Networks

Introduction and definitions

Michel Bierlaire
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Definitions

Motivation
» Networks are everywhere.

» We introduce a mathematical formalism that mimics the structure of real
networks.
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Road networks
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Public transportation networks
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Electricity networks
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Gas networks
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Water networks
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Computer networks
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Neural networks
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Social networks
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Networks

Concept

System of interconnected people or things.

Main features
» Local complexity is low.
» Global complexity is high.

Mathematical object

Similar property: designed to capture complex structures with simple elements.
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Networks

Concept
System of interconnected people or things.
Vocabulary

» people or thing: vertex, node.
» connection: edge: link (undirected), arc (directed).
» structure: graph (no data), network (with data).
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Undirected graph

Definition
» V: set of vertices.
> &£ set of edges.

> ¢ : & — Pa(V): incidence function.

13/75



Graph

Example

V — {Vla Vo, V3, Vg, V5}7

&= {6‘1, €2, €3, €4, €5, €, €7, 68}
p(e1) = {v1, o}, d(e2) = {2, v3},
¢(es) = {v1, vs}, d(es) = {ws, v},
p(es) = {vo, va}, d(es) = {2, va},
¢(6‘7) = {V47 V5}, ¢(98) = {V4, V5}-
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Subgraph

Definition V2
(V', &', ¢') is a subgraph of (V, &, ¢) if e
> V'V,
> £ CE,
€
> ¢'(e) = ¢(e), for each e € &',
> for each e € &', if ¢'(e) = {i,j}, o
then i and j both belong to V'. ’
V3

15/75



Directed graph

Definition
» N: set of nodes.
» A: set of arcs.
» ¢: A— N xN: incidence

function.
Assumption
» ¢ is injective.
» For each (/,j), there is at most one
a such that ¢(a) = (i,J).
» Arcs are denoted by (1, ).

Jﬁ@
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Indegree

Definition
d;": number of arcs (J, /).
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Outdegree

Definition
d:": number of arcs (i, ).

18/75



Degree

Definition

di=d~ +d.



Cuts

Motivation
» Just as cities are separated into two
banks by a river, it may be
convenient to separate a directed
graph into two sets of nodes.

» This is called a cut.
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Directed graph: (N, A, ¢)

Cut
A cutl is

» an ordered partition of the nodes

» into two non empty subsets:
M= WM,N\ M),
where M C A and M # ().
Ordered

(M NAM) # N\ M, M)

Lo
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Definitions

Forward arcs

= ={0,)) e Ali e M,j ¢ M}.

Backward arcs

r=={(,j) e Ali ¢ M,j € M}.

(6) N\ M
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Motivation

» Networks are designed to connect
elements.

» The concept of paths describe how
two elements in the network can be
connected to each other.

Definition
» Sequence of nodes, each pair of

consecutive nodes being directed
with forward or backward.

» Simple path: no repeated node.
» Forward path: no backward arc.
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Simple forward path

122245
P = (1,2).(2.4), (4.5). (6)
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Forward path
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(1,2),(2,4).(4,2),(2,3),
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Simple path

12245
P~ =(1,2),(4,5) G

- o
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Simple cycle

1+52+4-35+3->1 e

P =(1,2),(4,5).(3,1)
P~ =(4,2),(3,5) M
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Invalid path

467



Paths and connected components

Motivation
» There are many paths in a network.
» Some are long, some are short.

» Later on, we will be interested in finding the shortest or the longest path
between two nodes.

» And, sometimes, there is no path connecting two nodes.

» We formalize these concepts now.
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Longest simple path

Lemma 21.5
» Consider a directed graph with m nodes.

» The maximum number of arcs in a simple path is m — 1.

Proof
» Suppose that a simple path visiting all the m nodes exist.
» It has exactly m — 1 arcs.
» Extend by one more arc: not simple anymore.

» If there is no such path: the longest has less than m — 1 arcs.
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Finite number of simple paths

Lemma 21.6
» Consider a directed graph with m nodes, m > 2.
» Consider an origin node o and a destination node d.

» There is a finite number of simple paths between o and d.

Proof
» Consider 2 < k < m.

» Each simple path containing k nodes corresponds to a permutation of kK — 2
nodes.

» For each k, the number of permutations is finite.
» As k < m, the total number is finite.
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Connectivity

Connected graph
Every pair of nodes is connected with a path.

