Linear optimization

From geometry to algebra

Michel Bierlaire

Introduction to optimization and operations research

Linear optimization

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^n c_i x_i$$

subject to

$$\sum_{i=1}^{n} a_{ij} x_i = b_j, \qquad j = 1, \dots, m,$$

$$x_i \ge 0, \qquad i = 1, \dots, n.$$

Linear optimization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\sum_{i=1}^n c_i x_i$$

subject to

$$\sum_{i=1}^{n} a_{ij} x_i = b_j, \qquad j = 1, \dots, m,$$

$$x_i \ge 0, \qquad i = 1, \dots, n.$$

 $\min_{x \in \mathbb{R}^n} c^T x$

subject to

$$Ax = b,$$

 $x \ge 0,$

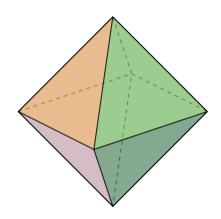
where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

Polyhedron

$$\{x \in \mathbb{R}^n | Ax \leq b\}$$
 where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Polyhedron

$$\{x \in \mathbb{R}^n | Ax \leq b\}$$
 where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.



Convex set

A polyhedron ${\mathcal P}$ is a convex set

For all
$$x, y \in \mathcal{P}$$
, for all $0 \le \lambda \le 1$,

$$\lambda x + (1 - \lambda)y \in \mathcal{P}$$
.

Polyhedron representations

$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$:

Canonical form

$$\{x \in \mathbb{R}^n | Ax \leq b\}$$

Standard form

$$\{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$$

Geometric interpretation

► Canonical form:

$$\{x \in \mathbb{R}^n | Ax \le b\}.$$

Include signed and slack variables:

$$\{x^+, x^- \in \mathbb{R}^n, x^s \in \mathbb{R}^m | A(x^+ - x^-) + x^s = b, x^+, x^-, x^s \ge 0\}.$$

 $\{x \in \mathbb{R}^{2n+m} | \tilde{A}x = b, x \ge 0\}$

Active constraints:

$$a_j^T x = b_j \Longleftrightarrow x_j^s = 0.$$

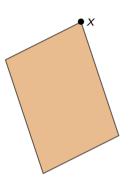
Vertices

Motivation

- ▶ The vertices of a polyhedron play a major role in optimization.
- ▶ Often, this is where we will find the optimal solution.

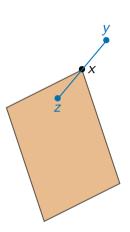
x is a vertex of $\mathcal P$ if there is no $y,z\in\mathcal P$ such that $\exists 0<\lambda<1$ and

$$x = \lambda y + (1 - \lambda)z.$$



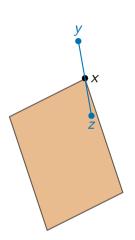
x is a vertex of $\mathcal P$ if there is no $y,z\in\mathcal P$ such that $\exists 0<\lambda<1$ and

$$x = \lambda y + (1 - \lambda)z.$$



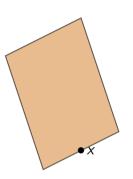
x is a vertex of $\mathcal P$ if there is no $y,z\in \mathcal P$ such that $\exists 0<\lambda<1$ and

$$x = \lambda y + (1 - \lambda)z.$$



x is a vertex of $\mathcal P$ if there is no $y,z\in\mathcal P$ such that $\exists 0<\lambda<1$ and

$$x = \lambda y + (1 - \lambda)z.$$



x is a vertex of $\mathcal P$ if there is no $y,z\in\mathcal P$ such that $\exists 0<\lambda<1$ and

$$x = \lambda y + (1 - \lambda)z.$$

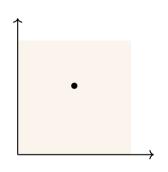
Existence

Theorem 3.37

- ightharpoonup Consider a polyhedron $\mathcal P$ in standard form.
- ▶ If it is not empty, it has at least one vertex.

Idea of the proof

- ▶ Start from $x \in \mathcal{P}$.
- Follow a direction pointing to a constraint.
- Activate the first constraint met.
- Repeat in the facet which is of lower dimension.



