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Nonlinear optimization

Problem definition

min f(x)

xeRn"

where f is twice differentiable and bounded from below:

M € R such that f(x) > M, Vx € R".
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Fermat's theorem

Theorem 5.1

» x*is a local minimum of f : R” — R.
» If f is differentiable around x*, then

Vf(x*)=0.

> If f is twice differentiable around x*, then

V2f(x*) >0 [positive semidefinite].
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Solving one equation with one variable

Motivation

» Optimization algorithms rely on solving systems of equations given by
optimality conditions.

» Systems of linear equations can be solved by Gaussian elimination.

» Systems of nonlinear equations can be solved using Newton's method.

» We remind this method on the simple case of one equation and one variable.
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Example
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lterations

Xk

F(x)

F'(x)

g+ W N~ OoOlx

+2.
.50000000E+00
.41666667E+00
.41421569E+00
.41421356E+00
.41421356E+00

+1
+1
+1
+1
+1

00000000E+00

+2
+2
+6
+6
+4
+4

.00000000E+00
.50000000E-01
.94444444E-03
.00730488E-06
.51061410E-12
.44089210E-16

+4.
+3.
+2.
+2.
+2.
+2.

00O0OO000E+00
00O0O0O000E+00
83333333E+00
82843137E+00
82842712E+00
82842712E+00
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Speed of convergence

» Fast method.

» The precision doubles at each
iteration.
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Linear model

Taylor's theorem

F : R — R differentiable
mg(x) = F(X) + (x — )?)F’()?)

Example

F(x) = x* — 2F'(x) = 2x
X=2:mg(x)=2+4(x—2)
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Example

1 1.2 14 16 138 2
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Algorithm

At each iteration, find x,,; that solves
F(Xk) + (X — Xk)F/(Xk) =0

(1 — ) F () = —F(x)
Xer1 — Xk = —F(xk) /F'(xk)
Xk+1 = Xk — F(Xk)/F/(Xk)
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Another example
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Another example
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Another example
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Another example

arctan(x)

F(x)
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Convergence

» The method is fast...
» but does not always converge.
> Several conditions have to be met.
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Convergence

Motivation
» \We have seen that Newton's method, when it converges, does so fast.
» But it does not always converge.
» We see now in what circumstances it converges, and quantify its speed.

» Then, we generalize the method for systems of equations.
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Conditions

F is not too non linear
F’ is Lipschitz continuous, with Lipschitz constant M.

dM > 0 such that Vx,y, |[F'(x) — F'(y)| < M|x — y|.
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Jp > 0 such that |F'(x)| > p, Vx.
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Conditions

F is not too non linear
F’ is Lipschitz continuous, with Lipschitz constant M.

dM > 0 such that Vx,y, |[F'(x) — F'(y)| < M|x — y|.

F’ is not too close to 0

Jp > 0 such that |F'(x)| > p, Vx.
Xp Is not too far from the solution

In > 0 such that |xo — x| < 7.
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Convergence

Theorem 7.7
Consider the sequence of iterates:
Xkl = Xk — Fl4)
k+1 k F(xe)

» it is well defined,
> Iimk_m Xk = X*,

» it converges g-quadratically:

2

M
X1 — X7 < — |x — x*
+
2p
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Extension to n variables

Problem statement

F:R" — R" differentiable

Find x € R" such that
F(x)=0.
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Reminder

F:R"—R"
Gradient matrix Jacobian matrix
| | J(x) = VF(x)"
VF(x)=| VF(x) -+ VF,(x)
Ok 0F - Of, — VAK)T —
8x1 8x1 8x1 -
= : : : : : —— VF,(x)T ——
oFL 0F oF,

ox, Ox, 0xp,
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Linear model

me(x) = F(X) + VF(%) (x = X) = F(X) + J(X)(x — X)
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lterations

Xk41 = Xk + d

where
J(Xk)dk = —F(Xk).
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Solving the necessary optimality conditions

Motivation

» The necessary optimality condition stipulates that, at a local optimum, the
gradient is zero.

» The first algorithm consists in solving the system of equations Vf(x) = 0 in
order to find a stationary point...

