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Simplex algorithm

Motivation
◮ Most famous optimization algorithm.

◮ Proposed by Dantzig in 1949.

◮ Solves linear optimization problems.

◮ Workhorse of modern optimization solvers.

◮ Main idea: the optimal solution lies on a vertex of the constraint polyhedron.
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One dimension

min
x∈R

ax + b

subject to
ℓ ≤ x ≤ u.

a > 0

ℓ u
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One dimension

min
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ℓ u
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Several dimensions

Theorem 16.2

Consider
min
x∈Rn

cTx ,

subject to
Ax = b,

x ≥ 0,

with A ∈ R
m×n, b ∈ R

m, c ∈ R
n.

•x∗

If it has an optimal solution, there exists an optimal vertex of the constraint
polyhedron.
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Vertex enumeration

Geometric algorithm

◮ Enumerate all vertices of the polyhedron.

◮ For each of them, calculate cTx .

◮ Identify the vertex with the smallest value.

Algebraic algorithm

◮ Enumerate all basic solutions of the polyhedron.

◮ For each of them, check if it is feasible, and calculate cTx .

◮ Identify the feasible basic solution with the smallest value.
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Vertex enumeration

Not practical
Number of basic solutions for a problem in standard form:

n!

(n −m)!m!
.

◮ n = 100, m = 50: 1029

◮ If one million basic solutions are treated per second,

◮ it will last 1013 (10 million million) centuries to solve.
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Graphical method

Motivation
◮ An optimal solution of a linear optimization problem can be found on a

vertex of the constraint polyhedron.

◮ But which one?

◮ In order to gain some intuition about the problem, we solve it graphically on
a problem with two dimensions.
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Example

min
x∈R2
−x1 − 2x2

subject to
x1 + x2 ≤ 1

x1 ≥ 0

x2 ≥ 0
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From vertex to vertex

Motivation
◮ The optimal solution of a linear optimization problem can be found on a

vertex of the constraint polyhedron.

◮ It is not practical to enumerate all vertices.

◮ Idea: start from a vertex, and move towards a neighbor vertex, that is
better, in the sense of the objective function.
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From vertex to vertex

•x0
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From vertex to vertex

•x0

•x1
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From vertex to vertex

•x0

•x1

•
x2
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From vertex to vertex

•x∗

•x0

•x1

•
x2
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Simplex algorithm

Main ideas
◮ The current vertex is defined by active constraints.
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Simplex algorithm

Main ideas
◮ The current vertex is defined by active constraints.

◮ The corresponding non basic variables have been set to zero.

◮ Select one of them, and increase its value.

◮ It therefore enters the basis.

◮ Is it worth it? Yes, if the basic direction is descending.

◮ That is, if the reduced cost is negative.

◮ If so, follow the basic direction as far as possible. How far?

◮ Until a constraint is hit, is activated.

◮ The corresponding variable is set to zero.

◮ It leaves the basis.
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Problem in standard form

min
x∈Rn

cTx

subject to
Ax = b,

x ≥ 0,

where

◮ A ∈ R
m×n,

◮ b ∈ R
m,

◮ c ∈ R
n.
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Ingredients

Basic feasible solution = vertex

Jk = (jk1 , . . . , j
k
m).
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Ingredients

Basic feasible solution = vertex

Jk = (jk1 , . . . , j
k
m).

Basic matrix

B =
(
Ajk1

, . . . ,Ajkm

)
non singular.

Basic variables

xB = B−1b.
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Ingredients

pth basic direction

dB = −B−1Ap.
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Ingredients

pth basic direction

dB = −B−1Ap.

Reduced costs for pth basic direction

c̄p = cp − cTB B
−1Ap.
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Initialization

Starting vertex

◮ Select a set

J0 = (j01 , . . . , j
0
m).

◮ It must correspond to a basic
feasible solution.

◮ It means
◮ B non singular, and
◮ xB = B

−1
b ≥ 0.

◮ It is in general not simple to find.

•x0
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Descent direction

◮ Select a non basic variable p such
that

c̄p < 0.

◮ It means that the pth basic
direction is a descent direction.

•x0
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Next vertex

◮ Calculate the distance to each
constraint, that is αi such that

(xB)i+αi(dB)i = 0 ⇐⇒ αi = −
(xB)i
(dB)i

.

◮ Note: if (dB)i ≥ 0, then αi = +∞.

◮ Identify the closest constraint:

αq = min
i∈Jk

αi

x1

x2

dB

xB•
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Start a new iteration

Jk+1 = Jk ∪ {p} \ {jkq }.

•x0

•x1
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Important details

◮ If no reduced cost is negative, we have found an optimal vertex.
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Important details

◮ If no reduced cost is negative, we have found an optimal vertex.

