Transhipment

Problem definition and properties

Michel Bierlaire

Introduction to optimization and operations research

The transhipment problem

Motivation

- ► The transhipment problem is probably the most typical network optimization problem.
- lt is also known as the min-cost flow problem.
- ▶ We start by formulating it.

Motivation

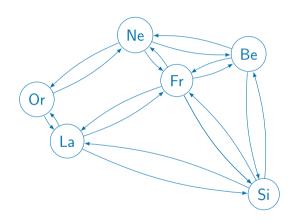
Logistics

- Goods have to be transported
 - from the warehouses,
 - ▶ to the clients.
- ▶ They can be transshipped anywhere on the network.
- ► Transportation costs must be minimum.

Data

Nodes

- ► Supply (warehouses).
- ▶ Demand (customers).
- ► Transhipment.



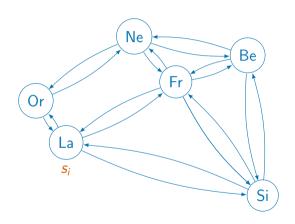
Data

Supply/demand

- $ightharpoonup s_i > 0$ if supply node.
- $ightharpoonup s_i < 0$ if demand node.
- $ightharpoonup s_i = 0$ is transhipment node.

Validity

$$\sum_{i\in\mathcal{N}}s_i=0.$$



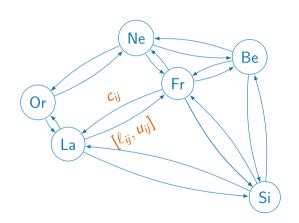
Data

Links

- Costs.
- ► Capacities.

Validity

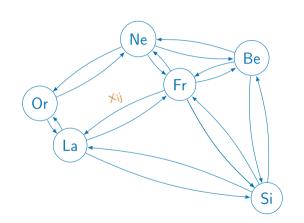
 $\ell_{ij} \leq u_{ij}$.



Decision variables

Flow vector

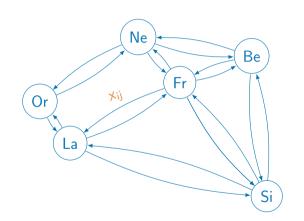
 $x \in \mathbb{R}^n$.



Objective function

Total costs

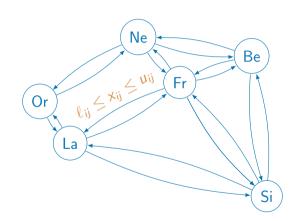
$$\sum_{(i,j)\in\mathcal{A}}c_{ij}x_{ij}.$$



Constraints

Capacity

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \ \forall (i,j) \in \mathcal{A}.$$

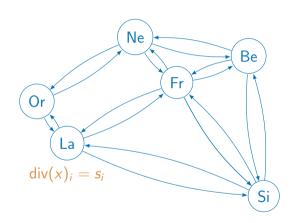


Constraints

Flow conservation

$$\operatorname{div}(x)_i = s_i, \ \forall i \in \mathcal{N}.$$

$$\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} = s_i, \ \forall i\in\mathcal{N}.$$

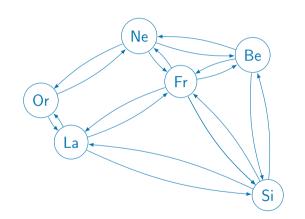


Linear optimization problem

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$

$$\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} = s_i, \, \forall i\in\mathcal{N}.$$

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \, \forall (i,j)\in\mathcal{A}.$$



Standard form

Motivation

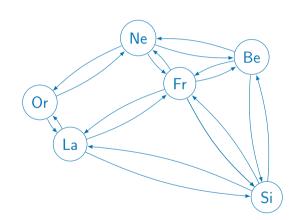
- ▶ The transhipment problem is a linear optimization problem.
- ► The simplex algorithm that we have seen requires the problem to be written in standard form.
- ▶ We would like the problem in standard form to have an underlying network structure.

