Linear optimization

From geometry to algebra

Michel Bierlaire

Introduction to optimization and operations research
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Linear optimization

min CiX;
x€eRM £
i=1

subject to

n
Za,-jx,-:bj, j:].,
i=1

x; >0, i=1,...
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Linear optimization

. min ¢’ x
min CiXi xERN
XERN £
i=1 subject to
subject to
Ax = b,
n
Za,-jx,-:bj, j:].,...,I’TI7 XZO?
i=1
. where A € R™" b e R™, and c € R".
x; > 0, i=1,...,n.
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Polyhedron

{x € R"|Ax < b}
where A € R™" p e R™.
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Polyhedron

{x € R"|Ax < b}
where A € R™" p e R™.
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Convex set

A polyhedron P is a convex set

For all x,y € P, forall 0 < A <1,

X+ (1-ANyeP.
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Polyhedron representations

Ac R™n pecRM™

Canonical form Standard form

{x € R"|Ax < b} {x e R"|Ax = b,x > 0}
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Geometric interpretation

» Canonical form:
{x € R"|Ax < b}.

» Include signed and slack variables:
{xT,x~ e R" x* e R7|A(xT —x7) +x* = b,x",x~,x* > 0}.

{x € R M Ax = b,x > 0}
» Active constraints:

T, _ . s __
aj x =bj < x’ =0.
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Vertices

Motivation
» The vertices of a polyhedron play a major role in optimization.

» Often, this is where we will find the optimal solution.
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Vertex

X is a vertex of P if there is no
¥,z € P such that 30 < A < 1 and

x=Ay+(1-XN)z
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Existence

Theorem 3.37

» Consider a polyhedron P in standard
form.

» If it is not empty, it has at least one
vertex.

Idea of the proof

» Start from x € P.

» Follow a direction pointing to a
constraint.

» Activate the first constraint met.

» Repeat in the facet which is of lower
dimension.

~
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Feasible directions

Motivation

» Most algorithms are iterative. They move from a feasible point in a given
direction.

» We must make sure that it is possible to generate another feasible point
along that direction.
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Definition

Consider Y C R" be the feasible set and x € Y.
The direction d € R” is feasible in x if 3n > 0 such that

x+ade Y V0<a<n.

11/57



Examples




Examples




Examples




Examples




Examples




Examples

™ / /

d

12/57



Feasible direction in a convex set

If X is convex, and x,y € X,
d=y—x

is feasible in x.
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Feasible direction in a convex set

If X is convex, and x,y € X,
d=y—x

is feasible in x.
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Polyhedron in standard form

P={xeR"Ax=b, x >0}

xteP,deR" a>0.
Two conditions for d to be feasible

b= A(x" + ad) = Ax" + aAd = b+ aAd
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Polyhedron in standard form

P={xeR"Ax=b, x >0}

xteP,deR" a>0.
Two conditions for d to be feasible

b= A(x" + ad) = Ax" + aAd = b+ aAd
Theorem 3.13: first condition

Ad = 0.
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Polyhedron in standard form

Theorem 3.13: second condition

> If x,-Jr > 0, Vi: every direction is
feasible. ®

» If 3i such that x;" = 0, then d; > 0.
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Standard form

Motivation
P |t is convenient to write linear constraints in standard form.
» All inequality constraints are non negativity constraints.

» The rest are equality constraints.
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Standard form

subject to

where A € R™" and b € R™.
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Equality constraints

Ax=0>b
Number of x such that Ax = b
» 0: incompatible
» 1: non singular

» oo: underdetermined: the only interesting one
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Rank

1 -1 0 1 2
A=10 01 -1 b=1 3
1 -1 1 0 5
Compatible: x; =0, xo =0, x3 =5, x4 = 2.
X1 —Xo +x, = 2
X3 —x4 = 3

X1 —Xo +X3 = b

rank(A) = 2.

Xa =2 — X1+ X
X3—2+X1—X2:3
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Redundant constraints

» Consider a compatible system Ax = b, A€ R™" b e R™.
» Rank(A) =r < m.

» Then there exists m — r redundant constraints that can be removed.
Theorem 3.6

It can be assumed that A is of full rank.