◮ If αq =∞, the problem is unbounded.

◮ In the presence of a degenerate basic feasible solution, it may happen that
αq = 0.

◮ When several variables can be selected, choose the one with the smallest
index (Bland’s rule).

◮ The new set of indices corresponds to a valid basic feasible solution (see
Lemma 16.5 for a proof).
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Simplex algorithm

Objective
Find the global optimum of a linear optimization problem in
standard form.

min
x∈Rn

cTx

subject to
Ax = b x ≥ 0.

Input

◮ A ∈ R
m×n;

◮ b ∈ R
m;

◮ c ∈ R
n.

◮ J0 = (j01 , . . . , j
0
m) set of indices of basic variables corresponding

to a feasible basic solution.
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Simplex algorithm

Outputs

◮ Boolean indicator U identifying an unbounded problem.
◮ If U is False, J∗ = (j∗1 , . . . , j

∗
m) the set of indices of basic

variables corresponding to an optimal feasible basic solution, if
it exists.

Initialization
k = 0.
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Simplex algorithm

Iterations

1. Let B = (Ajk1
, . . . ,Ajkm

) the basic matrix with row of A
corresponding to indices in Jk .

2. Select the smallest (Bland’s rule) index p 6∈ Jk such that the
corresponding reduced cost

c̄p = cp − cTB B
−1Ap

is negative (Ap is the pth column of A). If there is none, the
current solution is optimal. J∗ = Jk , U=False. STOP.

3. Let P be the permutation matrix such that

AP = (B |N).
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Simplex algorithm

Iterations (ctd)

4. Calculate

xk = P

(
B−1b

0Rn−m

)
.
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Simplex algorithm

Iterations (ctd)

5. Calculate the pth basic direction

dp = P

(
dBp

dNp

)

where dBp
= −B−1Ap, and dNp

is such that

PTep =

(
0
dNp

)
,

that is, all elements are 0, except the one corresponding to
variable p, which is 1.
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Simplex algorithm
Iterations (ctd)

6. For each basic index i , calculate the distance to the constraint
xi ≥ 0, that is

αi =

{
− (xk )i

(dp)i
if (dp)i < 0

+∞ otherwise.

7. Let q be the smallest (Bland’s rule) index such that

αq = min
i

αi .

8. If αq = +∞, the problem is unbounded, and there is no
optimal solution. U=True. STOP.

9. Index p enters the basis, and index q leaves it, i.e.
Jk+1 = Jk ∪ {p} \ q, k = k + 1.
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Tableau

Motivation
◮ The simplex algorithm requires computational effort in linear algebra.

◮ We present here a tool to simplify the calculations.

◮ It is called the “simplex tableau”.
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Main idea

Computational efforts

◮ Calculation of the reduced costs cT − cTB B
−1A.

◮ Calculation of the current iterate B−1b.

◮ Calculation of the basic direction −B−1Ap.

Store B−1A and B−1b instead of A and b.
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Tableau

Definition

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b

Basic feasible solution x̃

x̃j1

B−1A1 · · · B−1An

...
x̃jm

c̄1 · · · c̄n −cT x̃
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Interpretation

x̃j1

B−1A1 · · · B−1An

...
x̃jm

c̄1 · · · c̄n −cT x̃

◮ Each column corresponds to a variable.

◮ Each row of the top part corresponds to a basic variable.

◮ Last row: reduced cost.

◮ If i is basic, B−1Ai is a column of the identity matrix.

◮ The only 1 identifies the corresponding row.

42 / 76



Example 1

A =

(
1 1 1 0
1 −1 0 1

)
, b =

(
1
1

)
, c =




−1
−2
0
0


 .

Basic variables: x3 and x4

B =

(
1 0
0 1

)
, B−1 =

(
1 0
0 1

)
.
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Example 1

A =

(
1 1 1 0
1 −1 0 1

)
, b =

(
1
1

)
, c =




−1
−2
0
0


 ,B−1 =

(
1 0
0 1

)
.

Basic variables: x3 and x4

x1 x2 x3 x4

1 1 1 0 1 x3, α3 = 1/1
1 −1 0 1 1 x4, α4 = 1/1
−1 −2 0 0 0 −cTx
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Example 2

A =

(
1 1 1 0
1 −1 0 1

)
, b =

(
1
1

)
, c =




−1
−2
0
0


 .

Basic variables: x2 and x4

B =

(
1 0
−1 1

)
, B−1 =

(
1 0
1 1

)
.
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Example 2

A =

(
1 1 1 0
1 −1 0 1

)
, b =

(
1
1

)
, c =




−1
−2
0
0


 ,B−1 =

(
1 0
1 1

)
.

