
Shortest path problem
Properties and algorithms

Michel Bierlaire

Introduction to optimization and operations research

1 / 60



Motivation

Shortest path problem

◮ The shortest path problem is a transhipment problem.

◮ It could therefore be solved with the simplex algorithm.

◮ However, it does not exploit the specific structure of the problem.

◮ We identify here some useful properties of the shortest path problem, that
will be exploited by a dedicated algorithm.

2 / 60



Example: what is the shortest path from 1 to 16?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

8

1

1 1

1

8

1

8

1

8

8

1

8

1

8

1

8

8

1

1 8

1

8

8

3 / 60



Example

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

8

1

1 1

1

8

1

8

1

8

8

1

8

1

8

1

8

8

1

1 8

1

8

8

4 / 60



Comments

Map-based intuition

◮ When we look at a map, we have some intuition about what the shortest
path could be.

◮ But, in general networks, the triangle inequality is not always valid, like in
the example.

◮ Moreover, the computer has no bird eye’s view on the network.

5 / 60



Main idea of the method

6 / 60



Main idea of the method

6 / 60



Complementarity slackness for the transhipment problem

For all (i , j)

cij + λi − λj ≥ 0.

For all (i , j) such that xij > 0

cij + λi − λj = 0.

Sufficient and necessary optimality conditions.

7 / 60



Optimality conditions

Theorem 23.1
Consider

◮ a network (N ,A),n arcs, m nodes,

◮ a cost vector c ∈ R
n,

◮ a vector of labels λ ∈ R
m,

◮ a path P between node o and node d .

λj ≤ λi + cij , ∀(i , j) ∈ A.

λj = λi + cij , ∀(i , j) ∈ P .

then P is a shortest path from o to d .

8 / 60



Proof

λj ≤ λi + cij , ∀(i , j) ∈ A.

λj = λi + cij , ∀(i , j) ∈ P .

Consider any path Q

Q = o → j1 → j2 . . . jℓ → d .

C (Q) = coj1 + cj1j2 + . . .+ cjℓd .

C (Q) ≥ (λj1 − λo) + (λj2 − λj1) + . . .+ λd − λjℓ = λd − λo ,

P = o → i1 → i2 . . . ik → d .

C (P) = coi1 + ci1i2 + . . .+ cikd .

C (P) = (λi1 − λo) + (λi2 − λi1) + . . .+ λd − λik = λd − λo .

9 / 60



Example

Show that the condition is verified with equality on the plain arcs
and with strict inequality on the dotted arcs
Show on an example that it corresponds to shortest paths
Mention that the subnetwork of plain arcs for a spanning tree.
Remind that, in a tree, there is exactly one path between two nodes.

10 / 60



Example: the shortest path tree

1

0

2

7

3

8

4

9

5

1

6

6

7

14

8

10

9

2

10

5

11

13

12

11

13

3

14

4

15

12

16

12

8

1

1 1

1

8

1

8

1

8

8

1

8

1

8

1

8

8

1

1 8

1

8

8

◮ Arcs in the tree:
λ2 + c23 = 7 + 1 = 8 = λ3.

◮ Arcs not in the tree:
λ5 + c56 = 1 + 8 = 9 >

λ6 = 6.

◮ The plain arcs form a
spanning tree.

◮ Therefore, there is exactly
one path between two
nodes: the shortest.

11 / 60



Labels

Optimality conditions

λj − λi ≤ cij , ∀(i , j) ∈ A.

λj − λi = cij , ∀(i , j) ∈ P .

Only differences matter
Common practice: normalize λo = 0.

12 / 60



Negative cost cycle

If there exists a forward path from o to d containing a negative cost cycle, no
forward path is the shortest path from o to d .

o d

−1

−1

13 / 60



Simple paths

◮ Consider a network (N ,A), and

◮ two nodes o and d .

◮ Consider a forward path P between o and d

◮ that does not contain a negative cost cycle.

◮ Then there exists a simple forward path Q from o to d such that
C (Q) ≤ C (P).

◮ Example: o → 1→ 2→ 1→ 2→ d .

◮ It contains a cycle, with a non negative cost.

◮ Removing the cycle cannot increase the length of the path.

Conclusion: if there is a shortest path, there is a shortest path that is simple.