Linear optimization problem

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$

$$\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} = s_i, \, \forall i \in \mathcal{N}.$$

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \, \forall (i,j) \in \mathcal{A}.$$



Set the lower bounds to zero

$$egin{aligned} x_{ij}' &= x_{ij} - \ell_{ij} \;,\; x_{ij} &= x_{ij}' + \ell_{ij} \ &\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}' + \sum_{(i,j) \in \mathcal{A}} c_{ij} \ell_{ij} = \min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}' \end{aligned}$$

$$\begin{split} \sum_{j|(i,j)\in\mathcal{A}} x'_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x'_{ki} &= s_i + \sum_{k|(k,i)\in\mathcal{A}} \ell_{ki} - \sum_{j|(i,j)\in\mathcal{A}} \ell_{ij} = s'_i, \ \forall i\in\mathcal{C}, \\ 0 &\leq x'_{ij} \leq u_{ij} - \ell_{ij} = u'_{ij}, \ \forall (i,j)\in\mathcal{A}. \end{split}$$

Slack variables

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x'_{ij}$$

$$\sum_{j|(i,j)\in\mathcal{A}} x'_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x'_{ki} = s'_i \ \forall i \in \mathcal{C},$$
$$0 \le x'_{ij} \le u'_{ij}, \ \forall (i,j) \in \mathcal{A}.$$

Slack variables

$$0 \le x'_{ij} \le u'_{ij}, \ \forall (i,j) \in \mathcal{A}.$$

Slack variables: y_{ij}

$$x'_{ij} + y_{ij} = u'_{ij},$$

 $x'_{ij} \ge 0, \ y_{ij} \ge 0.$

Interpretation

$$x'_{ij}+y_{ij}=u'_{ij}$$

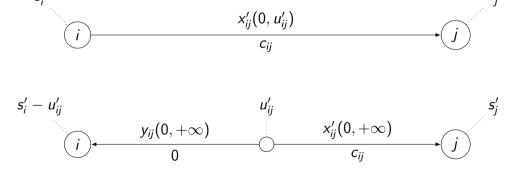


Illustration: initial formulation

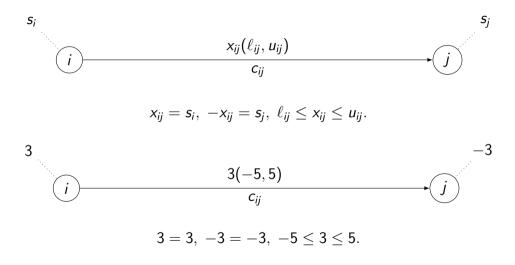
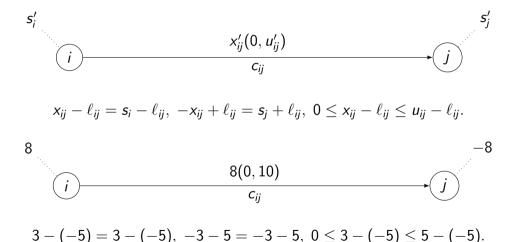


Illustration: change of variables



19 / 74

Illustration: slack variables

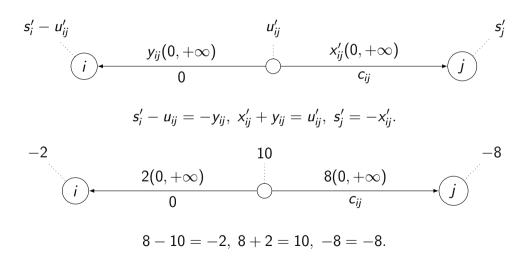
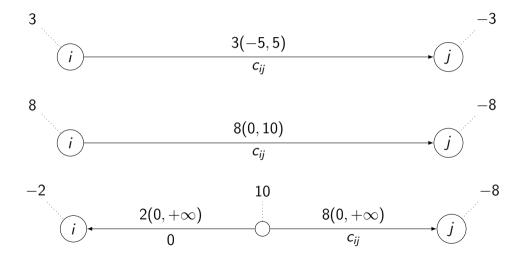


Illustration: summary



Standard form

Comments

- ► Transforming the problem in standard form is equivalent to transforming the network.
- ▶ Main motivation: keep the structure of the matrix A.
- This can be done for any transhipment problem as pre-processing.
- Without loss of generality, we can therefore assume that the transhipment problem is written in standard form.