» ... using Newton's method.
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Newton's method

Equations

Problem

Algorithm

Xkt1 = Xk + d

where d, is solution of

J(Xk)dk = —F(Xk).

Optimization
Problem

Vi(x)=0
Algorithm

Xk+1 = Xk + di

where d, is solution of

V2f(Xk)dk == —Vf(Xk).
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Example




Example: fast convergence




lterations

k X V(x) | VF(xd)]| f(xk)

0 1.00000000e+00 1.54030230e+00 1.75516512e+00 1.04030231e+00
1.00000000e+00 -8.41470984e-01

1] -2.33845128e-01 -2.87077027e-02 2.30665381e-01 7.53121618e-02

1.36419220e+00

2.

28871986e-01

2| 1.08143752e-02 -3.22524807e-03 1.12840544e-02 -9.33543838e-05
1.58483641e+00 -1.08133094e-02

3| -2.13237666e-06 9.22828706e-07 2.32349801e-06 8.79175320e-12
1.57079327e+00 2.13237666e-06

4| 1.99044272e-17 8.11347449e-17 8.35406072e-17  1.35248527e-25
1.57079632e+00 -1.99044272e-17
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Solution

. ) o Second derivatives
Variables First derivatives

() was() Tl

A1 = —0.61803, A\, = 1.6180
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Saddle point

2500 Ix + Nﬁxm
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Geometric interpretation

Motivation

» In the context of equations, Newton's method uses at each iteration a linear
model of the function.

» In the context of optimization, it uses a linear model of the gradient of the
objective function.

» Equivalently, it uses a quadratic model of the objective function.
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Quadratic model

f : R” — R twice differentiable

ma(x) = F(R) + (x — %) TVF(R) + % (x — 2) TV (R)(x — X)
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Example: x, = 3.636
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Example:

f(x) = —x*+12x3 — 47 x> + 60 x
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Newton's point

» f:R" — R twice differentiable
> x, € R" such that V2f(x;) >0

The Newton's point of f at x, is
Xy = Xk + dy,
where dy verifies Newton's equations:

sz(Xk)dN == —Vf(Xk) .
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Cauchy'’s point

» f:R" — R twice differentiable
> x. € R" such that V£ (x¢) " V2 (x)VF(xx) > 0
The Cauchy point of f at x, is

Xc = Xk — aCVf(xk) s
where

Vf(Xk)TVf(Xk)
Vf(xk)TVZf(xk)Vf(xk) ’

adc =
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Preconditioned steepest descent

Motivation
» A general idea to minimize a function consists in

» finding a direction along which the function decreases,
» follow that direction to find a point with a lower value of the objective
function.

» This family of methods is called descent methods.

» A natural direction to follow is the negative gradient, as it is the steepest
descent direction.
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Example
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Example
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Example
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Example
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lterations

k (xk)1 (xk)2 Vf(xk)1 V(xk)2 ak f(xx)
0 +9.000000E+00 +1.000000E+00 +9.000000E+00 +9.000000E+00 0.2 +4.500000E+01
1 +7.200000E+00 -8.000000E-01 +7.200000E+00 -7.200000E+00 0.2 +2.880000E+01
2 +5.760000E+00 +6.400000E-01 +5.760000E+00 +5.760000E+00 0.2 +1.843200E+01
3 +4.608000E+00 -5.120000E-01 +4.608000E+00 -4.608000E+00 0.2 +1.179648E+01
4 +3.686400E+00 +4.096000E-01 +3.686400E+00 +3.686400E+00 0.2 +7.549747E+00
5 +2.949120E+00 -3.276800E-01 +2.949120E+00 -2.949120E+00 0.2 +4.831838E+00
50 +1.284523E-04 +1.427248E-05 +1.284523E-04 +1.284523E-04 0.2 +9.166662E-09
51 +1.027618E-04 -1.141798E-05 +1.027618E-04 -1.027618E-04 0.2 +5.866664E-09
52 +8.220947E-05 +9.134385E-06 +8.220947E-05 +8.220947E-05 0.2 +3.754665E-09
53 +6.576757E-05 -7.307508E-06 +6.576757E-05 -6.576757E-05 0.2 +2.402985E-09
54 +5.261406E-05 +5.846007E-06 +5.261406E-05 +5.261406E-05 0.2 +1.537911E-09
55 +4.209125E-05 -4.676805E-06 +4.209125E-05 -4.209125E-05 0.2 +9.842628E-10
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Preconditioning

Original problem

. 1 9
min f(x) = 2% + 5%
Change of variables
X; = X
x5 = 3xa.
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Preconditioning

100
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Preconditioning

» H, symmetric positive definite.