Feasible directions

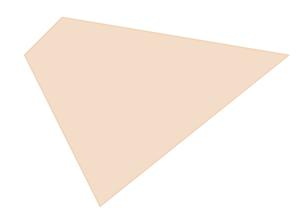
Motivation

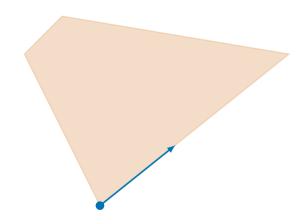
- ▶ Most algorithms are iterative. They move from a feasible point in a given direction.
- ▶ We must make sure that it is possible to generate another feasible point along that direction.

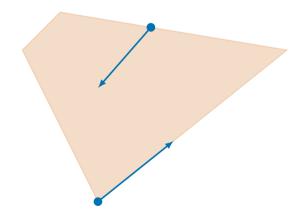
Definition

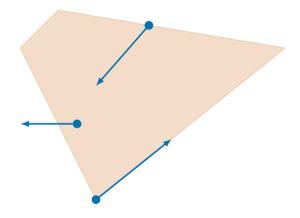
Consider $Y \subseteq \mathbb{R}^n$ be the feasible set and $x \in Y$. The direction $d \in \mathbb{R}^n$ is feasible in x if $\exists \eta > 0$ such that

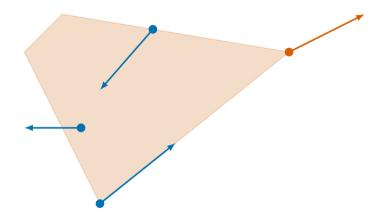
$$x + \alpha d \in Y, \forall 0 < \alpha < \eta.$$

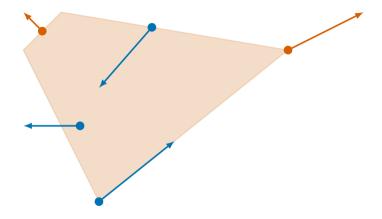










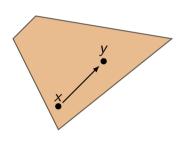


Feasible direction in a convex set

If X is convex, and $x, y \in X$,

$$d = y - x$$

is feasible in x.

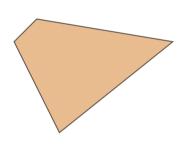


Feasible direction in a convex set

If
$$X$$
 is convex, and $x, y \in X$,

$$d = y - x$$

is feasible in x.



Polyhedron in standard form

$$\mathcal{P} = \{ x \in \mathbb{R}^n | Ax = b, \ x \ge 0 \}$$

$$x^+ \in \mathcal{P}, d \in \mathbb{R}^n, \alpha > 0.$$

Two conditions for d to be feasible

$$b = A(x^+ + \alpha d) = Ax^+ + \alpha Ad = b + \alpha Ad$$

Polyhedron in standard form

$$\mathcal{P} = \{ x \in \mathbb{R}^n | Ax = b, \ x \ge 0 \}$$

$$x^+ \in \mathcal{P}, d \in \mathbb{R}^n, \alpha > 0.$$

Two conditions for d to be feasible

$$b = A(x^{+} + \alpha d) = Ax^{+} + \alpha Ad = b + \alpha Ad$$

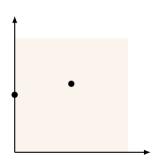
Theorem 3.13: first condition

$$Ad = 0$$
.

Polyhedron in standard form

Theorem 3.13: second condition

- ► If $x_i^+ > 0$, $\forall i$: every direction is feasible.
- ▶ If $\exists i$ such that $x_i^+ = 0$, then $d_i \geq 0$.



Standard form

Motivation

- ▶ It is convenient to write linear constraints in standard form.
- ► All inequality constraints are non negativity constraints.
- ▶ The rest are equality constraints.

Standard form

$$\min_{x\in\mathbb{R}^n}f(x)$$

subject to

$$Ax = b,$$
$$x \ge 0,$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Equality constraints

$$Ax = b$$

Number of x such that Ax = b

- ▶ 0: incompatible
- ▶ 1: non singular
- ightharpoonup ∞ : underdetermined: the only interesting one

Rank

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} \quad \text{rank}(A) = 2.$$
Compatible: $x_1 = 0$, $x_2 = 0$, $x_3 = 5$, $x_4 = 2$.
$$x_1 \quad -x_2 \qquad +x_4 = 2$$

$$x_3 \quad -x_4 = 3$$

$$x_1 \quad -x_2 \quad +x_3 = 5$$

$$x_4 = 2 - x_1 + x_2$$

$$x_3 - 2 + x_1 - x_2 = 3$$

Redundant constraints

- ▶ Consider a compatible system Ax = b, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
- $ightharpoonup \operatorname{Rank}(A) = r < m.$
- \triangleright Then there exists m-r redundant constraints that can be removed.