21/57



Elimination of constraints

Motivation
» If the polyhedron is in standard form,

» we use the equality constraints to eliminate some of them.
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Example

X3:1_X1—X2

minx; + X2 + X3 + X =1 — x4 %

subject to
X1 +x+x3=1 minx; +x+1—x—x+1-x+x
x1—X+x,=1 =—x1+Xx+2
X1, X2, X3, X3 > 0. Warning: x; = 3,x, = 1, x3 = =3,

X4 = -1
Terminology: x3, x4: basic variables
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Method

Ax =b, Ac R™" becR" x &R" rank(A) = m.

» Select m columns of A linearly independent to form B € R™*™:
AP = (B N) with PPT = |
» Rewrite the equality constraints:
Ax = (AP)(P"x) = Bxg + Nx, = b
» Eliminate the basic variables:
xg = B7*(b — Nxy).
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Example

X1 +Xo +X3 =1

X1 —Xo +Xx, =

1 110 1
A‘<1—101> b_<1)'

Eliminate x3 and xu.

o = o= OO
= o = O O O
== O OO

ar = (
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Example



Algebraic representation of a vertex

Intuition
> At a vertex, constraints are active. AP = (B|N)
» Standard form: x; = 0. B-1(p_ N _—
» To find a vertex: x:P( (b— X’V)):p<0 )
1. Select and eliminate basic XN Re=m
variables. B~lb>0.

2. Set all non basic variables to 0.
3. Check feasibility.

Theorem 3.35
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Definition

Consider
> P ={xe€R"|Ax = b,x > 0},
> AcR™" becR™ n>m,
» x € R" such that Ax = b,
» a set of indices ji, ..., jm-
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Definition

x and the indices form a basic solution if

Consider
> P ={xe€R"|Ax = b,x > 0}, 1. B=(Aj---A,,) is non singular,
> AcR™" beR™ n>m, 2. x;=0if i #ji,. .. jm.
» x € R" such that Ax = b,
» a set of indices ji, ..., jm-
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Definition

Consider
> P ={xe€R"|Ax = b,x > 0},
> AcR™" becR™ n>m,
» x € R" such that Ax = b,
» a set of indices ji, ..., jm-

x and the indices form a basic solution if

1. B=(Aj---A,,) is non singular,

2. xi=0if i #ji, ..\ jm
If
xg = B7'bh >0,

it is a feasible basic solution.
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Equivalence

Theorem 3.40

x* € P is a vertex of P if and only if it is a feasible basic solution.
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Example
Polyhedron

p_ {Cl) Ix1 +x2 < 1,3x + 10x2 < 15,x1 > 0, %, 20}-
2

Polyhedron in standard form

X1
Q={[?| eriax=bx>0},

X3
X4

1 110 1
A_<3 10 0 1>’b_<15)'

with
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Example
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Example

P Basic solution with x3 and x4 in the basis (j; = 3, o = 4).

This basic solution is feasible and corresponds to point A = (0, 0) in the figure.

P Basic solution with x; and x4 in the basis (j; = 1, j» = 4).

o]
|
TN
w =
= o
~—
o]
|
—

Il
/\
(=
w
o
~——
X
©
1l
)
|
-
o
1l
~
o
N
x
1l
oo~

i
N

This basic solution is feasible and corresponds to point B = (1,0) .

P Basic solution with xp and x4 in the basis (j; = 2, j» = 4).
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This basic solution is feasible and corresponds to point C = (0, 1) in the figure.
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Example

P Basic solution with x; and xy in the basis (ji = 1,j = 2).

ot (.

This basic solution is not feasible because B~ 1b }é 0. It corresponds to point D = (—%, %) in the figure.
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> Basic solution with x; and x3 in the basis (j1 = 1, j» = 3).

This basic solution is not feasible because B~ b # 0. It corresponds to point E = (5, 0).

> Basic solution with xp and x3 in the basis (j; = 2, j» = 3).

L1 3
B:(l(l) é>;571:<(1) _%);xg:Bilb:<_%>;x: _

This basic solution is not feasible because B~ 1b },4 0. It corresponds to point F = (0, %) in the figure.

ONIFVIW o
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Example

X2
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Degeneracy

Context
» The concepts of vertex and basic feasible solutions are equivalent.
» But there is not necessarily a bijection between the two sets.