Strongly connected graph
Every pair of nodes is connected with a path containing only forward arcs.
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Connectivity

Nodes 1 and 5 are strongly connected. @/( V%
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Connectivity

(XX
Nodes 1 and 3 are connected. g
\@
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Equivalence class

is connected with"”
» reflexive,
> symmetric,

» transitive.

Connected component
» subgraph G’ = (N, A, ¢),

» N’ is an equivalence class on A for
the relation "“is connected with”.

<

()
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Equivalence class

Note
The relation “is strongly connected with” is not symmetric, and does not
represent an equivalence class.
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Trees

Motivation

» We introduce a family of graphs
called “trees”.

» They are useful in many
applications.
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Definition

ZN

» Connected graph,

» without cycle. /\ /\
O O O O
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Definition

Not a tree
Not connected. Sometimes called a
forest, as each connected component is

a tree. O O O O
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Definition

Not a tree
Contains a cycle.
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Definition

Leaf
Node of degree 1.
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Spanning tree

Definition
» Consider the graph (V, &, ¢).
» The subgraph (V, &', ¢')
» is a spanning tree of (V, &, ¢),
> if it is a tree.
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Properties of trees

Motivation
» Trees have some interesting properties
» We review some of them.

» We also provide some characterizations of tree, involving these properties.
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Lemma 21.9

A tree with at least one arc has
at least two leafs.

>

vvyYyy

v

Path P with maximum number of
arcs.

First node: o, last node d.
As there is no cycle, o # d.
Degree of 0 > 1.

If degree of o > 1, another arc can
make the path longer. Impossible.

Degree of o = 1. It is a leaf.

» Same argument for d.

©
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Number of nodes

A tree with narcshas m=n-+1

nodes.

» Obvious for n = 1.

» Assume true for n = p — 1 arcs: there
are m = p nodes.

» Proof for a tree with n = p arcs.

» Consider a leaf.

» Remove one node (the leaf) and one
arc (the incident arc).

» We obtain a tree with p — 1 arcs.

» |t has p nodes.

» The original tree has p + 1 nodes.
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Single path

In a tree, there is exactly one path
between any two nodes.
» A tree is connected, so there is at least
one path.
» Suppose there are two different paths.
» They form a cycle.
» Impossible in a tree.
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Cycle formation

In a tree, adding any arc forms a
cycle.
» Consider adding arc (i, ).
» A tree is connected, so there is a path
connecting / and j.
» The added arc forms a cycle with the
path.
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Disconnection

In a tree, removing any arc
disconnects the graph.
» Consider arc (i, j).
» There is a unique path from / to j.
» |t is the link!
» Removing it disconnects i from j.
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Characterization

Consider G = (N, A, ¢) a directed graph with m nodes and n arcs. The
following statements are all equivalent.

» G is a tree;

G is connected and without cycles;

There is a unique simple path connecting any two nodes;

G has no cycle, and a simple cycle is formed if any arc is added;

G is connected and the removal of any single arc disconnects the graph;

G is connected and n=m — 1;

vvyVvyVvyyvyy

G has no simple cycle and n=m — 1.
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Flows

Motivation

» Physical networks are often used to
transport objects or information:
water, electricity, cars, internet
packets, etc.

» We provide a generic representation
of flows of these objects, and
associate them with the graph.

» In our mathematical formalism, a
directed graph is called a network
when its nodes and arcs are
associated with quantities.

» The first of the quantities is the
flow.
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Definition

X,'J'ER

» Amount of “things” traversing the
arc during a given time period.

» Associated with each arc (i, ).

» Units are arbitrary and context Xij
dependent.

>

Time period is irrelevant and long
enough.

» The sign corresponds to the
direction.
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Definition

Xij € R
-2.1

» Amount of “things” traversing the

arc during a given time period. 2.3 4
» Associated with each arc (i,J). 1] —5| _5 25 |3
» Units are arbitrary and context
4
dependent.
» Time period is irrelevant and long 0

enough.
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Flow through a cut

X(r): Z X,'J'— Z X,'J',

(i)er— (ij)ere

D (ijyer— Xi =
Xo4 + X54 + X76 = —21-5425=-46

Z(izj)el”— Xij =
X42—|—X45—|—X67:4—5+3:2.
Total flow through the cut:

—46—-2=-6.6.
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Simple path flow

x € R" such that

foif(i,j)e P~
xj =< —f if(i,j)e P
0 otherwise.

Example

1+52+4-55+3
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Capacities

Motivation

>

>

vy

There is a limit to the quantity of flow that can be transported on each
section of a physical network.