Theorem 3.6

It can be assumed that A is of full rank.

Elimination of constraints

Motivation

- ▶ If the polyhedron is in standard form,
- we use the equality constraints to eliminate some of them.

$$\min x_1 + x_2 + x_3 + x_4$$
 subject to

$$x_1 + x_2 + x_3 = 1$$

 $x_1 - x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$.

$$x_3 = 1 - x_1 - x_2$$
$$x_4 = 1 - x_1 + x_2$$

min
$$x_1 + x_2 + 1 - x_1 - x_2 + 1 - x_1 + x_2$$

= $-x_1 + x_2 + 2$
Warning: $x_1 = 3, x_2 = 1, x_3 = -3$,

 $x_4 = -1$

Terminology: x_3 , x_4 : basic variables

Method

$$Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n, rank(A) = m.$$

▶ Select *m* columns of *A* linearly independent to form $B \in \mathbb{R}^{m \times m}$:

$$AP = (B \ N) \text{ with } PP^T = I$$

Rewrite the equality constraints:

$$Ax = (AP)(P^Tx) = Bx_B + Nx_n = b$$

Eliminate the basic variables:

$$x_B = B^{-1}(b - Nx_N).$$

$$x_1 + x_2 + x_3 = 1$$

 $x_1 - x_2 + x_4 = 1$.
 $A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Eliminate x_3 and x_4 .

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$AP = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

$$AP = (B|N) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad N = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

and

$$x_{B} = \begin{pmatrix} x_{3} \\ x_{4} \end{pmatrix} = B^{-1}(b - Nx_{N})$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 - x_{1} - x_{2} \\ 1 - x_{1} + x_{2} \end{pmatrix}$$

Algebraic representation of a vertex

Intuition

- ► At a vertex, constraints are active.
- ightharpoonup Standard form: $x_i = 0$.
- ► To find a vertex:
 - 1. Select and eliminate basic variables.
 - 2. Set all non basic variables to 0.
 - 3. Check feasibility.

$$AP = (B|N)$$

$$x = P \begin{pmatrix} B^{-1}(b - Nx_N) \\ x_N \end{pmatrix} = P \begin{pmatrix} B^{-1}b \\ 0_{\mathbb{R}^{n-m}} \end{pmatrix}.$$

$$B^{-1}b \ge 0.$$

Theorem 3.35

Consider

- $\triangleright \mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\},\$
- $ightharpoonup A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ n \geq m,$
- \triangleright $x \in \mathbb{R}^n$ such that Ax = b,
- ightharpoonup a set of indices j_1, \ldots, j_m .

Consider

- $\triangleright \mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\},\$
- $ightharpoonup A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ n \geq m,$
- $\triangleright x \in \mathbb{R}^n$ such that Ax = b,
- ightharpoonup a set of indices j_1, \ldots, j_m .

x and the indices form a basic solution if

- 1. $B = (A_{j_1} \cdots A_{j_m})$ is non singular,
- 2. $x_i = 0$ if $i \neq j_1, \ldots, j_m$.

Consider

- $\triangleright \mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\},\$
- $ightharpoonup A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ n \geq m,$
- $\triangleright x \in \mathbb{R}^n$ such that Ax = b,
- ightharpoonup a set of indices j_1, \ldots, j_m .

x and the indices form a basic solution if

- 1. $B = (A_{j_1} \cdots A_{j_m})$ is non singular,
- 2. $x_i = 0$ if $i \neq j_1, ..., j_m$.

lf

$$x_B=B^{-1}b\geq 0,$$

it is a feasible basic solution.

Equivalence

Theorem 3.40

 $x^* \in \mathcal{P}$ is a vertex of \mathcal{P} if and only if it is a feasible basic solution.

Polyhedron

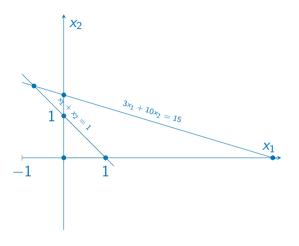
$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} | x_1 + x_2 \le 1, 3x_1 + 10x_2 \le 15, x_1 \ge 0, x_2 \ge 0 \right\}.$$

Polyhedron in standard form

$$Q = \left\{ egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix} \in \mathbb{R}^4 | Ax = b, x \geq 0
ight\},$$

with

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 3 & 10 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 15 \end{pmatrix}.$$



Basic solution with x_3 and x_4 in the basis $(j_1 = 3, j_2 = 4)$.

$$B = B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; x_B = B^{-1}b = \begin{pmatrix} 1 \\ 15 \end{pmatrix}; x = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 15 \end{pmatrix}.$$

This basic solution is feasible and corresponds to point A = (0, 0) in the figure.

