
Nonlinear optimization
without constraints

Michel Bierlaire

Introduction to optimization and operations research

1 / 119

Nonlinear optimization

Problem definition

min
x∈Rn

f (x)

where f is twice differentiable and bounded from below:

∃M ∈ R such that f (x) ≥ M , ∀x ∈ R
n.

2 / 119

Fermat’s theorem

Theorem 5.1
◮ x∗ is a local minimum of f : Rn → R.

◮ If f is differentiable around x∗, then

∇f (x∗) = 0.

◮ If f is twice differentiable around x∗, then

∇2f (x∗) ≥ 0 [positive semidefinite].

3 / 119

Solving one equation with one variable

Motivation
◮ Optimization algorithms rely on solving systems of equations given by

optimality conditions.

◮ Systems of linear equations can be solved by Gaussian elimination.

◮ Systems of nonlinear equations can be solved using Newton’s method.

◮ We remind this method on the simple case of one equation and one variable.

4 / 119

Example

1 1.2 1.4 1.6 1.8 2

−1

0

1

2

x

F
(x
)
=

x
2
−

2

5 / 119

Example

1 1.2 1.4 1.6 1.8 2

−1

0

1

2

x

F
(x
)
=

x
2
−

2

6 / 119

Example

1 1.2 1.4 1.6 1.8 2

−1

0

1

2

x

F
(x
)
=

x
2
−

2

7 / 119

Example

1 1.2 1.4 1.6 1.8 2

−1

0

1

2

x

F
(x
)
=

x
2
−

2

8 / 119

Example

1 1.2 1.4 1.6 1.8 2

−1

0

1

2

x

F
(x
)
=

x
2
−

2

9 / 119

Example

1 1.2 1.4 1.6 1.8 2

−1

0

1

2

x

F
(x
)
=

x
2
−

2

10 / 119

Iterations

k xk F (xk) F ′(xk)
0 +2.00000000E+00 +2.00000000E+00 +4.00000000E+00

1 +1.50000000E+00 +2.50000000E-01 +3.00000000E+00

2 +1.41666667E+00 +6.94444444E-03 +2.83333333E+00

3 +1.41421569E+00 +6.00730488E-06 +2.82843137E+00

4 +1.41421356E+00 +4.51061410E-12 +2.82842712E+00

5 +1.41421356E+00 +4.44089210E-16 +2.82842712E+00

11 / 119

Speed of convergence

◮ Fast method.

◮ The precision doubles at each
iteration.

12 / 119

Linear model

Taylor’s theorem

F : R→ R differentiable

mx̂(x) = F (x̂) + (x − x̂)F ′(x̂)

Example

F (x) = x2 − 2F ′(x) = 2x

x̂ = 2 : mx̂(x) = 2 + 4(x − 2)

13 / 119

Example

1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

x

F (x) = x2 − 2
mx̂(x) = 2 + 4(x − 2)

14 / 119

Algorithm

At each iteration, find xk+1 that solves

F (xk) + (x − xk)F
′(xk) = 0

(xk+1 − xk)F
′(xk) = −F (xk)

xk+1 − xk = −F (xk)/F
′(xk)

xk+1 = xk − F (xk)/F
′(xk)

15 / 119

Another example

−4 −2 0 2 4

−1

0

1

x0

x

F
(x
)
=

ar
ct
an
(x
)

16 / 119

Another example

−4 −2 0 2 4

−1

0

1

2

x0x1

x

F
(x
)
=

ar
ct
an
(x
)

17 / 119

Another example

−4 −2 0 2 4

−2

−1

0

1

x0x1 x2

x

F
(x
)
=

ar
ct
an
(x
)

18 / 119

Another example

−4 −2 0 2 4

−1

0

1

x0x1 x2x3

x

F
(x
)
=

ar
ct
an
(x
)

19 / 119

Convergence

◮ The method is fast...

◮ but does not always converge.

◮ Several conditions have to be met.

20 / 119

Convergence

Motivation
◮ We have seen that Newton’s method, when it converges, does so fast.

◮ But it does not always converge.

◮ We see now in what circumstances it converges, and quantify its speed.

◮ Then, we generalize the method for systems of equations.

21 / 119

Conditions

F is not too non linear
F ′ is Lipschitz continuous, with Lipschitz constant M .

