Linear optimization

The simplex method

Michel Bierlaire

Introduction to optimization and operations research

Motivation

- Most famous optimization algorithm.
- Proposed by Dantzig in 1949.
- Solves linear optimization problems.
- Workhorse of modern optimization solvers.
- ▶ Main idea: the optimal solution lies on a vertex of the constraint polyhedron.

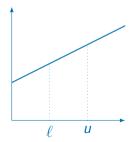
One dimension

subject to

$$\ell \le x \le u$$
.

 $\min_{x \in \mathbb{R}} ax + b$

a > 0



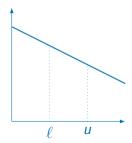
One dimension

subject to

$$\min_{x \in \mathbb{R}} ax + b$$

$$\ell \leq x \leq u$$
.

a < 0



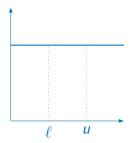
One dimension

subject to

$$\min_{x \in \mathbb{R}} ax + b$$

$$\ell \leq x \leq u$$
.

$$a = 0$$



Several dimensions

Theorem 16.2

Consider

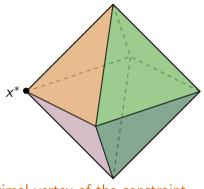
$$\min_{x \in \mathbb{R}^n} c^T x,$$

subject to

$$Ax = b$$
,

$$x \ge 0$$
,

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.



If it has an optimal solution, there exists an optimal vertex of the constraint polyhedron.

Vertex enumeration

Geometric algorithm

- ► Enumerate all vertices of the polyhedron.
- ▶ For each of them, calculate c^Tx .
- Identify the vertex with the smallest value.

Algebraic algorithm

- ► Enumerate all basic solutions of the polyhedron.
- For each of them, check if it is feasible, and calculate $c^T x$.
- ▶ Identify the feasible basic solution with the smallest value.

Vertex enumeration

Not practical

Number of basic solutions for a problem in standard form:

$$\frac{n!}{(n-m)!m!}.$$

- $n = 100, m = 50: 10^{29}$
- If one million basic solutions are treated per second,
- ▶ it will last 10¹³ (10 million million) centuries to solve.

Graphical method

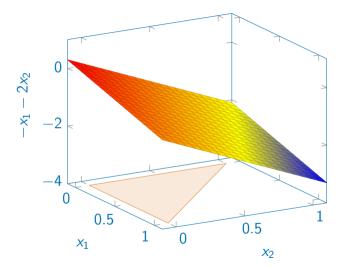
Motivation

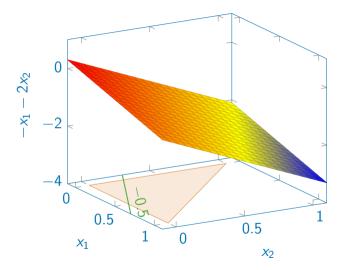
- ▶ An optimal solution of a linear optimization problem can be found on a vertex of the constraint polyhedron.
- ▶ But which one?
- ▶ In order to gain some intuition about the problem, we solve it graphically on a problem with two dimensions.

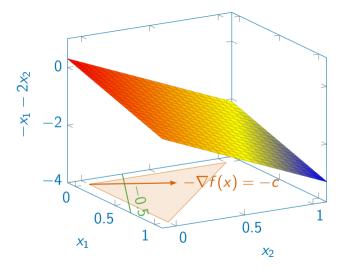
$$\min_{x \in \mathbb{R}^2} -x_1 - 2x_2$$