Basic solution with x_1 and x_4 in the basis $(j_1 = 1, j_2 = 4)$.

$$B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}; B^{-1} = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}; x_B = B^{-1}b = \begin{pmatrix} 1 \\ 12 \end{pmatrix}; x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 12 \end{pmatrix}.$$

This basic solution is feasible and corresponds to point B = (1, 0).

Basic solution with x_2 and x_4 in the basis $(j_1 = 2, j_2 = 4)$.

$$B = \begin{pmatrix} 1 & 0 \\ 10 & 1 \end{pmatrix}; B^{-1} = \begin{pmatrix} 1 & 0 \\ -10 & 1 \end{pmatrix}; x_B = B^{-1}b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}; x = \begin{pmatrix} 10 \\ 1 \\ 0 \\ 5 \end{pmatrix}.$$

This basic solution is feasible and corresponds to point C = (0,1) in the figure.

Basic solution with x_1 and x_2 in the basis $(j_1 = 1, j_2 = 2)$.

$$B = \begin{pmatrix} 1 & 1 \\ 3 & 10 \end{pmatrix}; B^{-1} = \begin{pmatrix} \frac{10}{7} & -\frac{1}{7} \\ -\frac{3}{7} & \frac{1}{7} \end{pmatrix}; x_B = B^{-1}b = \begin{pmatrix} -\frac{5}{7} \\ \frac{12}{7} \end{pmatrix}; x = \begin{pmatrix} -\frac{5}{7} \\ \frac{12}{7} \\ 0 \\ 0 \end{pmatrix}.$$

This basic solution is not feasible because $B^{-1}b \ngeq 0$. It corresponds to point $D=(-\frac{5}{7},\frac{12}{7})$ in the figure.

Basic solution with x_1 and x_3 in the basis $(j_1 = 1, j_2 = 3)$.

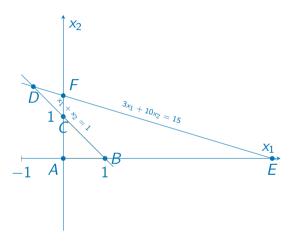
$$B = \begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix}; B^{-1} = \begin{pmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{1}{3} \end{pmatrix}; x_B = B^{-1}b = \begin{pmatrix} 5 \\ -4 \end{pmatrix}; x = \begin{pmatrix} 5 \\ 0 \\ -4 \end{pmatrix}.$$

This basic solution is not feasible because $B^{-1}b \not\geqslant 0$. It corresponds to point E=(5,0).

Basic solution with x_2 and x_3 in the basis $(j_1 = 2, j_2 = 3)$.

$$B = \begin{pmatrix} 1 & 1 \\ 10 & 0 \end{pmatrix}; B^{-1} = \begin{pmatrix} 0 & \frac{1}{10} \\ 1 & -\frac{1}{10} \end{pmatrix}; x_B = B^{-1}b = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \end{pmatrix}; x = \begin{pmatrix} 0 \\ \frac{3}{2} \\ -\frac{1}{2} \end{pmatrix}.$$

This basic solution is not feasible because $B^{-1}b \ngeq 0$. It corresponds to point $F=(0,\frac{3}{2})$ in the figure.



Degeneracy

Context

- ▶ The concepts of vertex and basic feasible solutions are equivalent.
- But there is not necessarily a bijection between the two sets.
- ► A vertex may correspond to several basic feasible solutions.

