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Modeling

Motivation
» Translating a concrete problem into a mathematical model is difficult.
» It is more of an art, but it requires rigor and systematism.

» We introduce the process and illustrates it on a small example.
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Motivation

Mathematical model
» Mathematical representation

» of a phenomenon,

» done in order to better study it.

3/59



Model for optimization

Decision variables
x € R"

Objective function

Constraints

xe X CR"
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Example: Chateau Laupt-Himum

Problem description

| 2

>

Rosé and red wine using local grapes.

Grape: max. 1 ton of Pinot. Price:
3€/kilo.

Vinification as rosé: cost 2€ per kilo of
grape.

Vinification as red (Pinot Noir) : cost
3.50€ per kilo of grape.

For one liter of wine, one kilo of grapes is
needed.

5/59



Example: Chateau Laupt-Himum

Problem description

Marketing strategy: rebate proportional to the
production

» Price rosé: 15€/(. Rebate: 2€ per 100¢.

» Example: if 100 ¢ of rosé are produced, the
price is 13€/(

» Price red: 23€/(. Rebate: 1€ per 100/.

» Example: if 100 ¢ of red are produced, the
price is 22€/(
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Chateau Laupt-Himum: decision variables

Liters of rosé to produce per year
X1

Liters of red to produce per year

X2

Kilos of grapes to buy

X3
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Chateau Laupt-Himum: objective function

Revenue per liter of rosé

15 2
100

Revenue per liter of red

23— —Xxo

Total revenues

2 1
X1 (15 - le) + X (23 - WX2>
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Chateau Laupt-Himum: objective function

Cost for producing rosé
2X1
Cost for producing red

3.5X2

Cost for buying grapes

3X3
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Chateau Laupt-Himum: objective function

Total benefits

2 1
X1 <15 — le) + Xo (23 - mXQ) — (2X1 + 3.5X2 -+ 3X3)
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Chateau Laupt-Himum: constraints
Maximum quantity of grapes
x3 < 1000
1 kilo of grapes produces 1 liter of wine

x1+x2 < x3

Non negativity

X1207 X2207 X3ZO
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Mathematical model

2 1
Te% f(x)=x (15 — ﬁxl) + X (23 — ﬁ)@) —(2x1 + 3.5x2 + 3x3)

subject to

x1+x < x3
x3 < 1000
x>0
x>0
x3 >0
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Notations

F(x) = (a — 1) + (e +2)°

y = min f(x) yeR

xER? x* = argmin, cg. f(x) = < 12 )
x* =argmin,cgn f(x) x* €R” -
y = f(x¥) y = min f(x) = 0.

x€eR"
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Problem transformations

Motivation
» There are many ways to write an optimization problem.
» Algorithms usually require a specific type of formulation.

» For instance, most optimization software are designed only for minimization,
or only for maximization.
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Equivalence

Definition

Problems P; and P, are equivalent if a
feasible point of P; can be created
from a feasible point of P,, with the
same value of the objective function.

Pi:min2—-—xs.t. x>0and x <1

P,:—maxys. t.y>—2and y < -1
X—=>y=x—2
x=05by=-15

Obj. P, =0bj. P, =15
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Minimization or maximization

min f(x) = —max —f(x), argmin f(x) = argmax —f(x)
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Constant term

_____
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Inequality constraints
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Inequality constraints

LON_
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Equality and inequality constraints
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Signed variables

Some software impose only non negative variables
XER x=xT—x"withx™ >0 x>0
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Translation

Constraint x > a. Change of variable: x = X + a. Constraint become X > 0
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Slack variables

Linear Non linear

g(x) <0+=g(x)+22=0.
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Problem definition

Motivation
» We provide a generic definition of an optimization problem.

» We discuss the types of solutions that can be found.
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Problem definition

min f(x) f:R"— R n>0,

x€R"
subject to
h(x)=0, h:R"— R™ m >0,
g(x) <0, g R 5 RP.p >0,
and

x € X, Xconvex.
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Feasible set

Y={xeR"|h(x)=0, g(x) <0and x € X}

e )

subject to
xeyY
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Global optimum
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Global minimum

x* is a global minimum if

F(x*) < (), Vx e Y.
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Strict global optimum
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Strict global minimum

x* is a strict global minimum if

f(x*) < f(x), Vx €Y, x #x".
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Local optimum
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Local minimum

x* is a local minimum if there exists € > 0 such that

f(x*) < f(x), Vxe€ Y suchthat |[x — x*

<e€.
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Strict local optimum

f(x)
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Strict local minimum

x* is a strict local minimum if there exists € > 0 such that

f(x*) < f(x), Vx € Y such that ||x — x*

< e, x #x".
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Properties

Motivation

» We introduce some important properties of optimization problems.
» We consider from now on only minimization.

