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Definitions

Motivation
◮ Networks are everywhere.

◮ We introduce a mathematical formalism that mimics the structure of real
networks.
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Road networks
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Public transportation networks
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Electricity networks
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Gas networks

6 / 75



Water networks

7 / 75



Computer networks
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Neural networks
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Social networks
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Networks

Concept
System of interconnected people or things.

Main features
◮ Local complexity is low.

◮ Global complexity is high.

Mathematical object
Similar property: designed to capture complex structures with simple elements.
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Networks

Concept
System of interconnected people or things.

Vocabulary

◮ people or thing: vertex, node.

◮ connection: edge: link (undirected), arc (directed).

◮ structure: graph (no data), network (with data).
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Undirected graph

Definition
◮ V : set of vertices.

◮ E : set of edges.

◮ φ : E → P2(V): incidence function.
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Graph

Example

V = {v1, v2, v3, v4, v5},

E = {e1, e2, e3, e4, e5, e6, e7, e8}

φ(e1) = {v1, v2}, φ(e2) = {v2, v3},

φ(e3) = {v1, v3}, φ(e4) = {v3, v5},

φ(e5) = {v2, v4}, φ(e6) = {v2, v4},

φ(e7) = {v4, v5}, φ(e8) = {v4, v5}.
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Subgraph

Definition
(V ′, E ′, φ′) is a subgraph of (V , E , φ) if

◮ V ′ ⊆ V ,

◮ E ′ ⊆ E ,

◮ φ′(e) = φ(e), for each e ∈ E ′,

◮ for each e ∈ E ′, if φ′(e) = {i , j},
then i and j both belong to V ′.
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Directed graph

Definition
◮ N : set of nodes.

◮ A: set of arcs.

◮ φ : A → N ×N : incidence
function.

Assumption

◮ φ is injective.

◮ For each (i , j), there is at most one
a such that φ(a) = (i , j).

◮ Arcs are denoted by (i , j).
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Indegree

Definition
d−i : number of arcs (j , i).

1

2

1

2

2

1

1

0

17 / 75



Outdegree

Definition
d+
i : number of arcs (i , j).
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Degree

Definition

di = d−i + d+
i .
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Cuts

Motivation
◮ Just as cities are separated into two

banks by a river, it may be
convenient to separate a directed
graph into two sets of nodes.

◮ This is called a cut.
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Directed graph: (N ,A, φ)

Cut
A cut Γ is

◮ an ordered partition of the nodes

◮ into two non empty subsets:

Γ = (M,N \M),

whereM⊆ N andM 6= ∅.

Ordered

(M,N \M) 6= (N \M,M)
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Definitions

Forward arcs

Γ→ = {(i , j) ∈ A|i ∈M, j 6∈ M}.

Backward arcs

Γ← = {(i , j) ∈ A|i 6∈ M, j ∈M}.
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Paths

Motivation
◮ Networks are designed to connect

elements.

◮ The concept of paths describe how
two elements in the network can be
connected to each other.

Definition
◮ Sequence of nodes, each pair of

consecutive nodes being directed
with forward or backward.

◮ Simple path: no repeated node.

◮ Forward path: no backward arc.
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Simple forward path

1→ 2→ 4→ 5

P→ = (1, 2), (2, 4), (4, 5),

P← = ∅
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Forward path

1→ 2→ 4→ 2→ 3

P→ = (1, 2), (2, 4), (4, 2), (2, 3),

P← = ∅
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Simple path

1→ 2← 4→ 5

P→ = (1, 2), (4, 5)

P← = (4, 2)
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Simple cycle

1→ 2← 4→ 5← 3→ 1

P→ = (1, 2), (4, 5), (3, 1)

P← = (4, 2), (3, 5)
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Invalid path

4→ 6→ 7
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Paths and connected components

Motivation
◮ There are many paths in a network.

◮ Some are long, some are short.

◮ Later on, we will be interested in finding the shortest or the longest path
between two nodes.

◮ And, sometimes, there is no path connecting two nodes.

◮ We formalize these concepts now.
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Longest simple path

Lemma 21.5
◮ Consider a directed graph with m nodes.

◮ The maximum number of arcs in a simple path is m − 1.

Proof
◮ Suppose that a simple path visiting all the m nodes exist.

◮ It has exactly m − 1 arcs.

◮ Extend by one more arc: not simple anymore.

◮ If there is no such path: the longest has less than m − 1 arcs.
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Finite number of simple paths

Lemma 21.6
◮ Consider a directed graph with m nodes, m ≥ 2.

◮ Consider an origin node o and a destination node d .

◮ There is a finite number of simple paths between o and d .

Proof
◮ Consider 2 ≤ k ≤ m.

◮ Each simple path containing k nodes corresponds to a permutation of k − 2
nodes.

◮ For each k , the number of permutations is finite.