> Hk - LkLZ—
» Change of variables:

X = L]x
» Steepest descent iteration:

Xjp1 = Xj — aka(x,i)

F(x') = F(L,TX)
VF(X) = L V(L TX)
Xep1 = X — L V(L ).
Lixr = Ll xie — anL PV (%)
Xkl = Xk — OékL;TL;1Vf(Xk)

Xk+1 = Xk — O./ka_IVf(Xk) .
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Preconditioned steepest descent

Xk+1 = Xk + Qpd
with
dk = —Dka(Xk) .

Preconditioner
Symmetric positive definite matrix. For instance,

Dy, = H.".
Descent direction

Vi(x) " de= —VF(x) D VF(xc) < 0.
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Inexact line search

Motivation
» Finding a local optimum along a direction takes a large effort, that may not
be justified, as it has to be done at each iteration.

» What about choosing any step that would decrease the function?
» We first show that this does not always work.

» And then we propose something similar, that works.
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General idea

f:R" =R, x, €R", de € R", VF(x)"dx < 0.

Xk+1 = Xk + e dy,

where o is such that
f(Xk+1) < f(Xk).
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Example: one dimension

f(x) = x?
Xo — 2
di = —sgn(x«)

=2+ 3271,
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Example: one dimension

k Xk dk (67
0 +42.000000e+00 -1 +3.500000e+00
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Example: one dimension

k Xk dk (673
0  +42.000000e+00 -1 +3.500000e+00
1 -1.500000e+00 1 +2.750000e+00
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Example: one dimension

X
Il
/; Xk di (o7
= +2.000000e+00 -1 +3.500000e+00

-1.500000e+00 1 +2.750000e+00
+1.250000e+00 -1 +2.375000e+00

N = Ol X
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Example: one dimension

[9\]
%
I Xk dk ak
~—
X +2.000000e+00 -1 +3.500000e+00
N—r
G -1.500000e+00 1 —+2.750000e+00

+1.250000e+00 -1 +2.375000e+00
-1.125000e+00 1 +42.187500e+00

W N = OoOx
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Example: one dimension

X

Il Xk dk a
/; +2.000000e+00 -1 +3.500000e+00
t/ -1.500000e+00 1 +2.750000e+00

+1.250000e+00 -1 +2.375000e+00
-1.125000e+00 1 +2.187500e+00
+1.062500e+00 -1 +2.093750e+00

A OWONRROX
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Example: one dimension

T|< Xk dk g

Py +2.000000e+00 -1 +3.500000e+00
3/ -1.500000e+00 1 +2.750000e+00
e +1.250000e+00 -1 +2.375000e+00

-1.125000e+00 1 +2.187500e+00
+1.062500e+00 -1 +2.093750e+00
-1.031250e+00 1 +2.046875e+00

GOr WNRFOX
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Example: one dimension

k Xk dy Qe
0 +2.000000e+00 -1 +3.500000e+00
1 -1.500000e+00 1 +2.750000e+00
2 +1.250000e+00 -1 +2.375000e+00
3 -1.125000e+00 1 +2.187500e+00
4 +1.062500e+00 -1 +2.093750e+00
5 -1.031250e+00 1 +2.046875e+00
46 +1.000000e+00 -1 +2.000000e+00
47 -1.000000e+00 1 +2.000000e+00
48 +1.000000e+00 -1 +2.000000e+00
49 -1.000000e+00 1 +2.000000e+00
50 +1.000000e+00 -1 +2.000000e+00
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Example: one dimension

xe = (-1)(1+27%)
IXks1| < |xk| therefore x2; < x¢ and f(xkt1) < f(xx)-

lim x, does not exists
k—o00

Two subsequences converging to -1 and 1.
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Intuition

» Descent direction is a local
concept.