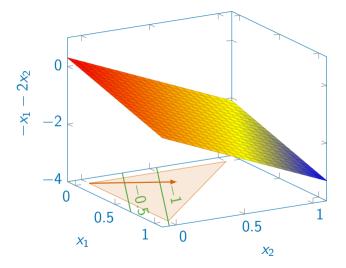
subject to

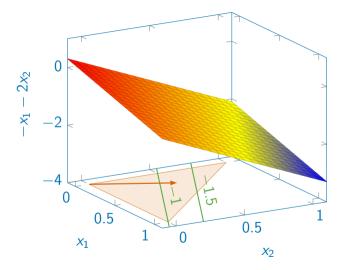
$$x_1 + x_2 \le 1$$
$$x_1 \ge 0$$
$$x_2 \ge 0$$

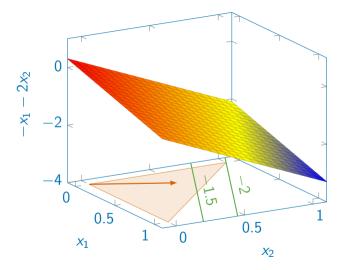


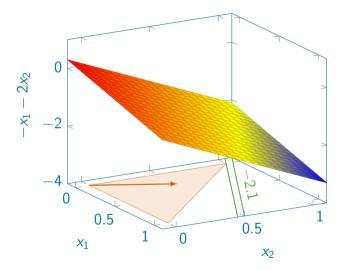


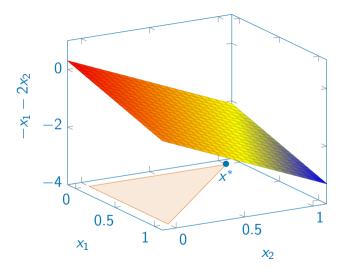






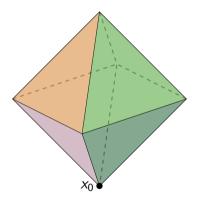


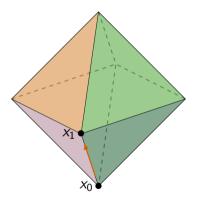


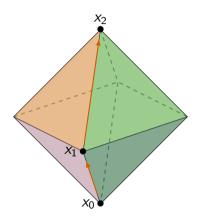


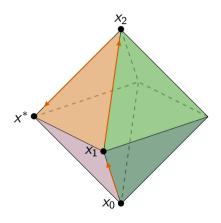
Motivation

- ► The optimal solution of a linear optimization problem can be found on a vertex of the constraint polyhedron.
- lt is not practical to enumerate all vertices.
- ▶ Idea: start from a vertex, and move towards a neighbor vertex, that is better, in the sense of the objective function.









Main ideas

▶ The current vertex is defined by active constraints.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- ▶ Select one of them, and increase its value.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- Select one of them, and increase its value.
- ▶ It therefore enters the basis.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- Select one of them, and increase its value.
- ▶ It therefore enters the basis.
- ▶ Is it worth it? Yes, if the basic direction is descending.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- ▶ Select one of them, and increase its value.
- ▶ It therefore enters the basis.
- ▶ Is it worth it? Yes, if the basic direction is descending.
- ► That is, if the reduced cost is negative.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- Select one of them, and increase its value.
- It therefore enters the basis.
- ▶ Is it worth it? Yes, if the basic direction is descending.
- ▶ That is, if the reduced cost is negative.
- ▶ If so, follow the basic direction as far as possible. How far?

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- Select one of them, and increase its value.
- ▶ It therefore enters the basis.
- ▶ Is it worth it? Yes, if the basic direction is descending.
- ▶ That is, if the reduced cost is negative.
- ▶ If so, follow the basic direction as far as possible. How far?
- Until a constraint is hit, is activated.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- Select one of them, and increase its value.
- ▶ It therefore enters the basis.
- ▶ Is it worth it? Yes, if the basic direction is descending.
- ▶ That is, if the reduced cost is negative.
- ▶ If so, follow the basic direction as far as possible. How far?
- Until a constraint is hit, is activated.
- The corresponding variable is set to zero.