14 / 60



Lower bound on the length of shortest paths

Corollary

◮ If c ≥ 0, then C (P) ≥ 0.

◮ Otherwise,
C (P) ≥ (m − 1) min

(i ,j)∈A
cij .

15 / 60



Principle of optimality

◮ Consider a network (N ,A),

◮ and two nodes o and d .

◮ Let P = o → i1 → i2 . . . ik → d be a shortest path from o to d .

◮ Then, for any ℓ = 1, . . . , k , the subpath Poℓ = o → . . .→ iℓ is a shortest
path from o to iℓ

◮ and Pℓd = iℓ → . . .→ d is a shortest path from iℓ to d .

16 / 60



Principle of optimality

o ℓ d

17 / 60



The shortest path algorithm

Motivation
◮ We consider here the single origin–all destinations shortest path problem.

◮ The optimality conditions are based on labels associated with each node.

◮ Idea of the algorithm: make sure that the labels verify the optimality
conditions.

◮ The label of node j can be interpreted as the length of the shortest path
identified so far from the origin to node j .

18 / 60



Optimality conditions

λj ≤ λi + cij , ∀(i , j) ∈ A.

λj = λi + cij , ∀(i , j) ∈ P .

19 / 60



Labels

o

i

j

c
ij =

1

20 / 60



Labels

o

i

λi = 3

j

c
ij =

1

21 / 60



Labels

o

i

λi = 3

j

λj = 5

c
ij =

1

λj > λi + cij .

22 / 60



Labels

o

i

λi = 3

j

λj = ❆5 4

c
ij =

1

23 / 60



Idea of the algorithm

For each arc (i , j) in the network, if

λj > λi + cij ,

λj ← λi + cij .

24 / 60



Second idea

Loop on the m nodes instead of the n arcs.
S ← {o}, λo = 0, λj = +∞.

◮ Select i in S.
◮ For each (i , j):

◮ If λj > λi + cij ,
◮ λj ← λi + cij .
◮ If λj < 0 and λj < (m − 1)min(i,j)∈A cij : STOP.
◮ S ← S ∪ {j}.

◮ S ← S \ {i}.

◮ If S = ∅: STOP.

◮ Otherwise, start again.

25 / 60



Example

A

B

C

D

1

1

1

1

-1

S i λA λB λC λD

{A} A 0 ∞ ∞ ∞
{B ,C} B 0 1(A) 1(A) ∞
{C ,D} C 0 1(A) 1(A) 2(B)
{B ,D} B 0 0(C ) 1(A) 2(B)
{D} D 0 0(C ) 1(A) 1(B)
∅ – 0 0(C ) 1(A) 1(B)

26 / 60



Ingredients

Arcs

cij

Nodes

λi

Set of nodes

S

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

27 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If i ∈ S, then λi 6=∞.

◮ True at the very beginning:
Initialization: node o.

◮ When treating node i , λi 6= +∞.

◮ Any other node is inserted after the
update of the label.

28 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

For each node i , the value of λi

does not increase during the
iteration.
Direct consequence of the update
condition

29 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If λi 6=∞, it is the length of one
path from o to i .

◮ Initialization: λo = 0 can be
interpreted that way.

◮ Iteration 1: labels are the length of
the arc = path.

◮ By induction: suppose true before
treating node k .

◮ As k ∈ S, λk 6=∞ .

◮ Therefore, it is the length of a path
(induction assumption).

◮ The iteration adds one arc, if
necessary. 30 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If i 6∈ S, then

◮ λi =∞, or

◮ λj ≤ λi + cij , for all j such
that (i , j) ∈ A.

◮ Two reasons not to be in S .

◮ 1. i has never been treated: +∞.

◮ 2. i has been treated and removed from S.

◮ Just after i has been treated, the inequality is verified.

◮ While i is out of S, the other labels can only decrease, so that
the inequality is verified.

31 / 60



Termination

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

Finite number of iterations.
◮ Termination: S = ∅ .

◮ If not, some nodes are added an
infinite number of times.

◮ Each time, their label has a strictly
lower value.

◮ λi → −∞.

◮ Impossible thanks to the other
stopping criterion.