» It assumes small steps.
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Taylor's theorem does not
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Intuition

» Descent direction is a local

concept.
S
» It assumes small steps. =
'

» When steps are too long,
Taylor's theorem does not
apply anymore.

f(x)

» Even ascent directions can
decrease the function with
long steps.

73/119



Intuition

» Descent direction is a local

concept.
S
» It assumes small steps. =
'

» When steps are too long,
Taylor's theorem does not
apply anymore.

f(x)

» Even ascent directions can
decrease the function with
long steps.

» Solution: avoid long steps. -6 -4 =2 0 2 4 6

73/119



Second example

f(x) = x?
X0 =2
dk =-1 N><
Qg = k1 J\
=
xx=1+2"%>0 =

X1 < X <= f(Xk—i-l) < f(Xk)

im x, =1
k—oc0

74 /119



Intuition

» Steps become smaller and

smaller:
lim ax = lim 271 = 0.
k—o00 k—o00

» Although ay > 0, almost
no progress can be made.

» Solution: avoid short steps.
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First Wolfe condition

Motivation
» Our objective is to identify potential steps that can be done along a descent
direction.
» We saw that the algorithm may fail to converge if the steps are too long.

» We provide here a characterization of the concept of “being too long”.
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First idea

f:R" =R, x, €R", d € R", VF(x)"dy < 0.
Require a decrease proportional to the step

f(xk) — f(xk + axdi) > apy,

or
f(Xk + Oékdk) S f(Xk) — Oy,

with
v > 0.
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Decrease proportional to the step

f(Xk + Oédk)

f(xx) —avy, v =06
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But...

— f‘(xk + aak)
60 | fx) —avy, v =6
ol |
40 - 8
o 1 2 3 4 5
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Second idea
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More formally

f:R" >R, x, €R", de €R", VF(x)"dk < 0.

Choose « according to the slope:

v =—=BiVF(x) di,0< B <1
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First Wolfe condition

f(xk + adi) < F(xk) — ax?,
Y= —,61Vf(Xk)Tdk.

f(Xk + (,kak) S f(Xk) + (,)(1;(381Vf(Xk)Tdk.
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Extreme cases are excluded

f(Xk -+ Oékdk) S f(Xk).

f(Xk + O[kdk) S f(Xk) + CMka(Xk)Tdk.
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ol — f(xk + ady)
....... f(xe) + aVi(x)T ds
N f(xk) + aBiVF(xe) T di
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By =08

70

60

40

f(X;‘( + adkj
f(Xk) + QVf(Xk)Tdk
f(x) + afiVF(x)" di
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Second Wolfe condition

Motivation
» Our objective is to identify valid steps along a descent direction.
» We have first identified a condition that prohibits steps that are too long.
» We are now deriving a condition that prohibits steps that are too short.
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Main idea

f:R" >R, x, €R", de € R", VF(x)"dk < 0.
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Main idea

f:R" >R, x, €R", de € R", VF(x)"dk < 0.

Directional derivative along x, + adj

> At =0:
Vf(Xk)Tdk < 0.

> At o, first local minimum:
VF(x +a*de)"de = 0.

> If we reach o*, the directional derivative increases by Vf(xx) " di.
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Directional derivative
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Second Wolfe condition

Relative reduction of the derivative

VF(xc + audy) T di

<
Vi) Tde &

with 0 < 5, < 1.

Sufficient progress

Vf(Xk + O./kdk)Tdk > Bsz(Xk)Tdk
as VF(x)Tdx < 0.
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Sufficient progress
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[, close to 0: larger steps
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(> close to 1: smaller steps

60

50

f(Xk + C(dk)

70|

40 |:

T..

1

05 .
<
~ | x
—~o
<=
3=
T
x|

0 e
>

—-0.5
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Validity of the Wolfe conditions

Motivation
» First Wolfe condition forbids steps that are too long.
» Second Wolfe condition forbids steps that are too short.
» How do we guarantee that there exists steps that verify both?
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Wolfe conditions

First Wolfe condition

f(Xk + Oékdk) < f(Xk) + ak61Vf(xk)Tdk,
0<pr <l
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Wolfe conditions

First Wolfe condition

f(Xk + Oékdk) < f(Xk) + akB1Vf(xk)Tdk,
0<pr <l

Second Wolfe condition
Vf(Xk + ozkdk)Tdk
Vf(Xk)Tdk
0< B <.

