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Linear optimization

min
x∈Rn

n
∑

i=1

cixi

subject to

n
∑

i=1

aijxi = bj , j = 1, . . . ,m,

xi ≥ 0, i = 1, . . . , n.
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Linear optimization

min
x∈Rn

n
∑

i=1

cixi

subject to

n
∑

i=1

aijxi = bj , j = 1, . . . ,m,

xi ≥ 0, i = 1, . . . , n.

min
x∈Rn

cTx

subject to

Ax = b,

x ≥ 0,

where A ∈ R
m×n, b ∈ R

m, and c ∈ R
n.
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Polyhedron

{x ∈ R
n|Ax ≤ b}

where A ∈ R
m×n, b ∈ R

m.
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Convex set

A polyhedron P is a convex set

For all x , y ∈ P , for all 0 ≤ λ ≤ 1,

λx + (1− λ)y ∈ P .
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Polyhedron representations

A ∈ R
m×n, b ∈ R

m:

Canonical form

{x ∈ R
n|Ax ≤ b}

Standard form

{x ∈ R
n|Ax = b, x ≥ 0}
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Geometric interpretation

◮ Canonical form:
{x ∈ R

n|Ax ≤ b}.

◮ Include signed and slack variables:

{x+, x− ∈ R
n, x s ∈ R

m|A(x+ − x−) + x s = b, x+, x−, x s ≥ 0}.

{x ∈ R
2n+m|Ãx = b, x ≥ 0}

◮ Active constraints:
aTj x = bj ⇐⇒ x sj = 0.
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Vertices

Motivation
◮ The vertices of a polyhedron play a major role in optimization.

◮ Often, this is where we will find the optimal solution.
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Vertex

x is a vertex of P if there is no
y , z ∈ P such that ∃0 < λ < 1 and

x = λy + (1− λ)z .

•x
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Existence

Theorem 3.37
◮ Consider a polyhedron P in standard

form.

◮ If it is not empty, it has at least one
vertex.

Idea of the proof

◮ Start from x ∈ P .

◮ Follow a direction pointing to a
constraint.

◮ Activate the first constraint met.

◮ Repeat in the facet which is of lower
dimension.

•
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Feasible directions

Motivation
◮ Most algorithms are iterative. They move from a feasible point in a given

direction.

◮ We must make sure that it is possible to generate another feasible point
along that direction.
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Definition

Consider Y ⊆ R
n be the feasible set and x ∈ Y .

The direction d ∈ R
n is feasible in x if ∃η > 0 such that

x + αd ∈ Y , ∀0 < α < η.
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Feasible direction in a convex set

If X is convex, and x , y ∈ X ,

d = y − x

is feasible in x . •
x

•
y
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Feasible direction in a convex set

If X is convex, and x , y ∈ X ,

d = y − x

is feasible in x .
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Polyhedron in standard form

P = {x ∈ R
n|Ax = b, x ≥ 0}

x+ ∈ P , d ∈ R
n, α > 0.

Two conditions for d to be feasible

b = A(x+ + αd) = Ax+ + αAd = b + αAd
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Polyhedron in standard form

P = {x ∈ R
n|Ax = b, x ≥ 0}

x+ ∈ P , d ∈ R
n, α > 0.

Two conditions for d to be feasible

b = A(x+ + αd) = Ax+ + αAd = b + αAd

Theorem 3.13: first condition

Ad = 0.
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Polyhedron in standard form

Theorem 3.13: second condition
◮ If x+i > 0, ∀i : every direction is

feasible.

◮ If ∃i such that x+i = 0, then di ≥ 0.
•

•
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Standard form

Motivation
◮ It is convenient to write linear constraints in standard form.

◮ All inequality constraints are non negativity constraints.

◮ The rest are equality constraints.
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Standard form

min
x∈Rn

f (x)

subject to

Ax = b,

x ≥ 0,

where A ∈ R
m×n and b ∈ R

m.
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Equality constraints

Ax = b

Number of x such that Ax = b

◮ 0: incompatible

◮ 1: non singular

◮ ∞: underdetermined: the only interesting one
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Rank

A =





1 −1 0 1
0 0 1 −1
1 −1 1 0



 b =





2
3
5



 rank(A) = 2.