Consider the polyhedron in \mathbb{R}^2 :

$$x_1 + x_2 \le 1$$

 $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$

We consider the equivalent polyhedron in standard form in \mathbb{R}^5 :

$$x_1 + x_2 + x_3 = 1$$
 $x_1 + x_4 = 1$
 $x_2 + x_5 = 1$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

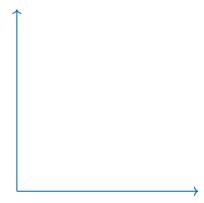
$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right) \ b = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)$$

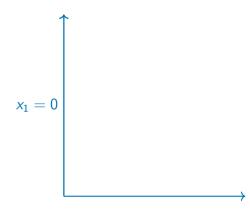
Example: first basis

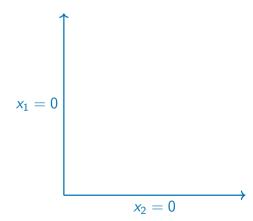
$$A = \left(egin{array}{cccc} 1 & 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 \end{array}
ight) \ b = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight) \ x_B = B^{-1}b = \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight) x = \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight) \geq 0$$

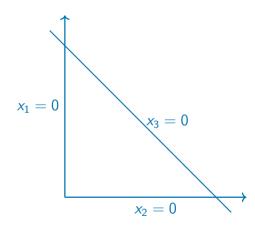
Example: second basis

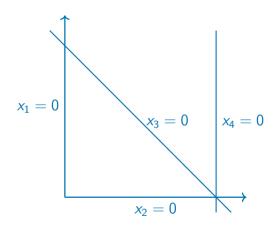
$$A = \left(egin{array}{cccc} 1 & 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 \end{array}
ight) \ b = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight) \ x_B = B^{-1}b = \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight) x = \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight) \geq 0$$

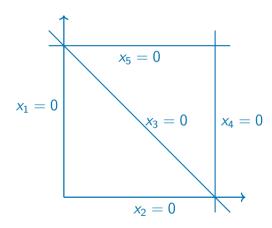


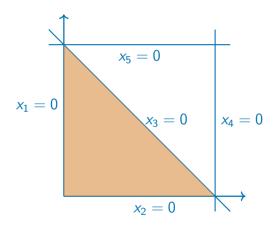


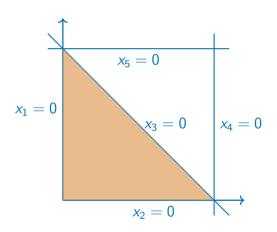












$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Basis 1: [1,3,5] Basis 2: [1,4,5]

$$\mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$$

A basic solution x is degenerate if

- \triangleright more than *n* constraints are active at x, or
- ightharpoonup more than n-m components of x are 0.

Note: the equality constraints are always active

Basic directions

Motivation

- ► The concept of basic and non basic variables allowed us to identify the vertices of the polyhedron.
- Let's now use them to identify feasible directions.

Feasible direction

Reminder

d is feasible at x if

$$Ad = 0$$
,

$$d_i \geq 0$$
 if $x_i = 0$.

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} d_B \\ d_N \end{pmatrix}$$
$$d_N = (0, 0, 0, 1, 0, 0, 0)$$
$$Ad = Bd_B + Nd_N$$
$$= Bd_B + \sum_{j=m+1}^n A_j d_j = Bd_B + A_p = 0,$$
$$d_B = -B^{-1}A_p.$$

Feasible direction

Theorem 3.44

If x is non degenerate, any basic direction is feasible.

Idea

d is feasible at x if

$$Ad = 0,$$

$$d_i \ge 0 \text{ if } x_i = 0.$$

If x is non degenerate, only non basic variables are 0.

Reduced costs

Motivation

- Let's now look at the objective function c^Tx .
- lts gradient *c* provides information about its slope.
- In linear optimization, the gradient/slope is constant.
- We are interested in the slope of the objective function along feasible directions.

$$min_{x \in \mathbb{R}^n} f(x) = c^T x$$

subject to

$$Ax = b$$

$$x \ge 0$$
.

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m$$

$$c \in \mathbb{R}^n$$
.

$$min_{x \in \mathbb{R}^n} f(x) = c^T x$$

subject to

$$Ax = b$$

$$x \ge 0$$
.

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m$$

$$c \in \mathbb{R}^n$$
.

Basis

$$A=(B|N)$$

$$min_{x \in \mathbb{R}^n} f(x) = c^T x$$

subject to

$$Ax = b$$

$$x \ge 0$$
.

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m$$

$$c \in \mathbb{R}^n$$
.

Basis

$$A = (B|N)$$

Basic solution

$$x = \left(\begin{array}{c} x_B \\ x_N \end{array}\right) = \left(\begin{array}{c} B^{-1}b \\ 0 \end{array}\right)$$

$$min_{x \in \mathbb{R}^n} f(x) = c^T x$$

subject to

$$Ax = b$$

 $x > 0$.

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m$$

$$c \in \mathbb{R}^n$$
.