∃M > 0 such that ∀x , y , |F ′(x)− F ′(y)| ≤ M |x − y |.

22 / 119

Conditions

F is not too non linear
F ′ is Lipschitz continuous, with Lipschitz constant M .

∃M > 0 such that ∀x , y , |F ′(x)− F ′(y)| ≤ M |x − y |.

F ′ is not too close to 0

∃ρ > 0 such that |F ′(x)| ≥ ρ, ∀x .

22 / 119

Conditions

F is not too non linear
F ′ is Lipschitz continuous, with Lipschitz constant M .

∃M > 0 such that ∀x , y , |F ′(x)− F ′(y)| ≤ M |x − y |.

F ′ is not too close to 0

∃ρ > 0 such that |F ′(x)| ≥ ρ, ∀x .

x0 is not too far from the solution

∃η > 0 such that |x0 − x∗| < η.

22 / 119

Convergence

Theorem 7.7
Consider the sequence of iterates:

xk+1 = xk −
F (xk)

F ′(xk)
, k = 0, 1, . . . ,

◮ it is well defined,

◮ limk→∞ xk = x∗,

◮ it converges q-quadratically:

|xk+1 − x∗| ≤
M

2ρ

∣∣xk − x∗
∣∣2 .

23 / 119

Extension to n variables

Problem statement

F : Rn → R
n differentiable

Find x ∈ R
n such that

F (x) = 0.

24 / 119

Reminder

F : Rn → R
n

Gradient matrix

∇F (x) =


 ∇F1(x) · · · ∇Fn(x)




=




∂F1

∂x1

∂F2

∂x1
· · ·

∂fn
∂x1

...
...

...
...

∂F1

∂xn

∂F2

∂xn
· · ·

∂Fn

∂xn




.

Jacobian matrix

J(x) = ∇F (x)T

=




∇F1(x)
T

...
∇Fn(x)

T


 .

25 / 119

Linear model

mx̂(x) = F (x̂) +∇F
(
x̂
)T

(x − x̂) = F (x̂) + J(x̂)(x − x̂)

26 / 119

Iterations

xk+1 = xk + dk

where
J(xk)dk = −F (xk).

27 / 119

Solving the necessary optimality conditions

Motivation
◮ The necessary optimality condition stipulates that, at a local optimum, the

gradient is zero.

◮ The first algorithm consists in solving the system of equations ∇f (x) = 0 in
order to find a stationary point...

◮ ... using Newton’s method.

28 / 119

Newton’s method

Equations

Problem

F (x) = 0

Algorithm

xk+1 = xk + dk

where dk is solution of

J(xk)dk = −F (xk).

Optimization

Problem

∇f (x) = 0

Algorithm

xk+1 = xk + dk

where dk is solution of

∇2f (xk)dk = −∇f (xk).

29 / 119

Example

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

−2

0

2

x1

x2

1 2
x
2 1
+
x 1

co
s
x 2

30 / 119

Example: fast convergence

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

−2

0

2

x1

x2

1 2
x
2 1
+
x 1

co
s
x 2

31 / 119

Iterations

k xk ∇f (xk)
∥∥∇f (xk)

∥∥ f (xk)

0 1.00000000e+00 1.54030230e+00 1.75516512e+00 1.04030231e+00

1.00000000e+00 -8.41470984e-01
1 -2.33845128e-01 -2.87077027e-02 2.30665381e-01 7.53121618e-02

1.36419220e+00 2.28871986e-01

2 1.08143752e-02 -3.22524807e-03 1.12840544e-02 -9.33543838e-05

1.58483641e+00 -1.08133094e-02
3 -2.13237666e-06 9.22828706e-07 2.32349801e-06 8.79175320e-12

1.57079327e+00 2.13237666e-06

4 1.99044272e-17 8.11347449e-17 8.35406072e-17 1.35248527e-25

1.57079632e+00 -1.99044272e-17

32 / 119

Solution

Variables

x∗ =

(
0

π/2

)

First derivatives

∇f (x∗) =

(
0
0

)

Second derivatives

∇2f (x∗) =

(
1 −1
−1 0

)

λ1 = −0.61803, λ2 = 1.61803

33 / 119

Saddle point

−0.4
−0.2 0

0.2
0.4

1.2

1.4

1.6

1.8

2

−0.4

−0.2

0

0.2

0.4

x1

x2

1 2
x
2 1
+
x 1

co
s
x 2

34 / 119

Geometric interpretation

Motivation
◮ In the context of equations, Newton’s method uses at each iteration a linear

model of the function.