Compatible: x1 = 0, x2 = 0, x3 = 5, x4 = 2.
x1 −x2 +x4 = 2

x3 −x4 = 3
x1 −x2 +x3 = 5

x4 = 2− x1 + x2
x3 − 2 + x1 − x2 = 3
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Redundant constraints

◮ Consider a compatible system Ax = b, A ∈ R
m×n, b ∈ R

m.

◮ Rank(A) = r < m.

◮ Then there exists m − r redundant constraints that can be removed.

Theorem 3.6

It can be assumed that A is of full rank.
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Elimination of constraints

Motivation
◮ If the polyhedron is in standard form,

◮ we use the equality constraints to eliminate some of them.
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Example

min x1 + x2 + x3 + x4

subject to

x1 + x2 + x3 = 1

x1 − x2 + x4 = 1

x1, x2, x3, x4 ≥ 0.

x3= 1− x1 − x2

x4= 1− x1 + x2

min x1 + x2 + 1− x1 − x2 + 1− x1 + x2

= −x1 + x2 + 2

Warning: x1 = 3,x2 = 1, x3 = −3,
x4 = −1
Terminology: x3, x4: basic variables

23 / 57



Method

Ax = b, A ∈ R
m×n, b ∈ R

m, x ∈ R
n, rank(A) = m.

◮ Select m columns of A linearly independent to form B ∈ R
m×m:

AP = (B N) with PPT = I

◮ Rewrite the equality constraints:

Ax = (AP)(PTx) = BxB + Nxn = b

◮ Eliminate the basic variables:

xB = B−1(b − NxN).
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Example

x1 +x2 +x3 = 1
x1 −x2 +x4 = 1.

A =

(

1 1 1 0
1 −1 0 1

)

b =

(

1
1

)

.

Eliminate x3 and x4.

P =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









AP =

(

1 0 1 1
0 1 1 −1

)
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Example

AP = (B |N) =

(

1 0 1 1
0 1 1 −1

)

B =

(

1 0
0 1

)

N =

(

1 1
1 −1

)

and

xB =

(

x3
x4

)

= B−1(b − NxN)

=

(

1 0
0 1

)((

1
1

)

−

(

1 1
1 −1

)(

x1
x2

))

=

(

1− x1 − x2
1− x1 + x2

)
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Algebraic representation of a vertex

Intuition
◮ At a vertex, constraints are active.

◮ Standard form: xi = 0.

◮ To find a vertex:

1. Select and eliminate basic

variables.

2. Set all non basic variables to 0.

3. Check feasibility.

AP = (B |N)

x = P

(

B−1(b − NxN)
xN

)

= P

(

B−1b

0Rn−m

)

.

B−1b ≥ 0.

Theorem 3.35
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Definition

Consider

◮ P = {x ∈ R
n|Ax = b, x ≥ 0},

◮ A ∈ R
m×n, b ∈ R

m, n ≥ m,

◮ x ∈ R
n such that Ax = b,

◮ a set of indices j1, . . . , jm.
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Definition

Consider

◮ P = {x ∈ R
n|Ax = b, x ≥ 0},

◮ A ∈ R
m×n, b ∈ R

m, n ≥ m,

◮ x ∈ R
n such that Ax = b,

◮ a set of indices j1, . . . , jm.

x and the indices form a basic solution if

1. B = (Aj1 · · ·Ajm) is non singular,

2. xi = 0 if i 6= j1, . . . , jm.

If
xB = B−1b ≥ 0,

it is a feasible basic solution.
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Equivalence

Theorem 3.40
x∗ ∈ P is a vertex of P if and only if it is a feasible basic solution.
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Example

Polyhedron

P =

{(

x1
x2

)

|x1 + x2 ≤ 1, 3x1 + 10x2 ≤ 15, x1 ≥ 0, x2 ≥ 0

}

.