- ▶ The current vertex is defined by active constraints.
- ▶ The corresponding non basic variables have been set to zero.
- Select one of them, and increase its value.
- ▶ It therefore enters the basis.
- ▶ Is it worth it? Yes, if the basic direction is descending.
- ▶ That is, if the reduced cost is negative.
- ▶ If so, follow the basic direction as far as possible. How far?
- Until a constraint is hit, is activated.
- The corresponding variable is set to zero.
- It leaves the basis.

Problem in standard form

 $\min_{\mathbf{x} \in \mathbb{R}^n} c^T \mathbf{x}$

subject to

$$Ax = b,$$
$$x \ge 0,$$

where

- $ightharpoonup A \in \mathbb{R}^{m \times n}$,
- $ightharpoonup b \in \mathbb{R}^m$,
- $c \in \mathbb{R}^n$.

Ingredients

Basic feasible solution = vertex

$$J^k=(j_1^k,\ldots,j_m^k).$$

Ingredients

Basic feasible solution = vertex

$$J^k = (j_1^k, \ldots, j_m^k).$$

Basic matrix

$$B = \left(A_{j_1^k}, \dots, A_{j_m^k}\right)$$
 non singular.

Ingredients

Basic feasible solution = vertex

$$J^k = (j_1^k, \ldots, j_m^k).$$

Basic matrix

$$B = \left(A_{j_1^k}, \dots, A_{j_m^k}\right)$$
 non singular.

Basic variables

$$x_B=B^{-1}b.$$

Ingredients

pth basic direction

$$d_B = -B^{-1}A_p.$$

Ingredients

pth basic direction

$$d_B = -B^{-1}A_p.$$

Reduced costs for pth basic direction

$$\bar{c}_p = c_p - c_B^T B^{-1} A_p.$$

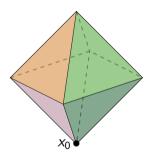
Initialization

Starting vertex

► Select a set

$$J^0=(j_1^0,\ldots,j_m^0).$$

- ► It must correspond to a basic feasible solution.
- ► It means
 - ► B non singular, and
 - $x_B = B^{-1}b \ge 0.$
- ▶ It is in general not simple to find.

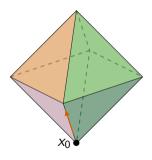


Descent direction

► Select a non basic variable *p* such that

$$\bar{c}_p < 0$$
.

► It means that the *p*th basic direction is a descent direction.



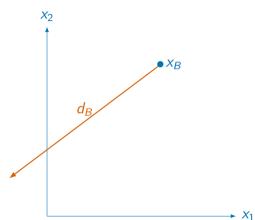
Next vertex

► Calculate the distance to each constraint, that is α_i such that

$$(x_B)_i + \alpha_i (d_B)_i = 0 \iff \alpha_i = -\frac{(x_B)_i}{(d_B)_i}.$$

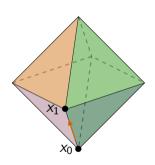
- Note: if $(d_B)_i \geq 0$, then $\alpha_i = +\infty$.
- ▶ Identify the closest constraint:

$$\alpha_q = \min_{i \in J^k} \alpha_i$$



Start a new iteration

$$J^{k+1}=J^k\cup\{p\}\setminus\{j_q^k\}.$$



▶ If no reduced cost is negative, we have found an optimal vertex.

- ▶ If no reduced cost is negative, we have found an optimal vertex.
- ▶ If $\alpha_a = \infty$, the problem is unbounded.

- ▶ If no reduced cost is negative, we have found an optimal vertex.
- ▶ If $\alpha_q = \infty$, the problem is unbounded.
- In the presence of a degenerate basic feasible solution, it may happen that $\alpha_q = 0$.

- ▶ If no reduced cost is negative, we have found an optimal vertex.
- ▶ If $\alpha_a = \infty$, the problem is unbounded.
- In the presence of a degenerate basic feasible solution, it may happen that $\alpha_q = 0$.
- ▶ When several variables can be selected, choose the one with the smallest index (Bland's rule).

