires the problem to be written
in standard form.

◮ We would like the problem in standard form to have an underlying network
structure.
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Linear optimization problem

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N .

ℓij ≤ xij ≤ uij , ∀(i , j) ∈ A.
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Set the lower bounds to zero

x ′ij = xij − ℓij , xij = x ′ij + ℓij

min
x∈Rn

∑

(i ,j)∈A

cijx
′
ij +

∑

(i ,j)∈A

cijℓij = min
x∈Rn

∑

(i ,j)∈A

cijx
′
ij

subject to

∑

j |(i ,j)∈A

x ′ij −
∑

k|(k,i)∈A

x ′ki = si +
∑

k|(k,i)∈A

ℓki −
∑

j |(i ,j)∈A

ℓij = s ′i , ∀i ∈ C,

0 ≤ x ′ij ≤ uij − ℓij = u′
ij , ∀(i , j) ∈ A.
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Slack variables

min
x∈Rn

∑

(i ,j)∈A

cijx
′
ij

subject to
∑

j |(i ,j)∈A

x ′ij −
∑

k|(k,i)∈A

x ′ki = s ′i ∀i ∈ C,

0 ≤ x ′ij ≤ u′
ij , ∀(i , j) ∈ A.
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Slack variables

0 ≤ x ′ij ≤ u′
ij , ∀(i , j) ∈ A.

Slack variables: yij

x ′ij + yij = u′
ij ,

x ′ij ≥ 0, yij ≥ 0.
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Interpretation

x ′ij + yij = u′
ij

i j

s ′i s ′j

x ′ij(0, u
′
ij)

cij

i j

u′
ijs ′i − u′

ij s ′j

yij(0,+∞)

0

x ′ij(0,+∞)

cij
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Illustration: initial formulation

i j

si sj

xij(ℓij , uij)

cij

xij = si , −xij = sj , ℓij ≤ xij ≤ uij .

i j

3 −3

3(−5, 5)

cij

3 = 3, −3 = −3, −5 ≤ 3 ≤ 5.
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Illustration: change of variables

i j

s ′i s ′j

x ′ij(0, u
′
ij)

cij

xij − ℓij = si − ℓij , −xij + ℓij = sj + ℓij , 0 ≤ xij − ℓij ≤ uij − ℓij .

i j

8 −8

8(0, 10)

cij

3− (−5) = 3− (−5), −3− 5 = −3− 5, 0 ≤ 3− (−5) ≤ 5− (−5).
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Illustration: slack variables

i j

u′
ijs ′i − u′

ij s ′j

yij(0,+∞)

0

x ′ij(0,+∞)

cij

s ′i − uij = −yij , x
′
ij + yij = u′

ij , s
′
j = −x ′ij .

i j

10−2 −8

2(0,+∞)

0

8(0,+∞)

cij

8− 10 = −2, 8 + 2 = 10, −8 = −8.
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Illustration: summary

i j

3 −3

3(−5, 5)

cij

i j

8 −8

8(0, 10)

cij

i j

10−2 −8

2(0,+∞)

0

8(0,+∞)

cij
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Standard form

Comments
◮ Transforming the problem in standard form is equivalent to transforming the

network.

◮ Main motivation: keep the structure of the matrix A.

◮ This can be done for any transhipment problem as pre-processing.

◮ Without loss of generality, we can therefore assume that the transhipment
problem is written in standard form.
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Problem in standard form: modified network

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N ,

xij ≥ 0, ∀(i , j) ∈ A.

min
x∈Rn

cTx

subject to
Ax = s,

x ≥ 0.
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Incidence matrix

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N .

For each arc (i , j) of index k ,

aik = 1 and ajk = −1.
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Incidence matrix

1

2
3

4
5

6

1 2

4

3

5

1 2 3 4 5 · · ·
1
2
3
4
5
6
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Optimality conditions

Motivation
◮ The transhipment problem is a linear optimization problem, where the

constraints have a special structure.

◮ We analyze now the dual problem and the dual variables.

◮ We introduce the optimality conditions called “complementarity slackness”.
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Transhipment problem in standard form

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N ,

xij ≥ 0, ∀(i , j) ∈ A.

min
x∈Rn

cTx

subject to
Ax = s,

x ≥ 0.
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Lagrangian

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N ,

xij ≥ 0, ∀(i , j) ∈ A.