Basic variables: x2 and x4

x1 x2 x3 x4

1 1 1 0 1 x2
2 0 1 1 2 x4
1 0 2 0 2 −cTx
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Usage in the algorithm

Reduced costs

cT − cTB B
−1A.

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b
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Usage in the algorithm

Basic direction

dB = −B−1Ap and αi = (xB)i/(−dB)i .

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b
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Usage in the algorithm

Solution

xB = B−1b and cTx = cTB xB = cTB B
−1b.

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b

49 / 76



Difficulties

◮ Prepare the tableau for the next iteration.

◮ Find the first tableau.
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Pivoting

Motivation
◮ If a valid tableau is available, one iteration of the simplex algorithm is simple.

◮ Once the two variables to exchange in the basis have been identified, how to
generate a valid tableau for the new basis?
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One iteration

Before

B =
(
Aj1 · · ·Ajq · · ·Ajm

)

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b

After

B̄ = (Aj1 · · ·Ap · · ·Ajm)

B̄−1A B̄−1b

cT − cT
B̄
B̄−1A −cT

B̄
B̄−1b

How to transform B−1 into B̄−1?
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Elementary row operations

Definition
◮ Consider row j of a matrix A.

◮ Multiply it by β.

◮ Add the result to row i .

āi ← ai + βaj ,
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Elementary row operations

Ā = Qij(β)A, with Qij(β) =




1
. . .

1
. . .

β 1
. . .

1



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Transformations

Objective
Find Q such that

QB−1 = B̄−1.

Equivalently

QB−1B̄ = I

B−1B̄ =




1 0 u1 0
0 1 u2 0
...

...
. . .

...
...

...
... uq

...
...

...
...

. . .
...

0 0 um 1



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Pivoting

B−1B̄ =




1 0 u1 0
0 1 u2 0
...

...
. . .

...
...

...
... uq

...
...

...
...

. . .
...

0 0 um 1




Elementary row operations

Q = Qqq(1/uq)
∏

i 6=q

Qiq(−ui/uq).
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Pivoting

QB−1B̄ =




1 0 u1 −
u1
uq
uq 0

0 1 u2 −
u2
uq
uq 0

...
...

. . .
...

...
...

... uq/uq
...

...
...

...
. . .

...
0 0 um −

um
uq
uq 1




=




1 0 0 0
0 1 0 0
...

...
. . .

...
...

...
... 1

...
...

...
...

. . .
...

0 0 0 1



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Pivoting

QB−1B̄ = I

QB−1 = B̄−1

QB−1A = B̄−1A

QB−1b = B̄−1b

58 / 76



One iteration

Before

B =
(
Aj1 · · ·Ajq · · ·Ajm

)

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b

After

B̄ = (Aj1 · · ·Ap · · ·Ajm)

QB−1A QB−1b

? ?

Last row: same elementary row operation.
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Simplex tableau algorithm

Objective
Find the global minimum of a linear optimization problem in
standard form.

Input
T0, the simplex tableau corresponding to a feasible basic solution.

Outputs

◮ A boolean indicator U identifying an unbounded problem.
◮ If U is False, T ∗, the simplex tableau corresponding to an

optimal solution.

Initialization
k = 0.
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Simplex tableau algorithm

Iterations

1. Find the reduced costs in the left part of the last row of Tk . If
they are all non negative, the tableau is optimal. T ∗ = Tk ,
U=False. STOP.

2. Let p the index corresponding to the leftmost column with a
negative reduced cost.

3. For each row i , calculate the distance to the constraint xi ≥ 0,
that is

αi =

{
T (i , n + 1)/T (i , p) if T (i , p) > 0
+∞ otherwise.
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Simplex tableau algorithm

Iterations (ctd)

4. Let q be the uppermost index such that

αq = min
i

αi .

5. If αq = +∞, the problem is unbounded, and there is no
optimal solution. U=True. STOP.

6. Index p enters the basis, and index q leaves it. Pivot the
tableau Tk to obtain Tk+1. k = k + 1.
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Example

x1 x2 x3 x4 x5 x6

1 2 2 1 0 0 20 α4 = 20
2 1 2 0 1 0 20 α5 = 10
2 2 1 0 0 1 20 α6 = 10
-10 -12 -12 0 0 0 0

x1 x2 x3 x4 x5 x6

0 1.5 1 1 -0.5 0 10
1 0.5 1 0 0.5 0 10
0 1 -1 0 -1 1 0
0 -7 -2 0 5 0 100
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Example

x1 x2 x3 x4 x5 x6

0 1.5 1 1 -0.5 0 10 α4 = 20/3
1 0.5 1 0 0.5 0 10 α1 = 20
0 1 -1 0 -1 1 0 α6 = 0
0 -7 -2 0 5 0 100