◮ In the context of optimization, it uses a linear model of the gradient of the
objective function.

◮ Equivalently, it uses a quadratic model of the objective function.

35 / 119

Quadratic model

f : Rn → R twice differentiable

mx̂(x) = f (x̂) + (x − x̂)T∇f (x̂) +
1

2
(x − x̂)T∇2f (x̂)(x − x̂)

36 / 119

Example

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

37 / 119

Example: xk = 2.5

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

38 / 119

Example: xk = 2.5

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

39 / 119

Example: xk = 3.636

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

40 / 119

Example: xk = 3.636

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

41 / 119

Example: xk = 3.636

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

42 / 119

Example: xk = 4

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

43 / 119

Example: xk = 4

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

44 / 119

Example: xk = 5

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

45 / 119

Example: xk = 5

1 2 3 4 5 6

−10

0

10

20

x

f
(x
)
=
−
x
4
+
12

x
3
−
47

x
2
+
60

x

46 / 119

Newton’s point

◮ f : Rn → R twice differentiable

◮ xk ∈ R
n such that ∇2f (xk) > 0

The Newton’s point of f at xk is

xN = xk + dN ,

where dN verifies Newton’s equations:

∇2f (xk)dN = −∇f (xk) .

47 / 119

Cauchy’s point

◮ f : Rn → R twice differentiable

◮ xk ∈ R
n such that ∇f (xk)

T∇2f (xk)∇f (xk) > 0

The Cauchy point of f at xk is

xC = xk − αC∇f (xk) ,

where

αC =
∇f (xk)

T∇f (xk)

∇f (xk)T∇2f (xk)∇f (xk)
.

48 / 119

Preconditioned steepest descent

Motivation
◮ A general idea to minimize a function consists in

◮ finding a direction along which the function decreases,
◮ follow that direction to find a point with a lower value of the objective

function.

◮ This family of methods is called descent methods.

◮ A natural direction to follow is the negative gradient, as it is the steepest
descent direction.

49 / 119

Example

−10
−5

0
5

10−10

0

10

0

200

400

x1

x2

1 2
x
2 1
+

9 2
x
2 2

50 / 119

Example

−10
−5

0
5

10−10

0

10

0

200

400

x1

x2

1 2
x
2 1
+

9 2
x
2 2

51 / 119

Example

−10
−5

0
5

10
−1

0

1

0

50

x1

x2

1 2
x
2 1
+

9 2
x
2 2

52 / 119

Example

−10
−5

0
5

10
−1

0

1

0

50

x1

x2

1 2
x
2 1
+

9 2
x
2 2

53 / 119

Example

−10
−5

0
5

10
−1

0

1

0

50

x1

x2

1 2
x
2 1
+

9 2
x
2 2

54 / 119

Example

−10
−5

0
5

10
−1

0

1

0

50

x1

x2

1 2
x
2 1
+

9 2
x
2 2

55 / 119

Example

−10
−5

0
5

10
−1

0

1

0

50

x1

x2

1 2
x
2 1
+

9 2
x
2 2

56 / 119

Iterations

k (xk)1 (xk)2 ∇f (xk)1 ∇f (xk)2 αk f (xk)

0 +9.000000E+00 +1.000000E+00 +9.000000E+00 +9.000000E+00 0.2 +4.500000E+01

1 +7.200000E+00 -8.000000E-01 +7.200000E+00 -7.200000E+00 0.2 +2.880000E+01

2 +5.760000E+00 +6.400000E-01 +5.760000E+00 +5.760000E+00 0.2 +1.843200E+01

3 +4.608000E+00 -5.120000E-01 +4.608000E+00 -4.608000E+00 0.2 +1.179648E+01

4 +3.686400E+00 +4.096000E-01 +3.686400E+00 +3.686400E+00 0.2 +7.549747E+00

5 +2.949120E+00 -3.276800E-01 +2.949120E+00 -2.949120E+00 0.2 +4.831838E+00

.

.