Basis

$$A = (B|N)$$

Basic solution

$$x = \left(\begin{array}{c} x_B \\ x_N \end{array}\right) = \left(\begin{array}{c} B^{-1}b \\ 0 \end{array}\right)$$

Basic direction

$$d_j = \left(\begin{array}{c} (d_j)_B \\ (d_j)_N \end{array}\right) = \left(\begin{array}{c} -B^{-1}A_j \\ e_j \end{array}\right)$$

Basic directions

Basic direction

$$d_j = \left(\begin{array}{c} (d_j)_B \\ (d_j)_N \end{array}\right) = \left(\begin{array}{c} -B^{-1}A_j \\ e_j \end{array}\right)$$

Slope along the basic direction

$$\nabla f(x)^T d_j = c_B^T d_j = c_B^T (d_j)_B + c_N^T (d_j)_N = -c_B^T B^{-1} A_j + c_j$$

Reduced costs

Definition

$$\bar{c}_j = c_j - c_B^T B^{-1} A_j$$

Non basic variables

Slope of the objective function along the corresponding basic direction.

Basic variables

$$\bar{c}_j = c_j - c_B^T B^{-1} A_j = c_j - c_B^T e_j = c_j - c_j = 0$$

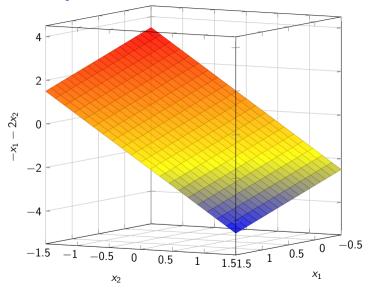
Matrix form

$$\bar{c} = c - A^T B^{-T} c_B.$$

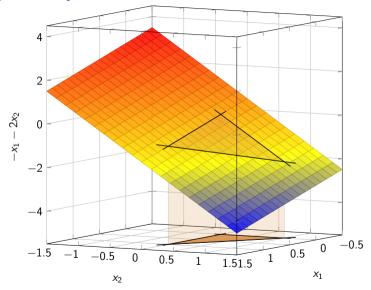
Sufficient optimality conditions

If $\bar{c} \geq 0$, then x^* is optimal.

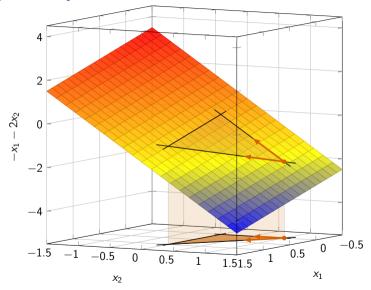
Sufficient optimality conditions



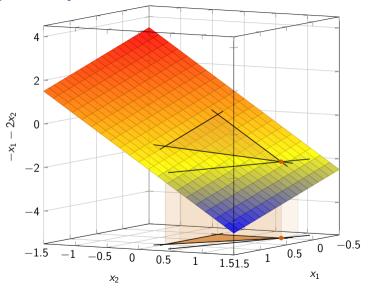
Sufficient optimality conditions

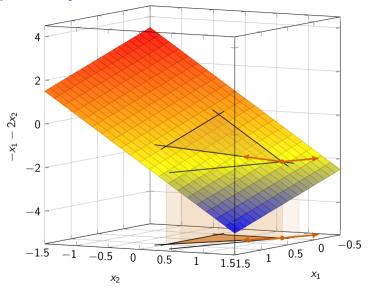


Sufficient optimality conditions



- $ightharpoonup ar{c} \geq 0$ is not necessary at an optimal solution.
- ► Consider a slightly different example.





 \triangleright x^* is a non degenerate feasible basic solution.

- \triangleright x^* is a non degenerate feasible basic solution.
- ▶ If x^* is optimal, then

$$\bar{c} = c - A^T B^{-T} c_b \geq 0.$$

Warning

▶ If the basic solution is degenerate, it is possible that $\bar{c}_i < 0$ for some j.

Warning

- ▶ If the basic solution is degenerate, it is possible that $\bar{c}_i < 0$ for some j.
- ▶ It means that this is a descent direction.

Warning

- ▶ If the basic solution is degenerate, it is possible that $\bar{c}_i < 0$ for some j.
- lt means that this is a descent direction.
- As x^* is optimal, d_j is infeasible.

Summary

- ► Constraints = polyhedron.
- Active constraints.
- ► Feasible directions.
- Vertices and feasible basic solution.
- Degeneracy.
- Basic directions.
- Reduced costs.