- ▶ If no reduced cost is negative, we have found an optimal vertex.
- ▶ If $\alpha_q = \infty$, the problem is unbounded.
- In the presence of a degenerate basic feasible solution, it may happen that $\alpha_q = 0$.
- ▶ When several variables can be selected, choose the one with the smallest index (Bland's rule).
- ► The new set of indices corresponds to a valid basic feasible solution (see Lemma 16.5 for a proof).

Objective

Find the global optimum of a linear optimization problem in standard form.

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to

$$Ax = b x \ge 0.$$

Input

- $A \in \mathbb{R}^{m \times n}$;
- \triangleright $b \in \mathbb{R}^m$:
- $c \in \mathbb{R}^n$.
- ▶ $J^0 = (j_1^0, \dots, j_m^0)$ set of indices of basic variables corresponding to a feasible basic solution.

Outputs

- ▶ Boolean indicator *U* identifying an unbounded problem.
- ▶ If U is False, $J^* = (j_1^*, \ldots, j_m^*)$ the set of indices of basic variables corresponding to an optimal feasible basic solution, if it exists.

Initialization

$$k = 0$$
.

Iterations

- 1. Let $B = (A_{j_1^k}, \dots, A_{j_m^k})$ the basic matrix with row of A corresponding to indices in J_k .
- 2. Select the smallest (Bland's rule) index $p \notin J^k$ such that the corresponding reduced cost

$$\bar{c}_p = c_p - c_B^T B^{-1} A_p$$

is negative (A_p is the pth column of A). If there is none, the current solution is optimal. $J^* = J^k$, U=False. STOP.

3. Let P be the permutation matrix such that

$$AP = (B|N).$$

Iterations (ctd)

4. Calculate

$$x_k = P \left(\begin{array}{c} B^{-1}b \\ 0_{\mathbb{R}^{n-m}} \end{array} \right).$$

Iterations (ctd)

5. Calculate the pth basic direction

$$d_p = P\left(\begin{array}{c}d_{B_p}\\d_{N_p}\end{array}\right)$$

where $d_{B_p} = -B^{-1}A_p$, and d_{N_p} is such that

$$P^T e_p = \begin{pmatrix} 0 \\ d_{N_p} \end{pmatrix},$$

that is, all elements are 0, except the one corresponding to variable p, which is 1.

Iterations (ctd)

6. For each basic index i, calculate the distance to the constraint $x_i \ge 0$, that is

$$lpha_i = \left\{ egin{array}{ll} -rac{(x_k)_i}{(d_p)_i} & ext{if } (d_p)_i < 0 \ +\infty & ext{otherwise}. \end{array}
ight.$$

7. Let q be the smallest (Bland's rule) index such that

$$\alpha_{q} = \min_{i} \alpha_{i}.$$

- 8. If $\alpha_q = +\infty$, the problem is unbounded, and there is no optimal solution. U=True. STOP.
- 9. Index p enters the basis, and index q leaves it, i.e. $J^{k+1} = J^k \cup \{p\} \setminus q, \ k = k+1.$

Tableau

Motivation

- ▶ The simplex algorithm requires computational effort in linear algebra.
- ▶ We present here a tool to simplify the calculations.
- ▶ It is called the "simplex tableau".

Main idea

Computational efforts

- ► Calculation of the reduced costs $c^T c_B^T B^{-1} A$.
- ▶ Calculation of the current iterate $B^{-1}b$.
- ► Calculation of the basic direction $-B^{-1}A_p$.

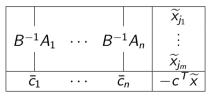
Store $B^{-1}A$ and $B^{-1}b$ instead of A and b.