.
50 +1.284523E-04 +1.427248E-05 +1.284523E-04 +1.284523E-04 0.2 +9.166662E-09

51 +1.027618E-04 -1.141798E-05 +1.027618E-04 -1.027618E-04 0.2 +5.866664E-09

52 +8.220947E-05 +9.134385E-06 +8.220947E-05 +8.220947E-05 0.2 +3.754665E-09

53 +6.576757E-05 -7.307508E-06 +6.576757E-05 -6.576757E-05 0.2 +2.402985E-09

54 +5.261406E-05 +5.846007E-06 +5.261406E-05 +5.261406E-05 0.2 +1.537911E-09

55 +4.209125E-05 -4.676805E-06 +4.209125E-05 -4.209125E-05 0.2 +9.842628E-10

57 / 119

Preconditioning

Original problem

min
x∈R2

f (x) =
1

2
x21 +

9

2
x22

Change of variables

x ′1 = x1

x ′2 = 3x2.

f̃ (x ′) =
1

2
x ′1

2
+

9

2

(
1

3
x ′2

)2

=
1

2
x ′1

2
+

1

2
x ′2

2
.

58 / 119

Preconditioning

−10
−5

0
5

10−10

0

10

0

50

100

x1

x2

1 2
(x

′ 1
)2
+

1 2
(x

′ 2
)2

59 / 119

Preconditioning

◮ Hk symmetric positive definite.

◮ Hk = LkL
T

k

◮ Change of variables:

x ′ = LT
k
x

◮ Steepest descent iteration:

x ′
k+1 = x ′

k
− αk∇f̃ (x

′

k
)

f̃ (x ′) = f (L−T

k
x ′)

∇f̃ (x ′) = L−1
k
∇f (L−T

k
x ′)

x ′
k+1 = x ′

k
− αkL

−1
k
∇f (L−T

k
x ′
k
) .

LT
k
xk+1 = LT

k
xk − αkL

−1
k
∇f (xk)

xk+1 = xk − αkL
−T

k
L−1
k
∇f (xk)

xk+1 = xk − αkH
−1
k
∇f (xk) .

60 / 119

Preconditioned steepest descent

xk+1 = xk + αkdk

with
dk = −Dk∇f (xk) .

Preconditioner
Symmetric positive definite matrix. For instance,

Dk = H−1
k

.

Descent direction

∇f (xk)
Tdk= −∇f (xk)

TDk∇f (xk) < 0.

61 / 119

Inexact line search

Motivation
◮ Finding a local optimum along a direction takes a large effort, that may not

be justified, as it has to be done at each iteration.

◮ What about choosing any step that would decrease the function?

◮ We first show that this does not always work.

◮ And then we propose something similar, that works.

62 / 119

General idea

f : Rn → R, xk ∈ R
n, dk ∈ R

n, ∇f (xk)
Tdk < 0.

xk+1 = xk + αkdk ,

where αk is such that
f (xk+1) < f (xk).

63 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

f (x) = x2

x0 = 2

dk = − sgn(xk)

αk = 2 + 3(2−k−1) .

64 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

65 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

1 -1.500000e+00 1 +2.750000e+00

66 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

1 -1.500000e+00 1 +2.750000e+00

2 +1.250000e+00 -1 +2.375000e+00

67 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

1 -1.500000e+00 1 +2.750000e+00

2 +1.250000e+00 -1 +2.375000e+00

3 -1.125000e+00 1 +2.187500e+00

68 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

1 -1.500000e+00 1 +2.750000e+00

2 +1.250000e+00 -1 +2.375000e+00

3 -1.125000e+00 1 +2.187500e+00

4 +1.062500e+00 -1 +2.093750e+00

69 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

1 -1.500000e+00 1 +2.750000e+00

2 +1.250000e+00 -1 +2.375000e+00

3 -1.125000e+00 1 +2.187500e+00

4 +1.062500e+00 -1 +2.093750e+00

5 -1.031250e+00 1 +2.046875e+00

70 / 119

Example: one dimension

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

k xk dk αk

0 +2.000000e+00 -1 +3.500000e+00

1 -1.500000e+00 1 +2.750000e+00

2 +1.250000e+00 -1 +2.375000e+00

3 -1.125000e+00 1 +2.187500e+00

4 +1.062500e+00 -1 +2.093750e+00

5 -1.031250e+00 1 +2.046875e+00

.

.