32 / 60



Termination

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If algorithm terminates with
S = ∅, then λj =∞ if and only if
there is no path from o to j .

◮ Sufficient condition.

◮ Assume by contradiction that there
is a path from o to i .

◮ The algorithm will set all the labels
along the path to a finite number
as λo = 0.

◮ Necessary condition: contrapositive
of the condition: If λi 6=∞, it is
the length of one path from o to i .

33 / 60



Termination

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If algorithm terminates with
S = ∅, then λo = 0.

◮ λo cannot increase: λo ≤ 0.

◮ If λo < 0, there is a cycle with
negative cost.

◮ The algorithm will not stop with
S = ∅.

34 / 60



Termination

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If algorithm terminates with
S = ∅, then if λj 6=∞, then λj is
the length of the shortest path
from o and j .

◮ Consider ℓ. λℓ is the length of a
path Pℓ.

◮ Consider any path Q from o to ℓ:
o → j1 → j2 · · · → ℓ.

◮ C (Q) ≥ λℓ − λo .

◮ As S = ∅, λo = 0, so that
C (Q) ≥ λℓ = C (Pℓ).

35 / 60



Termination

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

If S 6= ∅, choose i ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ If λj < lower bound: STOP,

◮ otherwise S ← S ∪ {j}.

S ← S \ {i}

If algorithm terminates with
S = ∅, then for all j 6= o such
that λj 6=∞

λj = min
(i ,j)∈A

(λi + cij).

As the labels are the length of the
shortest path, they must verify the
optimality conditions:

λj − λi ≤ cij , ∀(i , j) ∈ A.

λj − λi = cij , ∀(i , j) ∈ P .
36 / 60



Bellman’s equation

λj = min
(i ,j)∈A

(λi + cij).

5

1

1

j

2

2

1

3

37 / 60



Bellman’s subnetwork

◮ For each j 6= o, select one (i , j) verifying the equation.

◮ If several, choose just one.

◮ Because m nodes, there will be m − 1 arcs.

◮ Assume that every cycle in the network (if any) has positive length.

◮ Assume that the Bellman subnetwork contains a cycle. Its length is

ci1i2+ci2i3+· · ·+ciℓ−1iℓ+ciℓi1 = λi2−λi1+λi3−λi2+· · ·+λiℓ−λiℓ−1
+λi1−λℓ = 0,

◮ So there is no cycle and it is a tree.

◮ Therefore, there is only one path from o to any i .

◮ As the optimality conditions apply, it is the shortest path.

◮ The subnetwork is called the shortest path tree.

38 / 60



Bellman’s subnetwork

0 7 8 9

1 6 14 10

2 5 13 11

3 4 12 12

8

1

1 1

1

8

1

8

1

8

8

1

8

1

8

1

8

8

1

1 8

1

8

8

39 / 60



Dijkstra’s algorithm

Motivation
◮ In many applications, the cost on the arcs are all non negative.

◮ In that case, the shortest path algorithm can be designed to be efficient.

◮ In particular, it is possible to guarantee that each node will be treated at
most once.

◮ This version of the algorithm is called Dijkstra’s algorithm, from the name of
a Dutch researcher.

40 / 60



Non negative costs

Cycles

◮ No cycle with negative cost.

◮ No need to check if the problem is unbounded.

41 / 60



Node selection

Select the node in S with the smallest label.

42 / 60



Algorithm

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

Choose i ∈ S such that λi ≤ λj , for all j ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ S ← S ∪ {j}.

S ← S \ {i}

43 / 60



Permanent labels

T = {i |λi 6=∞ and i 6∈ S}.

44 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

Choose i ∈ S such that λi ≤ λj ,
for all j ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ S ← S ∪ {j}.

S ← S \ {i}

If i ∈ T and j 6∈ T , then λi ≤ λj .

◮ First iteration: o is the only node
to be treated.

◮ For all j updated:
λj = coj ≥ 0 = λo .

◮ Iteration treating ℓ 6∈ T : assume
property holds, and λℓ ≤ λj∀j 6∈ T .

◮ Treat arc (ℓ,m), m ∈ T :
λm ≤ λℓ + cℓm. No update (see
next property).