Polyhedron in standard form

Q =























x1
x2
x3
x4









∈ R
4|Ax = b, x ≥ 0















,

with

A =

(

1 1 1 0
3 10 0 1

)

, b =

(

1
15

)

.
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Example

x
1 +

x
2 =

1

3x1 + 10x2 = 15

−1 1

1

x1

x2
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Example
◮ Basic solution with x3 and x4 in the basis (j1 = 3, j2 = 4).

B = B
−1

=

(

1 0
0 1

)

; xB = B
−1

b =

(

1
15

)

; x =









0
0
1
15









.

This basic solution is feasible and corresponds to point A = (0, 0) in the figure.

◮ Basic solution with x1 and x4 in the basis (j1 = 1, j2 = 4).

B =

(

1 0
3 1

)

; B
−1

=

(

1 0
−3 1

)

; xB = B
−1

b =

(

1
12

)

; x =









1
0
0
12









.

This basic solution is feasible and corresponds to point B = (1, 0) .

◮ Basic solution with x2 and x4 in the basis (j1 = 2, j2 = 4).

B =

(

1 0
10 1

)

;B
−1

=

(

1 0
−10 1

)

; xB = B
−1

b =

(

1
5

)

; x =









10
1
0
5









.

This basic solution is feasible and corresponds to point C = (0, 1) in the figure.
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Example
◮ Basic solution with x1 and x2 in the basis (j1 = 1,j2 = 2).

B =

(

1 1
3 10

)

;B
−1

=

(

10
7

−

1
7

−

3
7

1
7

)

; xB = B
−1

b =

(

−

5
7

12
7

)

; x =









−

5
7

12
7
0
0









.

This basic solution is not feasible because B−1b � 0. It corresponds to point D = (− 5
7
,

12
7
) in the figure.

◮ Basic solution with x1 and x3 in the basis (j1 = 1, j2 = 3).

B =

(

1 1
3 0

)

; B
−1

=

(

0 1
3

1 −

1
3

)

; xB = B
−1

b =

(

5
−4

)

; x =









5
0
−4
0









.

This basic solution is not feasible because B−1b � 0. It corresponds to point E = (5, 0).

◮ Basic solution with x2 and x3 in the basis (j1 = 2, j2 = 3).

B =

(

1 1
10 0

)

;B
−1

=

(

0 1
10

1 −

1
10

)

; xB = B
−1

b =

(

3
2

−

1
2

)

; x =









0
3
2

−

1
2
0









.

This basic solution is not feasible because B−1b � 0. It corresponds to point F = (0, 3
2
) in the figure.
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Example

x
1 +

x
2 =

1

3x1 + 10x2 = 15

A
B

C

D

E

F

−1 1

1

x1

x2
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Degeneracy

Context
◮ The concepts of vertex and basic feasible solutions are equivalent.

◮ But there is not necessarily a bijection between the two sets.

◮ A vertex may correspond to several basic feasible solutions.
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Example
Consider the polyhedron in R

2:

x1 + x2 ≤ 1

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

We consider the equivalent polyhedron in standard form in R
5:

x1 + x2 + x3 = 1

x1 + x4 = 1

x2 + x5 = 1

x1, x2, x3, x4, x5 ≥ 0

A =





1 1 1 0 0
1 0 0 1 0
0 1 0 0 1



 b =





1
1
1




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Example: first basis

A =





1 1 1 0 0
1 0 0 1 0
0 1 0 0 1



 b =





1
1
1





xB = B−1b =





1
0
1



 x =













1

0

1













≥ 0
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Example: second basis

A =





1 1 1 0 0
1 0 0 1 0
0 1 0 0 1



 b =





1
1
1





xB = B−1b =





1
0
1



 x =













1

0
1













≥ 0
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x1 = 0



Example

x1 = 0

x2 = 0



Example

x1 = 0

x2 = 0

x3 = 0



Example

x1 = 0

x2 = 0

x3 = 0 x4 = 0



Example

x1 = 0

x2 = 0

x3 = 0 x4 = 0

x5 = 0



Example

x1 = 0

x2 = 0

x3 = 0 x4 = 0

x5 = 0
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Example

x1 = 0

x2 = 0

x3 = 0 x4 = 0

x5 = 0

x =













1
0
0
0
1













Basis 1: [1,3,5]
Basis 2: [1,4,5]
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Definition

P = {x ∈ R
n|Ax = b, x ≥ 0}, A ∈ R

m×n, b ∈ R
m.