.
46 +1.000000e+00 -1 +2.000000e+00

47 -1.000000e+00 1 +2.000000e+00

48 +1.000000e+00 -1 +2.000000e+00

49 -1.000000e+00 1 +2.000000e+00

50 +1.000000e+00 -1 +2.000000e+00

71 / 119

Example: one dimension

xk = (−1)k(1 + 2−k)

|xk+1| < |xk | therefore x2
k+1 < x2

k
and f (xk+1) < f (xk).

lim
k→∞

xk does not exists

Two subsequences converging to -1 and 1.

72 / 119

Intuition

◮ Descent direction is a local
concept.

◮ It assumes small steps.

73 / 119

Intuition

◮ Descent direction is a local
concept.

◮ It assumes small steps.

◮ When steps are too long,
Taylor’s theorem does not
apply anymore.

73 / 119

Intuition

◮ Descent direction is a local
concept.

◮ It assumes small steps.

◮ When steps are too long,
Taylor’s theorem does not
apply anymore.

◮ Even ascent directions can
decrease the function with
long steps.

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

x

f
(x
)
=

si
n
(x
)

73 / 119

Intuition

◮ Descent direction is a local
concept.

◮ It assumes small steps.

◮ When steps are too long,
Taylor’s theorem does not
apply anymore.

◮ Even ascent directions can
decrease the function with
long steps.

◮ Solution: avoid long steps. −6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

x

f
(x
)
=

si
n
(x
)

73 / 119

Second example

f (x) = x2

x0 = 2

dk = −1

αk = 2−k−1

xk = 1 + 2−k > 0

xk+1 < xk ⇐⇒ f (xk+1) < f (xk)

lim
k→∞

xk = 1

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

74 / 119

Intuition

◮ Steps become smaller and
smaller:

lim
k→∞

αk = lim
k→∞

2−k−1 = 0.

◮ Although αk > 0, almost
no progress can be made.

◮ Solution: avoid short steps.

−2 −1 0 1 2

0

1

2

3

4

x

f
(x
)
=

x
2

75 / 119

First Wolfe condition

Motivation
◮ Our objective is to identify potential steps that can be done along a descent

direction.

◮ We saw that the algorithm may fail to converge if the steps are too long.

◮ We provide here a characterization of the concept of “being too long”.

76 / 119

First idea

f : Rn → R, xk ∈ R
n, dk ∈ R

n, ∇f (xk)
Tdk < 0.

Require a decrease proportional to the step

f (xk)− f (xk + αkdk) ≥ αkγ ,

or
f (xk + αkdk) ≤ f (xk)− αkγ ,

with
γ > 0.

77 / 119

Decrease proportional to the step

−10
−5

0
5

10−10

−5

0

5

10

0

200

400

x1

x2

1 2
x
2 1
+

9 2
x
2 2

0 1 2 3 4 5

40

50

60

α

f (xk + αdk)
f (xk)− αγ, γ = 6

78 / 119

But...

−10
−5

0
5

10−10

−5

0

5

10

0

200

400

x1

x2

1 2
x
2 1
+

9 2
x
2 2

0 1 2 3 4 5

40

50

60

α

f (xk + αdk)
f (xk)− αγ, γ = 6

79 / 119

Second idea

80 / 119

More formally

f : Rn → R, xk ∈ R
n, dk ∈ R

n, ∇f (xk)
Tdk < 0.

Choose γ according to the slope:

γ = −β1∇f (xk)
Tdk , 0 < β1 < 1

81 / 119

First Wolfe condition

f (xk + αkdk) ≤ f (xk)− αkγ,

γ = −β1∇f (xk)
Tdk .

f (xk + αkdk) ≤ f (xk) + αkβ1∇f (xk)
Tdk .

82 / 119

Extreme cases are excluded

β1 = 0

f (xk + αkdk) ≤ f (xk).

β1 = 1

f (xk + αkdk) ≤ f (xk) + αk∇f (xk)
Tdk .

83 / 119

β1 = 0.01

0 1 2 3 4 5

40

50

60

70

α

f (xk + αdk)

f (xk) + α∇f (xk)
Tdk

f (xk) + αβ1∇f (xk)
Tdk

84 / 119

β1 = 0.8

0 1 2 3 4 5

40

50

60

70

α

f (xk + αdk)

f (xk) + α∇f (xk)
Tdk

f (xk) + αβ1∇f (xk)
Tdk

85 / 119

Second Wolfe condition

Motivation
◮ Our objective is to identify valid steps along a descent direction.