Tableau

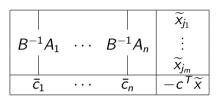
Definition

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$

Basic feasible solution \widetilde{x}



Interpretation



- Each column corresponds to a variable.
- Each row of the top part corresponds to a basic variable.
- Last row: reduced cost.
- ▶ If *i* is basic, $B^{-1}A_i$ is a column of the identity matrix.
- ▶ The only 1 identifies the corresponding row.

$$A = \left(egin{array}{ccc} 1 & 1 & 1 & 0 \ 1 & -1 & 0 & 1 \end{array}
ight), \qquad b = \left(egin{array}{c} 1 \ 1 \end{array}
ight), \qquad c = \left(egin{array}{c} -1 \ -2 \ 0 \ 0 \end{array}
ight).$$

Basic variables: x_3 and x_4

$$B=\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight), \qquad B^{-1}=\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight).$$

$$A = \left(egin{array}{ccc} 1 & 1 & 1 & 0 \ 1 & -1 & 0 & 1 \end{array}
ight), b = \left(egin{array}{c} 1 \ 1 \end{array}
ight), c = \left(egin{array}{c} -1 \ -2 \ 0 \ 0 \end{array}
ight), B^{-1} = \left(egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight).$$

Basic variables: x_3 and x_4

x_1	x_2	<i>X</i> ₃	x_4		
1	1	1	0	1	x_3 , $\alpha_3 = 1/1$
1	-1	0	1	1	$\begin{bmatrix} x_3, & \alpha_3 = 1/1 \\ x_4, & \alpha_4 = 1/1 \\ -c^T x \end{bmatrix}$
-1	-2	0	0	0	$-c^Tx$

$$A = \left(egin{array}{ccc} 1 & 1 & 1 & 0 \ 1 & -1 & 0 & 1 \end{array}
ight), \qquad b = \left(egin{array}{c} 1 \ 1 \end{array}
ight), \qquad c = \left(egin{array}{c} -1 \ -2 \ 0 \ 0 \end{array}
ight).$$

Basic variables: x_2 and x_4

$$B=\left(egin{array}{cc} 1 & 0 \ -1 & 1 \end{array}
ight), \qquad B^{-1}=\left(egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight).$$

$$A = \left(egin{array}{ccc} 1 & 1 & 1 & 0 \ 1 & -1 & 0 & 1 \end{array}
ight), b = \left(egin{array}{c} 1 \ 1 \end{array}
ight), c = \left(egin{array}{c} -1 \ -2 \ 0 \ 0 \end{array}
ight), B^{-1} = \left(egin{array}{c} 1 & 0 \ 1 & 1 \end{array}
ight).$$

Basic variables: x_2 and x_4

	x_1	x_2	<i>X</i> ₃	x_4		
	1	1	1	0	1	<i>x</i> ₂
	2	0	1	1	1 2	$\begin{bmatrix} x_2 \\ x_4 \\ -c^T x \end{bmatrix}$
Ì	1	0	2	0	2	$-c^Tx$

Usage in the algorithm

Reduced costs

$$c^T - c_B^T B^{-1} A$$
.

$B^{-1}A$	$B^{-1}b$
$c^{T} - c_{B}^{T}B^{-1}A$	$-c_B^T B^{-1} b$

Usage in the algorithm

Basic direction

$$d_B = -B^{-1}A_p$$
 and $\alpha_i = (x_B)_i/(-d_B)_i$.

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$

Usage in the algorithm

Solution

$$x_B = B^{-1}b$$
 and $c^T x = c_B^T x_B = c_B^T B^{-1}b$.

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$

Difficulties

- ▶ Prepare the tableau for the next iteration.
- Find the first tableau.

Pivoting

Motivation

- ▶ If a valid tableau is available, one iteration of the simplex algorithm is simple.
- Once the two variables to exchange in the basis have been identified, how to generate a valid tableau for the new basis?