Problem in standard form: modified network

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \qquad \min_{x \in \mathbb{R}^n} c^T x$$
 subject to
$$\sum_{j \mid (i,j) \in \mathcal{A}} x_{ij} - \sum_{k \mid (k,i) \in \mathcal{A}} x_{ki} = s_i, \ \forall i \in \mathcal{N}, \qquad x \geq 0.$$

$$x_{ij} \geq 0, \ \forall (i,j) \in \mathcal{A}.$$

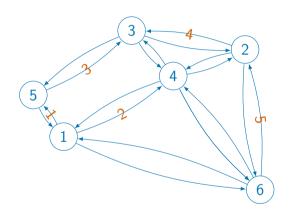
Incidence matrix

$$\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} = s_i, \ \forall i\in\mathcal{N}.$$

For each arc (i,j) of index k,

$$a_{ik} = 1 \text{ and } a_{jk} = -1.$$

Incidence matrix



	1	2	3	4	5	
1						
2						
2						
4						
4 5 6						
6						

Optimality conditions

Motivation

- ► The transhipment problem is a linear optimization problem, where the constraints have a special structure.
- We analyze now the dual problem and the dual variables.
- ▶ We introduce the optimality conditions called "complementarity slackness".

Transhipment problem in standard form

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \qquad \qquad \min_{x \in \mathbb{R}^n} c^T x$$
 subject to
$$\sum_{j \mid (i,j) \in \mathcal{A}} x_{ij} - \sum_{k \mid (k,i) \in \mathcal{A}} x_{ki} = s_i, \ \forall i \in \mathcal{N}, \qquad \qquad x \geq 0.$$

$$x_{ij} \geq 0, \ \forall (i,j) \in \mathcal{A}.$$

Lagrangian

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$

subject to

$$\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} = s_i, \, \forall i\in\mathcal{N}, \ x_{ij} \geq 0, \, \forall (i,j)\in\mathcal{N}$$

Lagrangian: $L(x, \lambda, \mu) =$

$$egin{aligned} & \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij} \ x_{ki} &= s_i, \, orall i \in \mathcal{N}, \ x_{ij} &\geq 0, \, orall (i,j) \in \mathcal{A}. \end{aligned} egin{aligned} & + \sum_{i\in\mathcal{N}} \lambda_i \left(\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} - s_i
ight) \ & - \sum_{(i,j)\in\mathcal{A}} \mu_{ij} x_{ij}. \end{aligned}$$

Optimality conditions

Coefficients of x_{ii} must be 0:

$$L(x,\lambda,\mu) = \sum_{(i,j)\in\mathcal{A}} c_{ij}x_{ij} \qquad \frac{\partial L}{\partial x_{ij}} = c_{ij} + \lambda_i - \lambda_j - \mu_{ij} = 0.$$

$$+ \sum_{i\in\mathcal{N}} \lambda_i \left(\sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} - s_i \right) \begin{array}{l} \mu_{ij} = c_{ij} + \lambda_i - \lambda_j \\ \mu_{ij} \ge 0 \text{ and } \mu_{ij}x_{ij} = 0 \end{array}$$

$$- \sum_{(i,j)\in\mathcal{A}} \mu_{ij}x_{ij},$$

Complementarity slackness

For all (i,j)

$$c_{ij} + \lambda_i - \lambda_j \geq 0.$$

For all (i,j) such that $x_{ij} > 0$

$$c_{ij}+\lambda_i-\lambda_j=0.$$

Sufficient and necessary optimality conditions.

Total unimodularity

Motivation

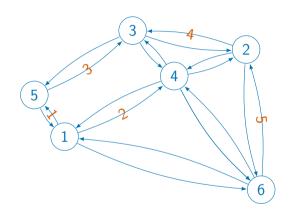
- ► The incidence matrix defining the constraints of a transhipment problem has a special structure.
- lt also has a great property called "total unimodularity".
- ▶ It is great because it guarantees to generate an integer solution, if the data is integer.
- ► We now formally define this property.