A basic solution x is degenerate if

◮ more than n constraints are active at x , or

◮ more than n −m components of x are 0.

Note: the equality constraints are always active
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Basic directions

Motivation
◮ The concept of basic and non basic variables allowed us to identify the

vertices of the polyhedron.

◮ Let’s now use them to identify feasible directions.
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Feasible direction

Reminder
d is feasible at x if

Ad = 0,

di ≥ 0 if xi = 0.

x =

(

xB
xN

)

=

(

B−1b

0

)

d =

(

dB
dN

)

dN = (0, 0, 0, 1, 0, 0, 0)

Ad = BdB + NdN

= BdB +
n

∑

j=m+1

Ajdj = BdB + Ap = 0,

dB = −B−1Ap.
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Feasible direction

Theorem 3.44
If x is non degenerate, any basic direction is feasible.

Idea
d is feasible at x if

Ad = 0,

di ≥ 0 if xi = 0.

If x is non degenerate, only non basic variables are 0.
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Reduced costs

Motivation
◮ Let’s now look at the objective function cTx .

◮ Its gradient c provides information about its slope.

◮ In linear optimization, the gradient/slope is constant.

◮ We are interested in the slope of the objective function along feasible
directions.
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Basis representation

minx∈Rn f (x) = cTx

subject to
Ax = b

x ≥ 0.

A ∈ R
m×n

b ∈ R
m

c ∈ R
n.
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Basis representation

minx∈Rn f (x) = cTx

subject to
Ax = b

x ≥ 0.

A ∈ R
m×n

b ∈ R
m

c ∈ R
n.

Basis

A = (B |N)

Basic solution

x =

(

xB
xN

)

=

(

B−1b

0

)

Basic direction

dj =

(

(dj)B
(dj)N

)

=

(

−B−1Aj

ej

)
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Basic directions

Basic direction

dj =

(

(dj)B
(dj)N

)

=

(

−B−1Aj

ej

)

Slope along the basic direction

∇f (x)Tdj = cTdj = cTB (dj)B + cTN (dj)N = −cTB B
−1Aj + cj
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Reduced costs

Definition

c̄j = cj − cTB B
−1Aj

Non basic variables
Slope of the objective function along the corresponding basic direction.

Basic variables

c̄j = cj − cTB B
−1Aj= cj − cTB ej = cj − cj = 0

Matrix form

c̄= c − ATB−TcB .
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Sufficient optimality conditions

If c̄ ≥ 0, then x∗ is optimal.
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Sufficient optimality conditions

−0.500.511.5
−1.5 −1 −0.5 0 0.5 1 1.5

−4

−2

0

2

4

x1x2

−
x 1

−
2x

2
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Necessary optimality conditions

◮ c̄ ≥ 0 is not necessary at an optimal solution.

◮ Consider a slightly different example.
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Necessary optimality conditions
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Necessary optimality conditions

−0.500.511.5
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−4
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0

2
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Necessary optimality conditions

◮ x∗ is a non degenerate feasible basic solution.
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Necessary optimality conditions

◮ x∗ is a non degenerate feasible basic solution.

◮ If x∗ is optimal, then
c̄ = c − ATB−T cb ≥ 0.
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Necessary optimality conditions

Warning

◮ If the basic solution is degenerate, it is possible that c̄j < 0 for some j .
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Necessary optimality conditions

Warning

◮ If the basic solution is degenerate, it is possible that c̄j < 0 for some j .

◮ It means that this is a descent direction.
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Necessary optimality conditions

Warning

◮ If the basic solution is degenerate, it is possible that c̄j < 0 for some j .

◮ It means that this is a descent direction.

◮ As x∗ is optimal, dj is infeasible.
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Summary

◮ Constraints = polyhedron.

◮ Active constraints.

◮ Feasible directions.

◮ Vertices and feasible basic solution.

◮ Degeneracy.

◮ Basic directions.

◮ Reduced costs.
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