Lagrangian: L(x , λ, µ) =

∑

(i ,j)∈A

cijxij

+
∑

i∈N

λi





∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki − si





−
∑

(i ,j)∈A

µijxij .
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Optimality conditions

L(x , λ, µ) =
∑

(i ,j)∈A

cijxij

+
∑

i∈N

λi





∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki − si





−
∑

(i ,j)∈A

µijxij ,

Coefficients of xij must be 0:

∂L

∂xij
= cij + λi − λj − µij = 0.

µij = cij + λi − λj

µij ≥ 0 and µijxij = 0
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Complementarity slackness

For all (i , j)

cij + λi − λj ≥ 0.

For all (i , j) such that xij > 0

cij + λi − λj = 0.

Sufficient and necessary optimality conditions.
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Total unimodularity

Motivation
◮ The incidence matrix defining the constraints of a transhipment problem has

a special structure.

◮ It also has a great property called “total unimodularity”.

◮ It is great because it guarantees to generate an integer solution, if the data
is integer.

◮ We now formally define this property.
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Transhipment problem in standard form

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N ,

xij ≥ 0, ∀(i , j) ∈ A.

min
x∈Rn

cTx

subject to
Ax = s,

x ≥ 0.
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Incidence matrix

1

2
3

4
5

6

1 2

4

3

5

1 2 3 4 5 · · ·
1 1 1 0 0 0
2 0 0 0 1 -1
3 0 0 -1 -1 0
4 0 -1 0 0 0
5 -1 0 1 0 0
6 0 0 0 0 1
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Optimal solution

x∗B = B−1s.

Cramer’s rule

x∗B =
1

det(B)
C (B)T s

Each entry of the matrix is 0, 1 or -1.
Each entry of C (B) is an integer.
If s is integer, C (B)T s is integer.
If det(B) is 1 or -1, x∗b is integer.
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Total unimodularity

Definition
The matrix A ∈ Z

m×n is totally unimodular
if the determinant of each square submatrix of A is

0,−1 or + 1.
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Total unimodularity

Definition
The matrix A ∈ Z

m×n is totally unimodular
if the determinant of each square submatrix of A is

0,−1 or + 1.

In particular,
every entry of the matrix is 0, −1 or +1.
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Example

A =

(

−1 0 1
0 −1 1

)

.

Each square submatrix of size 1, that is
each element of the matrix, is 0, −1 or
+1. Each square submatrix of size 2
is unimodular:

det

(

−1 0
0 −1

)

= 1,

det

(

−1 1
0 1

)

= −1,

det

(

0 1
−1 1

)

= 1.
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Integrality of the basic solutions

Consider the polyhedron represented in standard form

{x ∈ R
n|Ax = b, x ≥ 0} ,

where A ∈ Z
m×n and b ∈ Z

m.
If A is totally unimodular, then every basic solution is integer.

Proof

xB = B−1b. xB =
1

det(B)
C (B)Tb,
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Total unimodularity of the incidence matrix

Motivation
◮ Total unimodularity of the matrix defining the constraints of a linear

optimization problem guarantees that the basic solutions are integer if the
data are integer.

◮ Therefore, the optimal solution is also integer.

◮ This is a great property, given the difficulty of discrete optimization.

◮ We show now that the incidence matrix of the transhipment problem is
totally unimodular.
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Transhipment problem in standard form

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = si , ∀i ∈ N ,

xij ≥ 0, ∀(i , j) ∈ A.

min
x∈Rn

cTx

subject to
Ax = s,

x ≥ 0.
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Incidence matrix

1

2
3

4
5

6

1 2

4

3

5

1 2 3 4 5 · · ·
1 1 1 0 0 0
2 0 0 0 1 -1
3 0 0 -1 -1 0
4 0 -1 0 0 0
5 -1 0 1 0 0
6 0 0 0 0 1
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Theorem 22.6

The incidence matrix of a network is totally unimodular.

Proof
◮ By contradiction, assume that it is not the case.

◮ There exist square matrices with determinant 6∈ {0, 1,−1}.

◮ Among all of them, consider the one with minimum size k : B .

◮ Note that k > 1.

◮ Number of non-zero entries in a column of B : 0, 1 or 2.

◮ We treat each case separately.
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No non-zero entry

Context
◮ B is k × k .

◮ det(B) 6∈ {0, 1,−1}.

◮ ∀ ℓ× ℓ submatrices B’: det(B ′) ∈ {0, 1,−1}.