◮ arc (ℓ,m) m 6∈ T : if updated
λm = λℓ + cℓm. As λℓ was larger
than any label in T , the same holds45 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

Choose i ∈ S such that λi ≤ λj ,
for all j ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ S ← S ∪ {j}.

S ← S \ {i}

If i ∈ T at the beginning of the
iteration, then the label λi is not
modified during the iteration.
Was shown before

46 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

Choose i ∈ S such that λi ≤ λj ,
for all j ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ S ← S ∪ {j}.

S ← S \ {i}

If i ∈ T at the beginning of the
iteration, then i 6∈ S at the end
of the iteration.
Corollary of the previous result

47 / 60



At the end of each iteration

Initialization
◮ λo ← 0,

◮ λi ← +∞ ∀i ∈ N , i 6= o,

◮ S ← {o}.

Choose i ∈ S such that λi ≤ λj ,
for all j ∈ S
∀(i , j), if λj > λi + cij

◮ λj ← λi + cij ,

◮ S ← S ∪ {j}.

S ← S \ {i}

If i ∈ T , then λi is the length of
the shortest path from o to i .

◮ Because the label is permanent.

◮ This is the interpretation at the end
of the algorithm. The value will be
the same.

48 / 60



Longest path

Motivation
◮ In optimization, we can change a minimization problem into a maximization

problem.

◮ We analyze the implications for the longest path problem.

49 / 60



Definition

Shortest path problem
Find a simple forward path between o

and d with the minimal cost.
1

2

3

4

5

6

1

10

1

10

1

10

10
10

Longest path problem
Find a simple forward path between o

and d with the maximal cost.
1

2

3

4

5

6

1

10

1

10

1

10

10
10

50 / 60



Transhipment problem

max
x∈Rn

∑

(i ,j)∈A

cijxij⇐⇒ min
x∈Rn
−

∑

(i ,j)∈A

cijxij =
∑

(i ,j)∈A

(−cij)xij .

51 / 60



Risk of negative cycle

1

2

3

4

5

6

−1

−10

−1

−10

−1

−10

−10

−1
0

52 / 60



Program Evaluation and Review Technique

Motivation
◮ We consider an application that can be modeled as a longest path problem,

with a network without any cycle.

◮ In that case, the problem can be solved using the shortest path algorithm on
the network where the signs of the costs are changed.

53 / 60



PERT

Program Evaluation and Review Technique

◮ Project composed m tasks.

◮ Each task has a duration.

◮ Each task has a list of predecessors.

◮ What is the minimum duration of
the project?

◮ What are the tasks that do not
tolerate any delay without delaying
the project?

54 / 60



PERT

Program Evaluation and Review Technique

◮ Project composed m tasks.

◮ Each task has a duration.

◮ Each task has a list of predecessors.

◮ What is the minimum duration of
the project?

◮ What are the tasks that do not
tolerate any delay without delaying
the project?

Example: prepare a pizza

1. Buy the ingredients (30 minutes).

2. Prepare the sauce (20 minutes) [1].

3. Prepare the dough (4 hours) [1].

4. Bake (12 minutes) [2,3].
54 / 60



Network

One node per task

1

Buy

2

Sauce

3

Dough

4

Bake

55 / 60



Network

Begin and end

o

Begin

1

Buy

2

Sauce

3

Dough

4

Bake

d

End

56 / 60



Network

One arc per precedence

o

Begin

1

Buy

2

Sauce

3

Dough

4

Bake

d

End

57 / 60



Network

Cost on arc: task duration

o

Begin

1

Buy

2

Sauce

3

Dough

4

Bake

d

End
0

30

30

20

240

12

58 / 60



Longest path
◮ What is the minimum duration of the project?

◮ What are the tasks that do not tolerate any delay without delaying the
project?

o

Begin

1

Buy

2

Sauce

3

Dough

4

Bake

d

End
0

30

30

20

240

12

59 / 60



Summary

◮ Principle of optimality.

◮ Dual algorithm based on complementarity slackness conditions.

◮ Converges if there is no cycle with negative cost.

◮ Properties: interpretation of the dual variables.

◮ Bellman’s equation.

◮ Bellman’s subnetwork and the shortest path tree.

◮ Special case: Dijkstra.

◮ The longest path problem and PERT.

60 / 60