◮ We have first identified a condition that prohibits steps that are too long.

◮ We are now deriving a condition that prohibits steps that are too short.

86 / 119

Main idea

f : Rn → R, xk ∈ R
n, dk ∈ R

n, ∇f (xk)
Tdk < 0.

87 / 119

Main idea

f : Rn → R, xk ∈ R
n, dk ∈ R

n, ∇f (xk)
Tdk < 0.

Directional derivative along xk + αdk
◮ At α = 0:

∇f (xk)
Tdk < 0.

◮ At α∗, first local minimum:

∇f (xk + α∗dk)
Tdk = 0.

◮ If we reach α∗, the directional derivative increases by ∇f (xk)
Tdk .

87 / 119

Directional derivative

0 1 2 3 4 5

40

50

60

70

α

f
(x

k
+
α
d
k
)

0 1 2 3 4 5

−10

−5

0

5

α

∇
f
(x

k
+
α
d
k
)T
d
k

88 / 119

Second Wolfe condition

Relative reduction of the derivative

∇f (xk + αkdk)
Tdk

∇f (xk)Tdk
≤ β2

with 0 < β2 < 1.

Sufficient progress

∇f (xk + αkdk)
Tdk ≥ β2∇f (xk)

Tdk

as ∇f (xk)
Tdk < 0.

89 / 119

Sufficient progress

0 1 2 3 4 5

40

50

60

70

α

f
(x

k
+
α
d
k
)

0 1 2 3 4 5

−0.5

0

0.5

1

α

∇
f
(x

k
+
α
d
k
)T

d
k

∇
f
(x

k
)T

d
k

90 / 119

β2 close to 0: larger steps

0 1 2 3 4 5

40

50

60

70

α

f
(x

k
+
α
d
k
)

0 1 2 3 4 5

−0.5

0

0.5

1

α

∇
f
(x

k
+
α
d
k
)T

d
k

∇
f
(x

k
)T

d
k

91 / 119

β2 close to 1: smaller steps

0 1 2 3 4 5

40

50

60

70

α

f
(x

k
+
α
d
k
)

0 1 2 3 4 5

−0.5

0

0.5

1

α

∇
f
(x

k
+
α
d
k
)T

d
k

∇
f
(x

k
)T

d
k

92 / 119

Validity of the Wolfe conditions

Motivation
◮ First Wolfe condition forbids steps that are too long.

◮ Second Wolfe condition forbids steps that are too short.

◮ How do we guarantee that there exists steps that verify both?

93 / 119

Wolfe conditions

First Wolfe condition

f (xk + αkdk) ≤ f (xk) + αkβ1∇f (xk)
Tdk ,

0 < β1 < 1.

94 / 119

Wolfe conditions

First Wolfe condition

f (xk + αkdk) ≤ f (xk) + αkβ1∇f (xk)
Tdk ,

0 < β1 < 1.

Second Wolfe condition

∇f (xk + αkdk)
Tdk

∇f (xk)Tdk
≤ β2,

0 < β2 < 1.

94 / 119

Compatibility of the Wolfe conditions

Theorem 11.9
◮ If f is bounded from below along dk ,

◮ if 0 < β1 < β2 < 1,

◮ there exists α > 0 verifying both conditions.

95 / 119

First Wolfe condition

◮ As dk is a descent direction,

◮ ∃η such that Wolfe 1 is verified for αk ≤ η.

◮ See Theorem 2.11.

96 / 119

Validity of the conditions

0 1 2 3 4 5

35

40

45

50

55

α

97 / 119

Ideas of the proof
See Figure 11.15 p. 273

◮ Start with the line: f (xk) + αβ1∇f (xk)
Tdk

◮ α1: intersection between the line and the function.

◮ α1 exists because the function is bounded from below.

◮ All α ≤ α1 verify Wolfe 1.

◮ α2: mean value theorem (tangent with same slope). Verifies Wolfe 1.

◮ As the slope is defined by β1, we have

β1∇f (xk)
Tdk = ∇f (xk + α2dk)

Tdk

so that

β1 =
∇f (xk + α2dk)

Tdk

∇f (xk)Tdk

◮ If β2 > β1, α2 verifies Wolfe 2.
98 / 119

Linesearch algorithm

Initialize: i ← 0, αℓ ← 0, αr ← +∞.
1 repeat

2 if αi violates Wolfe 1 then the step is too long
3 αr ← αi ,

4 αi+1 ←
αℓ + αr

2
.