x1 x2 x3 x4 x5 x6

0 0 2.5 1 1 -1.5 10
1 0 1.5 0 1 -0.5 10
0 1 -1 0 -1 1 0
0 0 -9 0 -2 7 100
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Example

x1 x2 x3 x4 x5 x6

0 0 2.5 1 1 -1.5 10 α4 = 4
1 0 1.5 0 1 -0.5 10 α1 = 20/3
0 1 -1 0 -1 1 0 α2 = +∞
0 0 -9 0 -2 7 100

x1 x2 x3 x4 x5 x6

0 0 1 0.4 0.4 -0.6 4 x3
1 0 0 -0.6 0.4 0.4 4 x1
0 1 0 0.4 -0.6 0.4 4 x2
0 0 0 3.6 1.6 1.6 136

Optimal solution: x∗ = (4, 4, 4, 0, 0, 0)T , cTx∗ = −136.
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Initial tableau: the simple case

Motivation
◮ The last ingredient to obtain a complete algorithm is the generation of the

first tableau.

◮ We start by the easy case.

◮ We’ll follow with the general case.

66 / 76



Motivation

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b

First tableau
◮ Avoid trials and errors.

◮ Avoid the calculation of B−1.
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Inequality constraints

min cTx

subject to
Ax ≤ b,

x ≥ 0.

A ∈ R
m×n, b ∈ R

m, c ∈ R
n.

b ≥ 0.

min cTx + 0Txs

subject to

Ax + Ix s = b,

x ≥ 0.

x s ≥ 0.

x s ∈ R
m
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Feasible solution

min cTx + 0Txs

subject to

Ax + Ix s = b,

x ≥ 0,

x s ≥ 0.

◮ x = 0, x s = b ≥ 0.

◮ Basic variables: x s .

◮ Basic matrix: B = I .

◮ Tableau:

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b
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Initial tableau: the general case

Motivation
◮ Finding a feasible vertex of the constraint polyhedron and the corresponding

tableau is not an easy task in the general case.

◮ This problem can actually be formulated as a linear optimization problem.

◮ And this optimization problem is solved using the simplex algorithm.
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Problem in standard form

Problem P

min
x

cTx

subject to
Ax = b,

x ≥ 0.

A ∈ R
m×n, b ∈ R

m, c ∈ R
n.

b ≥ 0.

min
x ,xa

0x + 1Txa

subject to

Ax + Ixa = b,

x ≥ 0.

xa ≥ 0.

xa ∈ R
m
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Auxiliary problem

Problem A

min
x ,xa

1Txa =
m∑

i=1

xai

subject to

Ax + Ixa = b,

x ≥ 0,

xa ≥ 0,

A ∈ R
m×n, b ∈ R

m, c ∈ R
n.

b ≥ 0.

x0 feasible for P

◮ Ax0 = b, x0 ≥ 0.

◮ x = x0, x
a = 0 is feasible for A.

◮ If it also optimal.

◮ Contrapositive: if optimal > 0, no
feasible solution in P
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Initial tableau for the auxiliary problem

Problem A

min
x ,xa

1Txa =
m∑

i=1

xai

subject to

Ax + Ixa = b,

x ≥ 0,

xa ≥ 0,

A ∈ R
m×n, b ∈ R

m, c ∈ R
n.

b ≥ 0.

B−1A B−1b

cT − cTB B
−1A −cTB B

−1b

B → I , A→ A|I , cB → 1, cN → 0.
Reduced cost of aux. var= 0.
Reduced cost of orig. var = 0 -
cTB B

−1Aj

A |I b

−1TA|0 −1Tb
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Clean the tableau

◮ Consider the optimal tableau of the auxiliary problem.
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Clean the tableau

◮ Consider the optimal tableau of the auxiliary problem.

◮ If some auxiliary variables are in the basis, pivot them out.

◮ If all auxiliary variables are out of the basis, remove the corresponding
columns.

◮ To solve P , the last row of the tableau must be recalculated.

Note
◮ If matrix A is not full rank, it may not be possible to pivot all variables out.

◮ In that case, redundant constraints can be eliminated.

◮ See example 16.15, and the discussion on p. 390.
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Procedure

◮ Write problem P in standard form such that b ≥ 0.

◮ Consider the auxiliary problem A.

◮ Solve A with the simplex algorithm.

◮ If one of the auxiliary variables is not zero at the solution, P is infeasible.

◮ Otherwise, x∗ is a feasible solution for P .

◮ Clean the tableau.

◮ Solve P with the simplex algorithm.
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Summary

◮ Solution on a vertex.

◮ Graphical method.

◮ Simplex algorithm: from vertex to vertex.

◮ Simplex tableau.

◮ Pivoting.

◮ Initial tableau and the auxiliary problem.

76 / 76