For instance, the quantity of water flowing through a pipe depends on the
section area.

One lane of a highway cannot accommodate more than 2400 veh/h.
This limit is called the capacity.

In our mathematical formalism, we may impose bounds on flows.
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Definition

g,’j SX,'J' S U,'J'.

» (; € R: minimum quantity of flow.
» u; € R: maximum quantity of flow.
» Associated with each arc (i, ).

» Units are the same as Xxj;.

» In practice, we often have:

> E,-jzo,or,
>/

ij = —Ujj.
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Capacity of a cut

uny = > u— Y

(ig)er— (ig)er<
Z(:’J)er—> bij =
Upg + Usq + Ure = —-14+0+3=2

Z(ilj)el“— iy =
642‘*’645"‘667 = 0—5—3 == —8

U(r) = 2-(-8)=10
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Capacity of a cut

Upper bound on the flow

Saturated cut
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Supply and demand

Motivation
» Nodes can also be associated with quantities.

» For instance, the supply is a quantity of flow that a node is injecting on a
network.

In logistics, a warehouse is supplying flow of goods on the network.
The demand is a quantity of flow absorbed by a node.
In logistics, a customer is collecting the flow from the network.

vvyyy

We characterizes these notions in our mathematical formalism.
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Divergence

Flow leaving a node

E X,'j.

Jl(ij)eA
-2.1-1=-3.1

Flow entering a node

2.3+3=5.3
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Divergence

Divergence

div(x Z Xijj —

Jl(ij)eA

-3.1-5.3=-8.4

E Xki -

k|(k,i)eA

0.5
2.3
0
1.7 25 |3 ()
4
0
5 0 -0.5

61/75



Supply and demand

Supply node
div(x); > 0. 0.5
Demand node
div(x); < 0. 17 25 |3 Co)
In any case
05

Z div(x); = 0.

ieEN
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Circulation

div(x); =0, Vi e N.

2.3

2.3

0
2435 | 2435 ()
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Costs

Motivation

» Moving flow along an arc generate
costs.

» In our formalism, we consider
proportional costs.

» Modeling costs is not necessarily
easy.
» We discuss two common issues.
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Costs

i, V(i,j) € A.

Data of the problem
» Cost of transporting one unit of flow on arc (i, j).
» Unit is arbitrary.

» Total cost for arc (i, j):
CijXij -

E C,'jX,'j.

(ij)eA

» Total cost for the network:
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Generalized cost

Toll road

> travel time (say 30 minutes),
> travel cost (say 10 CHF).

Value of time
30 CHF /hour or 0.5 CHF /min.

Generalized cost
» In CHF: 30 min x 0.5 CHF/min +
10 CHF = 25 CHF.

» In min: 30 min. + 10 CHF / (0.5
CHF/min) = 50 min.

66 /75



Link additivity

Cost of a path

E C,JXU E C,'jX,'J'.

(ij)eP—~ (ij)eP<

Cost along a simple path flow

Z fC,‘j - Z fC,J

(ij)eP™ (ij)eP<
Y G- Y @
(ig)eP~ (ij)eP+
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Example

GVA — ZRH — BKK
CHF 2412

GVA — ZRH
CHF 570

/RH — BKK
CHF 2407
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Modeling

First model

GVA 570 .

(z8H)
N

2412

2407 ,@

Second model
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Computer representation

Motivation
» We, humans, usually use maps or schematics to look at networks.
» We obtain an overview of the overall topology.
» But computers do not have this bird eyes's view.

» We introduce here two possible representations of networks in a computer.
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Computer representation
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Adjacency matrix

ﬁ@@

1if (i,)) € A,
0 otherwise.

01 000O0O0GO0TGO
001100O0O0
10001000

01001000
0001O0O0GO0TGO
000O0O0OOT1O0
000O0O0OT1O0TGO

A(i,J)

0 00O0O0OOGO OGO
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Adjacency matrix

» Valid representation because the incidence function is injective.
» Arc numbering convention for storing arc quantities.
» Sparse matrix: efficient storage techniques should be used.

» For instance, adjacency lists.
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Adjacency lists

o ~N O G B~ W NN =

X12

X23

X4

X31

X35

X42

Xa5

X54

Xe1

SN[ IR WD

X76
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Summary

vVvvyvVvvVYyVvYvVyy

Graphs and subgraphs.
Cuts.

Paths and connected components.

Trees.
Flows and capacity.
Supply and demand.
Costs.

Computer representations.

75/75