S 527
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Compatibility of the Wolfe conditions

Theorem 11.9
» If f is bounded from below along dj,

> if0<pr < fr<1,
» there exists o > 0 verifying both conditions.
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First Wolfe condition

» As d, is a descent direction,
» dn such that Wolfe 1 is verified for oy < 1.
» See Theorem 2.11.

96119



Validity of the conditions

S5 .
50
45

40

35
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|deas of the proof
See Figure 11.15 p. 273
» Start with the line: f(xx) + BV F(x)" dx
oq: intersection between the line and the function.
o1 exists because the function is bounded from below.
All o < a verify Wolfe 1.
aip: mean value theorem (tangent with same slope). Verifies Wolfe 1.

vvyVvyyvyy

As the slope is defined by 31, we have
BiVE(x) T di = VF(xi + ardy) " di

so that
B . Vf(Xk + &2dk)Tdk
1 Vf(Xk)Tdk

» If B, > 1, ap verifies Wolfe 2.
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Linesearch algorithm

Initialize: /<0, ay <+ 0, o, + +00.

1 repeat
2 if «; violates Wolfe 1 then the step is too long
3 oy < O,
Qp + Oy
4 Qjy1 < .
L 2
if «; does not violate Wolfe 1 but violates Wolfe 2 then the step is too short
Qy < Q.
if a, < +o00, then
‘ ay + o
8 Qi1 <
2
9 else
10 L Qg1 < 10¢;.
11 [+ i+ 1.

12 until «; satisfies Wolfe 1 and 2
12 n* «—

99 /119



Finiteness of the line search algorithm

Motivation

» The linesearch algorithm is quite simple:

1. Start with a candidate step.
2. If it is too long, make it shorter.
3. If it is too short, make it longer.

» We now need to verify that this process finishes in a finite number of steps.
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Wolfe conditions

First Wolfe condition

f(xk + i) < Fxi) + BV F(xx) T di.

Second Wolfe condition

Vf(Xk + O./kdk)Tdk Z ﬁgi(Xk)Tdk.

Parameters

0<61<52<1.
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Line search algorithm

Initialization

I T
i Q;
Qyp
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Line search algorithm

Initialization

o a
Wolfe 1 violated: step too long

aé“ Oéi‘+1 aiﬂ

102/119



Line search algorithm

Initialization
o o
Wolfe 1 violated: step too long
aé“ Oéi‘+1 aiﬂ
Wolfe 2 violated: step too short
aé“ oz,-‘+2 ai‘“
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Line search algorithm

Special case
» If the step is too short (Wolfe 2 violated), and

> oy = 00,

» then increase the step by an arbitrary factor A > 1:

Qi1 = Aa.
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Properties

o
always verifies Wolfe 1 : it is updated only when Wolfe 1 is verified and Wolfe 2
is violated.
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Properties

o
always verifies Wolfe 1 : it is updated only when Wolfe 1 is verified and Wolfe 2
is violated.

i
Qyp

always violates Wolfe 2  for the same reason.
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Properties

a
always verifies Wolfe 1 : it is updated only when Wolfe 1 is verified and Wolfe 2
is violated.

i

ay

always violates Wolfe 2  for the same reason.
i

o,

always violates Wolfe 1 : starts from oo and updated when Wolfe 1 is violated.
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Finiteness of «;

Arguments

» Suppose, by contradiction, that a; — oc.
» It means that o is always +oo.

> As 04 would be updated when Wolfe 1 is violated, it means that Wolfe 1 is
never violated.

» Impossible, as the function is bounded from below.
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Finiteness of «;

Arguments

» Suppose, by contradiction, that a; — oc.
» It means that o is always +oo.

> As 04 would be updated when Wolfe 1 is violated, it means that Wolfe 1 is
never violated.

» Impossible, as the function is bounded from below.

Consider only iterations when ! < co.

ay +a,

Qjp1 = >
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Finite number of iterations

Theorem 11.10

» Suppose, by contradiction, that there is an infinite number of iterations.