◮ One column of B contains only zeros.

Impossible, because it would mean that det(B) = 0.
Therefore, no column of B contains only 0s.
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One non-zero entry

Context
◮ B is k × k .

◮ det(B) 6∈ {0, 1,−1}.

◮ ∀ ℓ× ℓ submatrices B’: det(B ′) ∈ {0, 1,−1}.

◮ One column of B contains only one non-zero entry.

B =











b11 b12 · · · b1k
0
... B ′

0











det(B) = b11 det(B
′) = det(B ′) or − det(B ′)

Impossible as B is the smallest matrix.
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Two non-zero entries

Context
◮ B is k × k .

◮ det(B) 6∈ {0, 1,−1}.

◮ ∀ ℓ× ℓ submatrices B’: det(B ′) ∈ {0, 1,−1}.

◮ Each column of B contains exactly two non-zero entries.

The two non zero entries are 1 and -1.
If you sum the elements of each column, it is equal to zero.
So, summing all the rows of B gives 0
B is singular, and its determinant is zero.
Contradiction.
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Corollary

If the supply vector s of the transhipment problem is integer, that is, if s ∈ Z
m,

and if the problem is bounded, then it has an optimal solution which is integer.
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The shortest path problem

Motivation
◮ The transhipment problems embeds a variety of other problems.

◮ These problems inherit the properties of the transhipment problem.

◮ In particular, the integrality of the optimal solution if the data is integer.

◮ We first introduce the shortest path problem as an instance of the
transhipment problem.
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Shortest path

Problem definition
◮ Consider a network with

nodes and arcs.

◮ Each arc is associated with
a cost.

◮ Consider an origin and a
destination.

◮ Find a simple forward path
from o to d with the
smallest cost.

47 / 74



Shortest paths problems

◮ Single origin – single destination. (this lecture)

◮ Single origin – all destinations. (next topic)

◮ All origins – single destination.

◮ All origins – all destinations.
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Cost of a path

Definition

C (P) =
∑

(i ,j)∈P→

cijxij −
∑

(i ,j)∈P←

cijxij .

Forward path

C (P) =
∑

(i ,j)∈P→

cijxij =
∑

(i ,j)∈P

cijxij
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Transhipment

Flow
Send one unit of flow from o to d .
Supply at o: so = 1
Supply at d : sd = −1
Supply at any other node: si = 0
Total unimodularity: if there is a
solution, flow on (i , j): 0 or 1

Cost of a path

C (P) =
∑

(i ,j)∈P

cijxij =
∑

(i ,j)∈P

cij
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Transhipment

◮ cost on each arc: cij

◮ supply at the origin: so = 1

◮ supply at the destination: sd = −1

◮ supply at any other node: 0

◮ lower bound on each arc: 0

◮ upper bound on each arc: ∞
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Transhipment

min
x∈Rn

∑

(i ,j)∈A

cijxij

subject to

∑

j |(o,j)∈A

xoj −
∑

k|(k,o)∈A

xko = 1,

∑

j |(d ,j)∈A

xdj −
∑

k|(k,d)∈A

xkd = −1,

∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki = 0, ∀i ∈ N , i 6= o, i 6= d ,

xij ≥ 0, ∀(i , j) ∈ A.
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The maximum flow problem

Motivation
◮ The maximum flow problem was motivated by the analysis performed by the

American army of the railway network operated by the Soviet Union across
Eastern Europe during the Cold War.

◮ We have a network, where each arc has a capacity.

◮ Consider an origin o and a destination d .

◮ What is the maximum amount of flow that the network can carry from o to
d?
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The maximum flow problem

o 2 3

4

d
2 3 2

4

3

1

◮ o → 2 → 4 → d : 1 unit of flow.

◮ o → 3 → d : 2 units of flow.

◮ o → 2 → 3 → d : saturated.
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Transhipment

o 2 3

4

d
2 3 2

4

3

1



Transhipment

o 2 3

4

d
2 3 2

4

3

1
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Transhipment

o 2 3

4

d
0, 2 0, 3 0, 2

0,
4

0, 3

0, 1

−1,∞

◮ cost on the artificial arc: −1

◮ cost on every other arc: 0

◮ supply/demand for each node: 0

◮ lower bound on each arc: 0

◮ upper bound on the artificial arc:
∞

◮ upper bound on every other arc:
from the problem definition
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Transhipment

min
x∈Rn+1

−xdo

subject to

∑

j |(i ,j)∈A∪(d ,o)

xij −
∑

k|(k,i)∈A∪(d ,o)

xki = 0, ∀i ∈ N , (1)

xij ≤ uij , ∀(i , j) ∈ A, (2)

xij ≥ 0, ∀(i , j) ∈ A, (3)

xdo ≥ 0. (4)
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The transportation problem

Motivation
◮ The transportation problem is somehow a transhipment problem where

transhipment is not allowed.