5 if αi does not violate Wolfe 1 but violates Wolfe 2 then the step is too short
6 αℓ ← αi .
7 if αr < +∞, then

8 αi+1 ←
αℓ + αr

2
9 else

10 αi+1 ← 10αi .

11 i ← i + 1.

12 until αi satisfies Wolfe 1 and 2

13 α∗ ← αi .
99 / 119

Finiteness of the line search algorithm

Motivation
◮ The linesearch algorithm is quite simple:

1. Start with a candidate step.
2. If it is too long, make it shorter.
3. If it is too short, make it longer.

◮ We now need to verify that this process finishes in a finite number of steps.

100 / 119

Wolfe conditions

First Wolfe condition

f (xk + αkdk) ≤ f (xk) + αkβ1∇f (xk)
Tdk .

Second Wolfe condition

∇f (xk + αkdk)
Tdk ≥ β2∇f (xk)

Tdk .

Parameters

0 < β1 < β2 < 1.

101 / 119

Line search algorithm

Initialization

αi

ℓ

αi

102 / 119

Line search algorithm

Initialization

αi

ℓ

αi

Wolfe 1 violated: step too long

αi+1
ℓ

αi+1
r

αi+1

102 / 119

Line search algorithm

Initialization

αi

ℓ

αi

Wolfe 1 violated: step too long

αi+1
ℓ

αi+1
r

αi+1

Wolfe 2 violated: step too short

αi+2
rαi+2

ℓ

αi+2

102 / 119

Line search algorithm

Special case

◮ If the step is too short (Wolfe 2 violated), and

◮ αr =∞,

◮ then increase the step by an arbitrary factor λ > 1:

αi+1 = λαi .

103 / 119

Properties

αi
ℓ

always verifies Wolfe 1 : it is updated only when Wolfe 1 is verified and Wolfe 2
is violated.

104 / 119

Properties

αi
ℓ

always verifies Wolfe 1 : it is updated only when Wolfe 1 is verified and Wolfe 2
is violated.

αi
ℓ

always violates Wolfe 2 for the same reason.

104 / 119

Properties

αi
ℓ

always verifies Wolfe 1 : it is updated only when Wolfe 1 is verified and Wolfe 2
is violated.

αi
ℓ

always violates Wolfe 2 for the same reason.

αi
r

always violates Wolfe 1 : starts from ∞ and updated when Wolfe 1 is violated.

104 / 119

Finiteness of αi

Arguments

◮ Suppose, by contradiction, that αi →∞.

◮ It means that αi

r
is always +∞.

◮ As αi

r
would be updated when Wolfe 1 is violated, it means that Wolfe 1 is

never violated.

◮ Impossible, as the function is bounded from below.

105 / 119

Finiteness of αi

Arguments

◮ Suppose, by contradiction, that αi →∞.

◮ It means that αi

r
is always +∞.

◮ As αi

r
would be updated when Wolfe 1 is violated, it means that Wolfe 1 is

never violated.

◮ Impossible, as the function is bounded from below.

Consider only iterations when αi

r
<∞.

αi+1 =
αi

ℓ
+ αi

r

2
.

105 / 119

Finite number of iterations

Theorem 11.10
◮ Suppose, by contradiction, that there is an infinite number of iterations.

◮ Therefore,
lim
i→∞

αi

r
− αi

ℓ
= 0.

◮ Consequently,
α∗ = lim

i→∞

αi

r
= lim

i→∞

αi

ℓ
= lim

i→∞

αi .

106 / 119

Finite number of iterations

Theorem 11.10
◮ Wolfe 1 is verified for all αi

ℓ
. At the limit:

f (xk + α∗dk) ≤ f (xk) + α∗β1∇f (xk)
Tdk .

◮ Wolfe 1 is violated by all αi

r
. Therefore α∗ 6= αi

r
.

f (xk + αi

r
dk) > f (xk) + αi

r
β1∇f (xk)

Tdk .

At the limit
f (xk + α∗dk) ≥ f (xk) + α∗β1∇f (xk)

Tdk .

107 / 119

Finite number of iterations

Theorem 11.10

f (xk + α∗dk) = f (xk) + α∗β1∇f (xk)
Tdk .