» Therefore,

lim o, — a, = 0.
i—00

» Consequently,

o = lim a, = lim a; = lim «o;.
i—00 i—00 i—00
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Finite number of iterations

Theorem 11.10
» Wolfe 1 is verified for all o). At the limit:

f(Xk + oz*dk) S f(Xk) -+ Oz*ﬁlVf(Xk)Tdk.
» Wolfe 1 is violated by all a'. Therefore a* # o'.
f(x + ald) > f(xe) + al BV E(x) T di

At the limit
f(Xk + Oz*dk) > f(Xk) + a*ﬂ1Vf(xk)Tdk.
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Finite number of iterations
Theorem 11.10

F(xk + a*de) = F(x) + "BV (%) d.

» Wolfe 1 is violated by all o’. Therefore o/ — a* > 0.
F(xe + aldi) > F(xi) + al BV () T dh.

f(x 4 ojdic) > F(xi + o' de) — a* BV I (%) dic + o, 1V (x) T di.
f(xe +alde) > F(x +a*di) + (o) — a*) BV F(xe) " d.

f(Xk + Oéf,dk) — f(Xk + a*dk)
al — o

> ﬁ1Vf(Xk)Tdk.

108 /119



Finite number of iterations

f(Xk + Oéf,dk) — f(Xk + Oé*dk)
al —a
[ — 00 : Vf(Xk + Oé*dk)Tdk > 51Vf(Xk)Tdk.
As 3, > 3 and Vf(xx)"di < 0, we have

> 51Vf(Xk)Tdk.

Vf(Xk -+ Oé*dk)Tdk > 52Vf(Xk)Tdk.
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Finite number of iterations

Current result

V(e + o d) T di > BV F(x) " di.
o violates Wolfe 2
Vf(Xk -+ Oéédk)—rdk < Bgi(Xk)Tdk, Vi.

At the limit

Vf(Xk —+ Oé*dk)Tdk S ﬁgi(Xk)Tdk.

Contradiction
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Newton method with line search

Motivation
» We now go back to Newton's method.
» We have seen that, when it works, it converges fast.
» But it does not always work.

» Let's combine it with the descent methods framework to obtain an efficient
algorithm.
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Comparison

Descent method

Xk+1 = Xk — akaVf(xk).

Newton's method

Xk4+1 = Xk — sz(Xk)_IVf(Xk).

112 /119



Comparison

Descent method

Xk+1 = Xk — akaVf(xk).

Newton's method

Xk4+1 = Xk — V2f(xk)_1Vf(xk).

Newton's method is a descent method
> if A = 1,
» if D, = V2f(x,)! is positive definite.
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Modifications

If V2f(xx)~! not positive definite

Choose another Dy:
» D, = I: bad idea. Slow convergence of steepest descent.
» D, diagonal:

. ofrr .\
Dy (i, i) = max (5, 8_x,2(xk)) ;

with € > 0.
» Inflating V£ (xy):
D, = (sz(xk) + 7'/)_1,

where 7 is calculated such that D, is positive definite.
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Modifications

If oy = 1 is not consistent with Wolfe conditions
Apply the line search algorithm.
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Example: Newton's method

+
| | |
[N N = o = N
~ ~ A




Example: Modified Newton's method




lterations

k f(xk) HVf(Xk)H o T

0 1.04030231e+00 1.75516512e+00

1 2.34942031e-01 8.88574897e-01 1 1.64562250e+00
2 4.21849003e-02 4.80063696e-01 1 1.72091923e+00
3 -4.52738278e-01 2.67168927e-01 3 8.64490594e-01
4 -4.93913638e-01 1.14762780e-01 1 0.00000000e+00
5 -4.99982955e-01 5.85174623e-03 1 0.00000000e+00
6 -5.00000000e-01 1.94633135e-05 1 0.00000000e+00
7 -5.00000000e-01 2.18521663e-10 1 0.00000000e+00
8 -5.00000000e-01 1.22460635e-16 1 0.00000000e+00
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Fast and reliable

118/119



Summary

Optimality conditions: solve a system of nonlinear equations.

Newton's method for optimization is fast, but unreliable.

Descent direction: preconditioned gradient.

>
| 4
» Other method: preconditioned steepest descent.
>
» Step: Wolfe conditions.

>

Newton method with line search.
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