One iteration

Before

$$B = \left(A_{j_1} \cdots A_{j_q} \cdots A_{j_m}\right)$$

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$

After

$$\bar{B} = (A_{j_1} \cdots A_p \cdots A_{j_m})$$

$ar{B} = (A_{j_1} \cdots A_p \cdots A_{j_m})$		
$ar{B}^{-1}A$	$ar{B}^{-1}b$	
$c^T - c_{\bar{B}}^T \bar{B}^{-1} A$	$-c_{ar{B}}^Tar{B}^{-1}b$	

How to transform B^{-1} into \bar{B}^{-1} ?

Elementary row operations

Definition

- ightharpoonup Consider row j of a matrix A.
- ▶ Multiply it by β .
- Add the result to row *i*.

$$\bar{a}_i \leftarrow a_i + \beta a_j$$
,

Elementary row operations

Transformations

Objective

Find Q such that

$$QB^{-1} = \bar{B}^{-1}.$$

Equivalently

$$QB^{-1}\bar{B}=I$$

$$B^{-1}ar{B} = \left(egin{array}{cccc} 1 & 0 & u_1 & 0 \ 0 & 1 & u_2 & 0 \ dots & dots & \ddots & dots & dots \ dots & dots & u_q & dots \ dots & dots & dots & \ddots & dots \ 0 & 0 & u_m & 1 \end{array}
ight)$$

Pivoting

$$B^{-1}ar{B} = egin{pmatrix} 1 & 0 & u_1 & 0 \ 0 & 1 & u_2 & 0 \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots \ dots & dots & u_q & dots \ dots & dots & dots & \ddots & dots \ 0 & 0 & u_m & 1 \end{pmatrix}$$
 Elementary row operations $Q = Q_{qq}(1/u_q) \prod_{i
eq q} Q_{iq}(-u_i/u_q).$

$$Q = Q_{qq}(1/u_q) \prod_{i \neq q} Q_{iq}(-u_i/u_q).$$

Pivoting

$$QB^{-1}\bar{B} = \begin{pmatrix} 1 & 0 & u_1 - \frac{u_1}{u_q}u_q & 0 \\ 0 & 1 & u_2 - \frac{u_2}{u_q}u_q & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & u_q/u_q & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & u_m - \frac{u_m}{u_q}u_q & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & 1 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Pivoting

$$QB^{-1}\bar{B} = I$$

$$QB^{-1} = \bar{B}^{-1}$$

$$QB^{-1}A = \bar{B}^{-1}A$$

$$QB^{-1}b = \bar{B}^{-1}b$$

One iteration

Before

$$B = (A_{j_1} \cdots A_{j_q} \cdots A_{j_m})$$

$B^{-1}A$	$B^{-1}b$		
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$		

After

$$\bar{B}=(A_{j_1}\cdots A_p\cdots A_{j_m})$$

$QB^{-1}A$	$QB^{-1}b$
?	?

Last row: same elementary row operation.

Simplex tableau algorithm

Objective

Find the global minimum of a linear optimization problem in standard form.

Input

 T_0 , the simplex tableau corresponding to a feasible basic solution.

Outputs

- ▶ A boolean indicator *U* identifying an unbounded problem.
- ▶ If U is False, T^* , the simplex tableau corresponding to an optimal solution.

Initialization

$$k=0$$
.

Simplex tableau algorithm

Iterations

- 1. Find the reduced costs in the left part of the last row of T_k . If they are all non negative, the tableau is optimal. $T^* = T_k$, U=False. STOP.
- 2. Let *p* the index corresponding to the leftmost column with a negative reduced cost.
- 3. For each row i, calculate the distance to the constraint $x_i \ge 0$, that is

$$\alpha_i = \left\{ egin{array}{ll} T(i,n+1)/T(i,p) & ext{if } T(i,p) > 0 \\ +\infty & ext{otherwise.} \end{array}
ight.$$

Simplex tableau algorithm

Iterations (ctd)

4. Let q be the uppermost index such that

$$\alpha_q = \min_i \alpha_i.$$

- 5. If $\alpha_q = +\infty$, the problem is unbounded, and there is no optimal solution. U=True. STOP.
- 6. Index p enters the basis, and index q leaves it. Pivot the tableau T_k to obtain T_{k+1} . k = k + 1.