◮ Wolfe 1 is violated by all αi

r
. Therefore αi

r
− α∗ > 0.

f (xk + αi

r
dk) > f (xk) + αi

r
β1∇f (xk)

Tdk .

f (xk + αi

r
dk) > f (xk + α∗dk)− α∗β1∇f (xk)

Tdk + αi

r
β1∇f (xk)

Tdk .

f (xk + αi

r
dk) > f (xk + α∗dk) + (αi

r
− α∗)β1∇f (xk)

Tdk .

f (xk + αi

r
dk)− f (xk + α∗dk)

αi
r
− α∗

> β1∇f (xk)
Tdk .

108 / 119

Finite number of iterations

f (xk + αi

r
dk)− f (xk + α∗dk)

αi
r
− α∗

> β1∇f (xk)
Tdk .

i →∞ : ∇f (xk + α∗dk)
Tdk ≥ β1∇f (xk)

Tdk .

As β2 > β1 and ∇f (xk)
Tdk < 0, we have

∇f (xk + α∗dk)
Tdk > β2∇f (xk)

Tdk .

109 / 119

Finite number of iterations

Current result

∇f (xk + α∗dk)
Tdk > β2∇f (xk)

Tdk .

αi
ℓ
violates Wolfe 2

∇f (xk + αi

ℓ
dk)

Tdk < β2∇f (xk)
Tdk , ∀i .

At the limit

∇f (xk + α∗dk)
Tdk ≤ β2∇f (xk)

Tdk .

Contradiction

110 / 119

Newton method with line search

Motivation
◮ We now go back to Newton’s method.

◮ We have seen that, when it works, it converges fast.

◮ But it does not always work.

◮ Let’s combine it with the descent methods framework to obtain an efficient
algorithm.

111 / 119

Comparison

Descent method

xk+1 = xk − αkDk∇f (xk).

Newton’s method

xk+1 = xk −∇
2f (xk)

−1∇f (xk).

112 / 119

Comparison

Descent method

xk+1 = xk − αkDk∇f (xk).

Newton’s method

xk+1 = xk −∇
2f (xk)

−1∇f (xk).

Newton’s method is a descent method
◮ if αk = 1,

◮ if Dk = ∇2f (xk)
−1 is positive definite.

112 / 119

Modifications

If ∇2f (xk)
−1 not positive definite

Choose another Dk :

◮ Dk = I : bad idea. Slow convergence of steepest descent.

◮ Dk diagonal:

Dk(i , i) = max

(
ε,

∂f 2

∂x2
i

(xk)

)−1

,

with ε > 0.

◮ Inflating ∇2f (xk):
Dk = (∇2f (xk) + τ I)−1,

where τ is calculated such that Dk is positive definite.

113 / 119

Modifications

If αk = 1 is not consistent with Wolfe conditions
Apply the line search algorithm.

114 / 119

Example: Newton’s method

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

−3

−2

−1

0

1

2

x1

x2

1 2
x
2 1
+
x 1

co
s
x 2

115 / 119

Example: Modified Newton’s method

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 −5

0

5

−3

−2

−1

0

1

2

x1

x2

1 2
x
2 1
+
x 1

co
s
x 2

116 / 119

Iterations

k f (xk)
∥∥∇f (xk)

∥∥ αk τ

0 1.04030231e+00 1.75516512e+00

1 2.34942031e-01 8.88574897e-01 1 1.64562250e+00

2 4.21849003e-02 4.80063696e-01 1 1.72091923e+00

3 -4.52738278e-01 2.67168927e-01 3 8.64490594e-01

4 -4.93913638e-01 1.14762780e-01 1 0.00000000e+00

5 -4.99982955e-01 5.85174623e-03 1 0.00000000e+00

6 -5.00000000e-01 1.94633135e-05 1 0.00000000e+00

7 -5.00000000e-01 2.18521663e-10 1 0.00000000e+00

8 -5.00000000e-01 1.22460635e-16 1 0.00000000e+00

117 / 119

Fast and reliable

118 / 119

Summary

◮ Optimality conditions: solve a system of nonlinear equations.

◮ Newton’s method for optimization is fast, but unreliable.

◮ Other method: preconditioned steepest descent.

◮ Descent direction: preconditioned gradient.

◮ Step: Wolfe conditions.

◮ Newton method with line search.

119 / 119