Transhipment problem in standard form

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \qquad \qquad \min_{x \in \mathbb{R}^n} c^T x$$
 subject to
$$\sum_{j \mid (i,j) \in \mathcal{A}} x_{ij} - \sum_{k \mid (k,i) \in \mathcal{A}} x_{ki} = s_i, \ \forall i \in \mathcal{N}, \qquad \qquad x \geq 0.$$

$$x_{ij} \geq 0, \ \forall (i,j) \in \mathcal{A}.$$

Incidence matrix



	1	2	3	4	5	
1	1	1	0	0	0	
2	0	0	0	1	-1	
3	0	0	-1	-1	0	
4	0	-1	0	0	0	
5	-1	0	1	0	0	
6	1 0 0 0 -1 0	0	0	0	1	

Optimal solution

$$x_B^* = B^{-1}s.$$

Cramer's rule

$$x_B^* = \frac{1}{\det(B)} C(B)^T s$$

Each entry of the matrix is 0, 1 or -1.

Each entry of C(B) is an integer.

If s is integer, $C(B)^T s$ is integer.

If det(B) is 1 or -1, x_b^* is integer.

Total unimodularity

Definition

The matrix $A \in \mathbb{Z}^{m \times n}$ is totally unimodular if the determinant of each square submatrix of A is

$$0, -1 \text{ or } +1.$$

Total unimodularity

Definition

The matrix $A \in \mathbb{Z}^{m \times n}$ is totally unimodular if the determinant of each square submatrix of A is

$$0, -1 \text{ or } +1.$$

In particular,

every entry of the matrix is 0, -1 or +1.

Example

$$A = \left(\begin{array}{cc} -1 & 0 & 1 \\ 0 & -1 & 1 \end{array}\right).$$

Each square submatrix of size 1, that is each element of the matrix, is 0, -1 or +1. Each square submatrix of size 2 is unimodular:

$$\det\left(egin{array}{cc} -1 & 0 \ 0 & -1 \end{array}
ight)=1,$$
 $\det\left(egin{array}{cc} -1 & 1 \ 0 & 1 \end{array}
ight)=-1,$ $\det\left(egin{array}{cc} 0 & 1 \ -1 & 1 \end{array}
ight)=1.$

Integrality of the basic solutions

Consider the polyhedron represented in standard form

$$\{x \in \mathbb{R}^n | Ax = b, \ x \ge 0\},\$$

where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.

If A is totally unimodular, then every basic solution is integer.

Proof

$$x_B = B^{-1}b. \ x_B = \frac{1}{\det(B)}C(B)^Tb,$$

Total unimodularity of the incidence matrix

Motivation

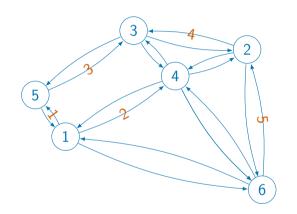
- ► Total unimodularity of the matrix defining the constraints of a linear optimization problem guarantees that the basic solutions are integer if the data are integer.
- ▶ Therefore, the optimal solution is also integer.
- ▶ This is a great property, given the difficulty of discrete optimization.
- ▶ We show now that the incidence matrix of the transhipment problem is totally unimodular.

Transhipment problem in standard form

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \qquad \qquad \min_{x \in \mathbb{R}^n} c^T x$$
subject to
$$\sum_{j \mid (i,j) \in \mathcal{A}} x_{ij} - \sum_{k \mid (k,i) \in \mathcal{A}} x_{ki} = s_i, \ \forall i \in \mathcal{N}, \qquad \qquad x \geq 0.$$

$$x_{ij} \geq 0, \ \forall (i,j) \in \mathcal{A}.$$

Incidence matrix



	1	2	3	4	5	
1	1	1	0	0	0	
2	0	0	0	1	-1	
3	0	0	-1	-1	0	
4	0	-1	0	0	0	
5	-1	0	1	0	0	
6	1 0 0 0 -1	0	0	0	1	

Theorem 22.6

The incidence matrix of a network is totally unimodular.