◮ As k ≤ m, the total number is finite.
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Connectivity

Connected graph
Every pair of nodes is connected with a path.

Strongly connected graph
Every pair of nodes is connected with a path containing only forward arcs.
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Connectivity

Nodes 1 and 5 are strongly connected. 1
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Connectivity

Nodes 1 and 3 are connected. 1
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Equivalence class

“is connected with”
◮ reflexive,

◮ symmetric,

◮ transitive.

Connected component

◮ subgraph G ′ = (N ′,A′, φ′),

◮ N ′ is an equivalence class on N for
the relation “is connected with”.
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Equivalence class

Note
The relation “is strongly connected with” is not symmetric, and does not
represent an equivalence class.
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Trees

Motivation
◮ We introduce a family of graphs

called “trees”.

◮ They are useful in many
applications.
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Definition

Tree
◮ Connected graph,

◮ without cycle.
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Definition

Not a tree
Not connected. Sometimes called a
forest, as each connected component is
a tree.
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Definition

Not a tree
Contains a cycle.
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Definition

Leaf
Node of degree 1.
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Spanning tree

Definition
◮ Consider the graph (V , E , φ).

◮ The subgraph (V , E ′, φ′)

◮ is a spanning tree of (V , E , φ),

◮ if it is a tree.
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Properties of trees

Motivation
◮ Trees have some interesting properties

◮ We review some of them.

◮ We also provide some characterizations of tree, involving these properties.
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Lemma 21.9

A tree with at least one arc has
at least two leafs.
◮ Path P with maximum number of

arcs.

◮ First node: o, last node d .

◮ As there is no cycle, o 6= d .

◮ Degree of o ≥ 1.

◮ If degree of o > 1, another arc can
make the path longer. Impossible.

◮ Degree of o = 1. It is a leaf.

◮ Same argument for d .

o d
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Number of nodes

A tree with n arcs has m = n + 1
nodes.
◮ Obvious for n = 1.

◮ Assume true for n = p − 1 arcs: there
are m = p nodes.

◮ Proof for a tree with n = p arcs.

◮ Consider a leaf.

◮ Remove one node (the leaf) and one
arc (the incident arc).

◮ We obtain a tree with p − 1 arcs.

◮ It has p nodes.

◮ The original tree has p + 1 nodes.
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Single path

In a tree, there is exactly one path
between any two nodes.

◮ A tree is connected, so there is at least
one path.

◮ Suppose there are two different paths.

◮ They form a cycle.

◮ Impossible in a tree.
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Cycle formation

In a tree, adding any arc forms a
cycle.

◮ Consider adding arc (i , j).

◮ A tree is connected, so there is a path
connecting i and j .

◮ The added arc forms a cycle with the
path.
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Disconnection

In a tree, removing any arc
disconnects the graph.

◮ Consider arc (i , j).

◮ There is a unique path from i to j .

◮ It is the link!

◮ Removing it disconnects i from j .

i

j
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Characterization

Consider G = (N ,A, φ) a directed graph with m nodes and n arcs. The
following statements are all equivalent.

◮ G is a tree;

◮ G is connected and without cycles;

◮ There is a unique simple path connecting any two nodes;

◮ G has no cycle, and a simple cycle is formed if any arc is added;

◮ G is connected and the removal of any single arc disconnects the graph;

◮ G is connected and n = m − 1;

◮ G has no simple cycle and n = m − 1.
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Flows

Motivation
◮ Physical networks are often used to

transport objects or information:
water, electricity, cars, internet
packets, etc.

◮ We provide a generic representation
of flows of these objects, and
associate them with the graph.

◮ In our mathematical formalism, a
directed graph is called a network
when its nodes and arcs are
associated with quantities.

◮ The first of the quantities is the
flow.
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Definition

xij ∈ R

◮ Amount of “things” traversing the
arc during a given time period.

◮ Associated with each arc (i , j).

◮ Units are arbitrary and context
dependent.

◮ Time period is irrelevant and long
enough.

◮ The sign corresponds to the
direction.
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Definition

xij ∈ R

◮ Amount of “things” traversing the
arc during a given time period.

◮ Associated with each arc (i , j).

◮ Units are arbitrary and context
dependent.

◮ Time period is irrelevant and long
enough.
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Flow through a cut

X (Γ) =
∑

(i ,j)∈Γ→

xij −
∑

(i ,j)∈Γ←

xij ,

∑

(i ,j)∈Γ→ xij =
x24 + x54 + x76 = −2.1− 5 + 2.5 = −4.6

∑

(i ,j)∈Γ← xij =
x42 + x45 + x67 = 4− 5 + 3 = 2.
Total flow through the cut:

−4.6− 2 = −6.6.
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Simple path flow

x ∈ R
n such that

xij =







f if (i , j) ∈ P→

−f if (i , j) ∈ P←

0 otherwise.