◮ We have suppliers and customers.

◮ There is a cost to transport items from a supplier to a customer.

◮ We need to decide how much each supplier will deliver to each customer.
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Electricity in Switzerland

Suppliers

◮ Mühleberg: 3110 GWh/year

◮ Beznau: 3198 GWh/year

◮ Leibstadt: 10205 GWh/year

Customers
◮ Zürich: 8961 GWh/year

◮ Geneva: 3777 GWh/year

◮ Lausanne: 2517 GWh/year

◮ Bern: 1258 GWh/year
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Electricity in Switzerland

Unit costs

Zürich Geneva Lausanne Bern
Mühleberg 18 6 10 9
Beznau 9 16 13 7
Leibstadt 14 9 16 5
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Network

Comments
◮ No “real” network.

◮ We create a network representation.

◮ One set of nodes for the suppliers.

◮ One set of nodes for the customers.
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Network

Leibstadt

Beznau

Mühleberg

Bern

Lausanne

Geneva

Zürich

62 / 74



Network

Leibstadt

Beznau

Mühleberg

Bern

Lausanne

Geneva

Zürich

5

16

9

14

7

13

16

9

9

10

6

18
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Transhipment

Leibstadt

Beznau

Mühleberg

Bern

Lausanne

Geneva

Zürich

◮ cost on each arc: cij

◮ supply for supplier nodes: si

◮ supply for customer nodes: −tj

◮ lower bound on each arc: 0

◮ upper bound on each arc: +∞
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Transhipment

min
x∈Rn

mo
∑

i=1

md
∑

j=1

cijxij

subject to

md
∑

j=1

xij = si , i = 1, . . . ,mo ,

mo
∑

i=1

xij = tj , j = 1, . . . ,md ,

xij ≥ 0, i = 1, . . . ,mo , j = 1, . . . ,md ,

xij = 0, if i does not serve j .
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The assignment problem

Motivation
The assignment problem consists in assignment n tasks to n resources at minimal
cost.
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Heirs

◮ After the death of her husband, my grandmother has discovered four
masterpieces in her attic.

◮ She does not want to keep them.

◮ She would like to sell each of them to one of her four children.

◮ Each child made an offer for the masterpieces of interest.

◮ She wants to sell exactly one masterpiece to each child.

◮ Which masterpiece should she sell to which child, to maximize her revenues?
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Heirs

Botticelli, 1485 Bruegel, 1558

Kandinsky, 1923 Bierlaire, 1971
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Offers (kEuros)

Botticelli Bruegel Kandinsky Bierlaire
Harry 8000 11000 — —
Ron 9000 13000 12000 —

Hermione 9000 — 11000 0.01
Ginny — 14000 12000 —
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Network

Ginny

Hermione

Ron

Harry
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Network

Ginny

Hermione

Ron

Harry−8000

−9000
−9000

−11000

−13000

−14000 −12000

−11000

−12000

−0.01
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Transhipment

Ginny

Hermione

Ron

Harry ◮ cost on each arc: cij = −pij

◮ supply for each resource node: 1

◮ supply for each task node: −1

◮ lower bound on each arc: 0

◮ upper bound on each arc: 1
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Transhipment

min
x∈Rn2

n
∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 1, i = 1, . . . , n, (5)

n
∑

i=1

xij = 1, j = 1, . . . , n, (6)

xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n, (7)

xij ≤ 1, i = 1, . . . , n, j = 1, . . . , n. (8)

The variable xij is to take on the value 1 if resource i is assigned to task j , and 0
otherwise.
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Summary

◮ Transhipment problem: linear optimization problem.

◮ Special structure.

◮ Property: total unimodularity of the incidence matrix.

◮ Consequence: if the data is integer, the optimal solution is also integer.

◮ Shortest path problem.

◮ Maximum flow problem.

◮ Transportation problem.

◮ Assignment problem.
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