» A vertex may correspond to several basic feasible solutions.
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Example
Consider the polyhedron in R:
x1+x <1
0<x <1
0<x<1

We consider the equivalent polyhedron in standard form in R5:

X1—|—X2—|—X3:1
X1+X4:1
X2+ X5 = 1

X1, X2, X3, X4, X5 Z 0

11100 1
A= 10010 b=11
01001 1
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Example: first basis

11 1 00 1
A= 10010 b=11
01 001 1
1
1
xg=B b= 0 X = 0 >0
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Example: second basis
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X1:0
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Example

.
I
===

Basis 1: [1,3,5]
Basis 2: [1,4,5]
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Definition

P={xeR"NAx=b,x >0}, Ac R™" beR™
A basic solution x is degenerate if
» more than n constraints are active at x, or

» more than n — m components of x are 0.

Note: the equality constraints are always active

40 /57



Basic directions

Motivation

» The concept of basic and non basic variables allowed us to identify the
vertices of the polyhedron.

» Let's now use them to identify feasible directions.
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Feasible direction

Reminder
d is feasible at x if

Ad = 0,

d,ZOIfX,:O

X — XB _ B~1b d— ds
XN 0 dN

dyv =(0,0,0,1,0,0,0)
Ad = Bdg + Ndy

= Bdg+ Y Ajd;=Bds+A, =0,

j=m+1

ds = —B'A,.

)
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Feasible direction

Theorem 3.44

If x is non degenerate, any basic direction is feasible.

Idea
d is feasible at x if
Ad =0,

d,ZOIfX,:O

If x is non degenerate, only non basic variables are 0.
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Reduced costs

Motivation
» Let's now look at the objective function c7x.
» Its gradient ¢ provides information about its slope.
» In linear optimization, the gradient/slope is constant.

» We are interested in the slope of the objective function along feasible
directions.
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Basis representation

mingepnf(x) = ¢ x

subject to
Ax=b
x > 0.
A e R™"

beR™
ceR".
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Basis representation

mingepnf(x) = ¢ x

subject to Basic solution
Ax=b

= (2)-(%")
AERan XN
beR™

c eR"
Basis

A = (B|N)
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Basis representation

mingepnf(x) = ¢ x

subject to
Ax=b

x > 0.

Ae R™"
beR™
ceR".

Basis

A = (B|N)

Basic solution
. XB . B_lb
X= XN N 0

Basic direction
- (i) (")
’ (dj)n &
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Basic directions

Basic direction
o= ()= ()
’ (di)n &
Slope along the basic direction

Vi(x)Tdi=c"dj=ck(d)s+ i (dj)n = —cE B A + ¢
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Reduced costs

Definition
- —1

Non basic variables
Slope of the objective function along the corresponding basic direction.

Basic variables
= 1 T _ _
G=¢—GB A=¢—cgeg=¢—G=0
Matrix form

c=c—A"B ¢
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Sufficient optimality conditions

If ¢ > 0, then x* is optimal.
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Sufficient optimality conditions

1 1515

0.5

X2
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Sufficient optimality conditions

X2
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Sufficient optimality conditions

1.51.5

1

05

X2
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Necessary optimality conditions

» C > 0 is not necessary at an optimal solution.

» Consider a slightly different example.
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Necessary optimality conditions

0 05 1 1515

05

-1

X2
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Necessary optimality conditions

54 /57



Necessary optimality conditions

» x* is a non degenerate feasible basic solution.
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Necessary optimality conditions

» x* is a non degenerate feasible basic solution.

» If x* is optimal, then
c=c—A"B T¢,>0.
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Necessary optimality conditions

Warning

» If the basic solution is degenerate, it is possible that ¢; < 0 for some j.
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Necessary optimality conditions

Warning
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» |t means that this is a descent direction.
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Necessary optimality conditions

Warning

» If the basic solution is degenerate, it is possible that ¢; < 0 for some j.
» It means that this is a descent direction.

» As x* is optimal, dj is infeasible.
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Summary

Constraints = polyhedron.

Active constraints.

Feasible directions.

Vertices and feasible basic solution.
Degeneracy.

Basic directions.

vvyvyvVvyvyyvVyy

Reduced costs.
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