Proof

- By contradiction, assume that it is not the case.
- ▶ There exist square matrices with determinant $\notin \{0, 1, -1\}$.
- \triangleright Among all of them, consider the one with minimum size k: B.
- Note that k > 1.
- Number of non-zero entries in a column of *B*: 0, 1 or 2.
- We treat each case separately.

No non-zero entry

Context

- \triangleright B is $k \times k$.
- ▶ $det(B) \notin \{0, 1, -1\}.$
- $\blacktriangleright \ \forall \ \ell \times \ell \ \text{submatrices B': } \det(B') \in \{0,1,-1\}.$
- One column of B contains only zeros.

Impossible, because it would mean that det(B) = 0. Therefore, no column of B contains only 0s.

One non-zero entry

Context

- \triangleright B is $k \times k$.
- ▶ $det(B) \notin \{0, 1, -1\}.$
- $\blacktriangleright \ \forall \ \ell \times \ell$ submatrices B': $\det(B') \in \{0, 1, -1\}$.
- ▶ One column of *B* contains only one non-zero entry.

$$B=\left(egin{array}{ccc} b_{11} & b_{12}\cdots b_{1k} \ 0 & & & \ dots & B' \ 0 & & & \end{array}
ight)$$

$$\det(B) = b_{11} \det(B') = \det(B') \text{ or } -\det(B')$$

Impossible as B is the smallest matrix.

Two non-zero entries

Context

- \triangleright B is $k \times k$.
- ▶ $det(B) \notin \{0, 1, -1\}.$
- ▶ $\forall \ \ell \times \ell \text{ submatrices B': } det(B') \in \{0, 1, -1\}.$
- ► Each column of *B* contains exactly two non-zero entries.

The two non zero entries are 1 and -1.

If you sum the elements of each column, it is equal to zero.

So, summing all the rows of B gives 0

B is singular, and its determinant is zero.

Contradiction.

Corollary

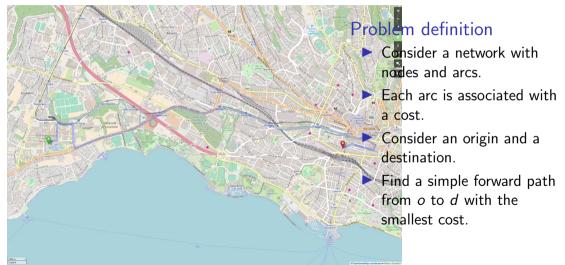
If the supply vector s of the transhipment problem is integer, that is, if $s \in \mathbb{Z}^m$, and if the problem is bounded, then it has an optimal solution which is integer.

The shortest path problem

Motivation

- ▶ The transhipment problems embeds a variety of other problems.
- ▶ These problems inherit the properties of the transhipment problem.
- ▶ In particular, the integrality of the optimal solution if the data is integer.
- We first introduce the shortest path problem as an instance of the transhipment problem.

Shortest path



Shortest paths problems

- ► Single origin single destination. (this lecture)
- ► Single origin all destinations. (next topic)
- ► All origins single destination.
- ► All origins all destinations.

Cost of a path

Definition

$$C(P) = \sum_{(i,j)\in P^{\rightarrow}} c_{ij}x_{ij} - \sum_{(i,j)\in P^{\leftarrow}} c_{ij}x_{ij}.$$

Forward path

$$C(P) = \sum_{(i,j)\in P^{\rightarrow}} c_{ij}x_{ij} = \sum_{(i,j)\in P} c_{ij}x_{ij}$$

Flow

Send one unit of flow from o to d. Supply at o: $s_o = 1$ Supply at d: $s_d = -1$ Supply at any other node: $s_i = 0$ Total unimodularity: if there is a solution, flow on (i,j): 0 or 1