Example

1→ 2← 4→ 5← 3
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Capacities

Motivation
◮ There is a limit to the quantity of flow that can be transported on each

section of a physical network.

◮ For instance, the quantity of water flowing through a pipe depends on the
section area.

◮ One lane of a highway cannot accommodate more than 2400 veh/h.

◮ This limit is called the capacity.

◮ In our mathematical formalism, we may impose bounds on flows.
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Definition

ℓij ≤ xij ≤ uij .

◮ ℓij ∈ R: minimum quantity of flow.

◮ uij ∈ R: maximum quantity of flow.

◮ Associated with each arc (i , j).

◮ Units are the same as xij .

◮ In practice, we often have:
◮ ℓij = 0, or,
◮ ℓij = −uij .
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Capacity of a cut

U(Γ) =
∑

(i ,j)∈Γ→

uij −
∑

(i ,j)∈Γ←

ℓij .

∑

(i ,j)∈Γ→ uij =
u24+u54+u76 = −1+0+3 = 2

∑

(i ,j)∈Γ← ℓij =
ℓ42 + ℓ45 + ℓ67 = 0− 5− 3 = −8

U(Γ) = 2-(-8)=10
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Capacity of a cut

Upper bound on the flow

X (Γ) ≤ U(Γ).

Saturated cut

X (Γ) = U(Γ).
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Supply and demand

Motivation
◮ Nodes can also be associated with quantities.

◮ For instance, the supply is a quantity of flow that a node is injecting on a
network.

◮ In logistics, a warehouse is supplying flow of goods on the network.

◮ The demand is a quantity of flow absorbed by a node.

◮ In logistics, a customer is collecting the flow from the network.

◮ We characterizes these notions in our mathematical formalism.
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Divergence

Flow leaving a node

∑

j |(i ,j)∈A

xij .

-2.1-1=-3.1

Flow entering a node

∑

k|(k,i)∈A

xki .

2.3+3=5.3
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Divergence

Divergence

div(x)i =
∑

j |(i ,j)∈A

xij −
∑

k|(k,i)∈A

xki .

-3.1-5.3=-8.4
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Supply and demand

Supply node

div(x)i > 0.

Demand node

div(x)i < 0.

In any case

∑

i∈N

div(x)i = 0.
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Circulation

div(x)i = 0, ∀i ∈ N . 0
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Costs

Motivation
◮ Moving flow along an arc generate

costs.

◮ In our formalism, we consider
proportional costs.

◮ Modeling costs is not necessarily
easy.

◮ We discuss two common issues.
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Costs

cij , ∀(i , j) ∈ A.

Data of the problem

◮ Cost of transporting one unit of flow on arc (i , j).

◮ Unit is arbitrary.

◮ Total cost for arc (i , j):
cijxij .

◮ Total cost for the network:
∑

(i ,j)∈A

cijxij .
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Generalized cost

Toll road
◮ travel time (say 30 minutes),

◮ travel cost (say 10 CHF).

Value of time
30 CHF/hour or 0.5 CHF/min.

Generalized cost
◮ In CHF: 30 min × 0.5 CHF/min +

10 CHF = 25 CHF.

◮ In min: 30 min. + 10 CHF / (0.5
CHF/min) = 50 min.
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Link additivity

Cost of a path

C (P) =
∑

(i ,j)∈P→

cijxij −
∑

(i ,j)∈P←

cijxij .

Cost along a simple path flow

C (P) =
∑

(i ,j)∈P→

fcij −
∑

(i ,j)∈P←

fcij

= f (
∑

(i ,j)∈P→

cij −
∑

(i ,j)∈P←

cij).
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Example

GVA → ZRH → BKK
CHF 2412

GVA → ZRH
CHF 570

ZRH → BKK
CHF 2407
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Modeling

First model

GVA ZRH BKK
570 2407

Second model

GVA ZRH BKK
570 2407

2412
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Computer representation

Motivation
◮ We, humans, usually use maps or schematics to look at networks.

◮ We obtain an overview of the overall topology.

◮ But computers do not have this bird eyes’s view.

◮ We introduce here two possible representations of networks in a computer.
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Computer representation
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Adjacency matrix

A(i , j) =

{

1 if (i , j) ∈ A,

0 otherwise.

A =

























0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

























.
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Adjacency matrix

◮ Valid representation because the incidence function is injective.

◮ Arc numbering convention for storing arc quantities.

◮ Sparse matrix: efficient storage techniques should be used.

◮ For instance, adjacency lists.
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Adjacency lists

2 x12 .

3 x23 4 x24 .

1 x31 5 x35 .

2 x42 5 x45 .

4 x54 .

7 x67 .

6 x76 .

.
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Summary

◮ Graphs and subgraphs.

◮ Cuts.

◮ Paths and connected components.

◮ Trees.

◮ Flows and capacity.

◮ Supply and demand.

◮ Costs.

◮ Computer representations.
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