Example

x_1	<i>x</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>x</i> ₆		
1	2	2	1	0	0	20	$\alpha_4 = 20$
2	1	2	0	1	0	20	$\alpha_5 = 10$
2	2	1	0	0	1	20	$\alpha_6 = 10$
-10	-12	-12	0	0	0	0	
x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆		
0	1.5	1	1	-0.5	0	10	
1	0.5	1	0	0.5	0	10	
0	1	-1	0	-1	1	0	
0	-7	-2	0	5	0	100	

Example

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x_1	x_2	<i>X</i> ₃	x_4	<i>X</i> ₅	<i>x</i> ₆		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1.5	1	1	-0.5	0	10	$\alpha_4 = 20/3$
	1	0.5	1	0	0.5	0	10	$\alpha_1 = 20$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	-1	0	-1	1	0	$\alpha_6 = 0$
0 0 2.5 1 1 -1.5 10	0	-7	-2	0	5	0	100	
	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆		
1 0 15 0 1 05 10	0	0	2.5	1	1	-1.5	10	
	1	0	1.5	0	1	-0.5	10	
0 1 -1 0 -1 1 0	0	1	-1	0	-1	1	0	
0 0 -9 0 -2 7 100	0	0	-9	0	-2	7	100	

Example

x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆		
0	0	2.5	1	1	-1.5	10	$\alpha_4 = 4$
1	0	1.5	0	1	-0.5	10	$\alpha_1 = 20/3$
0	1	-1	0	-1	1	0	$\alpha_2 = +\infty$
0	0	-9	0	-2	7	100	
x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆		
0	0	1	0.4	0.4	-0.6	4	<i>x</i> ₃
1	0	0	-0.6	0.4	0.4	4	x_1
0	1	0	0.4	-0.6	0.4	4	x_2
0	0	0	3.6	1.6	1.6	136	

Optimal solution: $x^* = (4, 4, 4, 0, 0, 0)^T$, $c^T x^* = -136$.

Initial tableau: the simple case

Motivation

- ► The last ingredient to obtain a complete algorithm is the generation of the first tableau.
- We start by the easy case.
- ▶ We'll follow with the general case.

Motivation

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$

First tableau

- Avoid trials and errors.
- ▶ Avoid the calculation of B^{-1} .

Inequality constraints

$$egin{aligned} \min c^T x & \min c^T x + 0^T x_s \ & \text{subject to} \ & Ax \leq b, \ & x \geq 0. \ & Ax + I x^s = b, \ & A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n. \ & b \geq 0. \ & x^s \geq 0. \ & x^s \in \mathbb{R}^m \end{aligned}$$

Feasible solution

$$\min c^T x + 0^T x_s$$

subject to

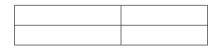
$$Ax + Ix^{s} = b,$$

$$x \ge 0,$$

$$x^{s} \ge 0.$$

- $x = 0, x^s = b > 0.$
- ightharpoonup Basic variables: x^s .
- ightharpoonup Basic matrix: B = I.
- ► Tableau:

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$



Initial tableau: the general case

Motivation

- Finding a feasible vertex of the constraint polyhedron and the corresponding tableau is not an easy task in the general case.
- ▶ This problem can actually be formulated as a linear optimization problem.
- ▶ And this optimization problem is solved using the simplex algorithm.

Problem in standard form

Problem \mathcal{P}

$$\min_{x} c^{T} x$$

subject to

$$Ax = b$$
,

$$x \ge 0$$
.