Cost of a path

$$C(P) = \sum_{(i,j)\in P} c_{ij} x_{ij} = \sum_{(i,j)\in P} c_{ij}$$

- ightharpoonup cost on each arc: c_{ij}
- **>** supply at the origin: $s_o = 1$
- **>** supply at the destination: $s_d = -1$
- supply at any other node: 0
- lower bound on each arc: 0
- ightharpoonup upper bound on each arc: ∞

$$\min_{x \in \mathbb{R}^n} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$

subject to

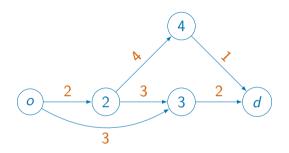
$$\begin{split} \sum_{j|(o,j)\in\mathcal{A}} x_{oj} - \sum_{k|(k,o)\in\mathcal{A}} x_{ko} &= 1, \\ \sum_{j|(d,j)\in\mathcal{A}} x_{dj} - \sum_{k|(k,d)\in\mathcal{A}} x_{kd} &= -1, \\ \sum_{j|(i,j)\in\mathcal{A}} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}} x_{ki} &= 0, \ \forall i\in\mathcal{N}, i\neq o, i\neq d, \\ x_{ij} &\geq 0, \ \forall (i,j)\in\mathcal{A}. \end{split}$$

The maximum flow problem

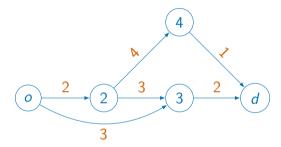
Motivation

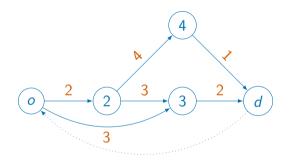
- ► The maximum flow problem was motivated by the analysis performed by the American army of the railway network operated by the Soviet Union across Eastern Europe during the Cold War.
- We have a network, where each arc has a capacity.
- Consider an origin o and a destination d.
- ▶ What is the maximum amount of flow that the network can carry from o to d?

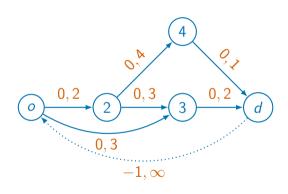
The maximum flow problem



- ightharpoonup options of 0 o 0 o 0 o 0 o 0: 1 unit of flow.
- ightharpoonup options of 3
 ightharpoonup d: 2 units of flow.
- ightharpoonup option option







- ightharpoonup cost on the artificial arc: -1
- cost on every other arc: 0
- supply/demand for each node: 0
- lower bound on each arc: 0
- ightharpoonup upper bound on the artificial arc: ∞
- upper bound on every other arc: from the problem definition

$$\min_{x \in \mathbb{R}^{n+1}} -x_{do}$$

subject to

$$\sum_{j|(i,j)\in\mathcal{A}\cup(d,o)} x_{ij} - \sum_{k|(k,i)\in\mathcal{A}\cup(d,o)} x_{ki} = 0, \ \forall i\in\mathcal{N},$$

$$x_{ij} \leq u_{ij}, \ \forall (i,j)\in\mathcal{A},$$

$$x_{ij} \geq 0, \ \forall (i,j)\in\mathcal{A},$$

$$x_{do} \geq 0.$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

The transportation problem

Motivation

- ► The transportation problem is somehow a transhipment problem where transhipment is not allowed.
- We have suppliers and customers.
- There is a cost to transport items from a supplier to a customer.
- ▶ We need to decide how much each supplier will deliver to each customer.

Electricity in Switzerland

Suppliers

► Mühleberg: 3110 GWh/year

► Beznau: 3198 GWh/year

► Leibstadt: 10205 GWh/year

Customers

➤ Zürich: 8961 GWh/year

► Geneva: 3777 GWh/year

► Lausanne: 2517 GWh/year

► Bern: 1258 GWh/year

Electricity in Switzerland

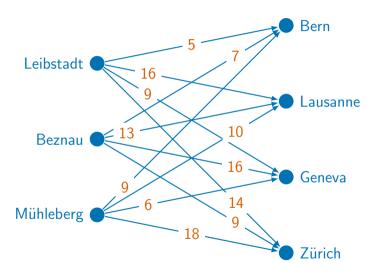
Unit costs

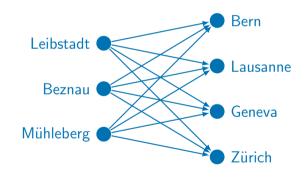
	Zürich	Geneva	Lausanne	Bern
Mühleberg	18	6	10	9
Beznau	9	16	13	7
Leibstadt	14	9	16	5

Comments

- ► No "real" network.
- ▶ We create a network representation.
- ▶ One set of nodes for the suppliers.
- ▶ One set of nodes for the customers.

Bern Leibstadt Lausanne Beznau Geneva Mühleberg Zürich





- ightharpoonup cost on each arc: c_{ij}
- supply for supplier nodes: s_i
- **>** supply for customer nodes: $-t_j$
- lower bound on each arc: 0
- ightharpoonup upper bound on each arc: $+\infty$

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^{m_o} \sum_{i=1}^{m_d} c_{ij} x_{ij}$$

subject to

$$\sum_{j=1}^{m_d} x_{ij} = s_i,$$
 $i=1,\ldots,m_o,$ $\sum_{j=1}^{m_o} x_{ij} = t_j,$ $j=1,\ldots,m_d,$ $x_{ij} \geq 0,$ $i=1,\ldots,m_o,$ $j=1,\ldots,m_d,$ $x_{ij} = 0,$ if i does not serve j .

The assignment problem

Motivation

The assignment problem consists in assignment n tasks to n resources at minimal cost.

Heirs

- ► After the death of her husband, my grandmother has discovered four masterpieces in her attic.
- She does not want to keep them.
- She would like to sell each of them to one of her four children.
- Each child made an offer for the masterpieces of interest.
- She wants to sell exactly one masterpiece to each child.
- Which masterpiece should she sell to which child, to maximize her revenues?

Heirs

Botticelli, 1485

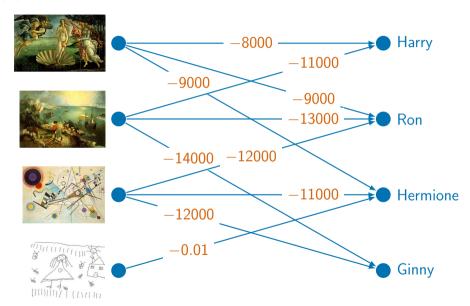
Kandinsky, 1923

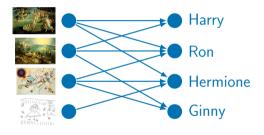
Bruegel, 1558

Bierlaire, 1971

Offers (kEuros)

	Botticelli	Bruegel	Kandinsky	Bierlaire
Harry	8000	11000	_	_
Ron	9000	13000	12000	_
Hermione	9000	_	11000	0.01
Ginny	_	14000	12000	_





- lacktriangle cost on each arc: $c_{ij}=-p_{ij}$
- supply for each resource node: 1
- ightharpoonup supply for each task node: -1
- lower bound on each arc: 0
- upper bound on each arc: 1

$$\min_{x \in \mathbb{R}^{n^2}} \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

subject to

$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, \dots, n, (5)$$

$$\sum_{j=1}^{n} x_{ij} = 1, j = 1, \dots, n, (6)$$

$$x_{ij} \ge 0, i = 1, \dots, n, j = 1, \dots, n, (7)$$

$$x_{ij} \le 1, i = 1, \dots, n, j = 1, \dots, n. (8)$$

The variable x_{ij} is to take on the value 1 if resource i is assigned to task j, and 0 otherwise.

Summary

- ► Transhipment problem: linear optimization problem.
- Special structure.
- Property: total unimodularity of the incidence matrix.
- Consequence: if the data is integer, the optimal solution is also integer.
- Shortest path problem.
- Maximum flow problem.
- Transportation problem.
- Assignment problem.