$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$$
.

$$b \ge 0$$
.

$$\min_{x,x^a} 0x + 1^T x^a$$

subject to

$$Ax+Ix^a=b,$$

$$x \geq 0$$
.

$$x^a \geq 0$$
.

$$x^a \in \mathbb{R}^m$$

Auxiliary problem

Problem A

$$\min_{x,x_a} \mathbf{1}^T x^a = \sum_{i=1}^m x_i^a$$

subject to

$$Ax + Ix^{a} = b,$$

$$x \ge 0,$$

$$x^{a} \ge 0,$$

$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$$
.

$$b > 0$$
.

x_0 feasible for \mathcal{P}

- ► $Ax_0 = b$, $x_0 \ge 0$.
- $ightharpoonup x = x_0$, $x^a = 0$ is feasible for \mathcal{A} .
- ▶ If it also optimal.
- ► Contrapositive: if optimal > 0, no feasible solution in \mathcal{P}

Initial tableau for the auxiliary problem

Problem A

$$\min_{x,x_a} \mathbf{1}^T x^a = \sum_{i=1}^m x_i^a$$

subject to

$$Ax + Ix^{a} = b,$$

$$x \ge 0,$$

$$x^{a} \ge 0,$$

$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$$
.

$$b \geq 0$$
.

$B^{-1}A$	$B^{-1}b$
$c^T - c_B^T B^{-1} A$	$-c_B^T B^{-1} b$

 $B \rightarrow I$, $A \rightarrow A|I$, $c_B \rightarrow 1$, $c_N \rightarrow 0$. Reduced cost of aux. var= 0. Reduced cost of orig. var = 0 - $c_B^T B^{-1} A_j$

A <i>I</i>	Ь
$-1^T A 0$	$-1^T b$

► Consider the optimal tableau of the auxiliary problem.

- ► Consider the optimal tableau of the auxiliary problem.
- ▶ If some auxiliary variables are in the basis, pivot them out.

- ► Consider the optimal tableau of the auxiliary problem.
- ▶ If some auxiliary variables are in the basis, pivot them out.
- ► If all auxiliary variables are out of the basis, remove the corresponding columns.

- Consider the optimal tableau of the auxiliary problem.
- ▶ If some auxiliary variables are in the basis, pivot them out.
- ▶ If all auxiliary variables are out of the basis, remove the corresponding columns.
- ightharpoonup To solve \mathcal{P} , the last row of the tableau must be recalculated.

- Consider the optimal tableau of the auxiliary problem.
- ▶ If some auxiliary variables are in the basis, pivot them out.
- ▶ If all auxiliary variables are out of the basis, remove the corresponding columns.
- ightharpoonup To solve \mathcal{P} , the last row of the tableau must be recalculated.

- Consider the optimal tableau of the auxiliary problem.
- ▶ If some auxiliary variables are in the basis, pivot them out.
- ▶ If all auxiliary variables are out of the basis, remove the corresponding columns.
- ightharpoonup To solve \mathcal{P} , the last row of the tableau must be recalculated.

Note

- ▶ If matrix A is not full rank, it may not be possible to pivot all variables out.
- In that case, redundant constraints can be eliminated.
- See example 16.15, and the discussion on p. 390.

Procedure

- ▶ Write problem \mathcal{P} in standard form such that $b \geq 0$.
- ightharpoonup Consider the auxiliary problem A.
- ightharpoonup Solve \mathcal{A} with the simplex algorithm.
- ightharpoonup If one of the auxiliary variables is not zero at the solution, \mathcal{P} is infeasible.
- ▶ Otherwise, x^* is a feasible solution for \mathcal{P} .
- Clean the tableau.
- ightharpoonup Solve $\mathcal P$ with the simplex algorithm.

Summary

- Solution on a vertex.
- Graphical method.
- Simplex algorithm: from vertex to vertex.
- ► Simplex tableau.
- Pivoting.
- Initial tableau and the auxiliary problem.