» The lecture provides the intuitions. We refer to Section 1.4 of the book for
a more rigorous discussion.
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Function bounded from below

f(x) =—x
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Infimum vs optimum

f(x)=e~

Bounded from below, but
no optimum

» Give me any x.
> x + 1 is always better.

» Indeed,
exp(—(x + 1)) < exp(—x).
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Infimum vs optimum

Infimum
Largest lower bound

inf f(y) <f(x), VxeY

yey

For each M > inf,cy f(y),

dx € Y such that f(x) < M.

Always exists is f is bounded.

Optimum

x* such that f(x*) = im; f(y)
ye

Does not always exist. See Weierstrass
theorem 1.14 for sufficient conditions.
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Optimality conditions

Motivation
» Characterization of optimal solutions.

Central role in optimization.

>

» Key ingredients for the algorithms.

» Unconstrained optimization: Fermat's theorem.
>

Constrained optimization: Karush-Kuhn-Tucker conditions.
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Unconstrained optimization

Problem definition

e )

where f is twice differentiable.

Fermat's theorem
» x*is a local minimum of
f:R" — R.
» If f is differentiable around x*,
then
Vi(x*)=0.

> If f is twice differentiable around
x*, then

V2f(x*) > 0 [positive semidefinite].

Theorem 5.1
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Necessary, but not sufficient

f(x)

Example
f(x) =x*

f'(x) = 3x2, f"(x) = 6x
f'(0)=0,f"(0) >0

\/
X
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Sufficient optimality conditions

Theorem 5.7
» Consider x* and f : R" — R twice differentiable.
> If
Vi(x*)=0
» and

V2f(x*) > 0 [positive definite]

» then x* is a local minimum of f.
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Examples

f'(x) = 3x%, f"(x) = 6x
'(0) = 0,f"(0) # 0

f(x)
f'(x) = 2x, f"(x) =2

~

(0) = 0, f"(0) > 0
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Examples

f'(x) = 4x3, f"(x) = 12x°
f'(0) =0,f"(0) # 0
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Convexity

Set
A set X is convex if, Vx,y € X, VO < A < 1,

ax+(1—a)y € X.

Function
A function f is convex Vx, y, VO < X <1,

F(Ax+ (1= XN)y) < AM(x)+ (1= Nf(y).

Convexity and second derivatives
» Let A\j,..., A\, be the eigenvalues of V2f(x*)
> VA (x*)>0<= )\ >0,i=1,...,n
» Eigenvalue = curvature along the eigenvector.
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Global and local optimum

Sufficient conditions are verified both for
local and global minima.

f(x)

A

For convex functions, local optimum =

global optimum.

f(x)

Y
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Global optimum

Theorem 5.9
» f:R" = R continuous.
» x* € R" a local minimum of f.

» |If f is convex, then x* is a global
minimum of f.

» If f is strictly convex, x* is the
unique global minimum of f.
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Global optimum

Theorem 5.9 F(x)
» f:R” — R continuous. A
» x* € R"” a local minimum of f.
» |If f is convex, then x* is a global

minimum of f.

» If f is strictly convex, x* is the
unique global minimum of f. - X
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Constrained optimization: the

m]iRn f(x) f:R" — R, n> 0,convex,
xeR"

subject to

x € X, Xconvex.

convex case

Necessary and sufficient condition

x* global optimum
<~

Vx € X, VF(x*)T(x — x*) > 0.
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Necessary and sufficient condition

Y
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Constrained optimization: the general case

min f(x) f:R" — R n >0,

x€eR"

subject to

h(x)=0, h:R"—R™ m>0,
g(x) <0, g:R" R p=>0.

Definition: Lagrangian

L0x, A, 1) = F(x) + ATh(x) + p" g(x).
A€eR™ peRP
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Karush-Kuhn-Tucker: first-order necessary conditions

Theorem 6.13
» f:R" >R, g:R”"— RP, h:R" — R™ continuously differentiable.
» x* local optimal of the problem.

» If the constraints are “qualified” at x*, there exists a unique A\* € R™, a
unique pu* € RP, u* > 0, such that

ViL(x, A", %) =0,

and
pigi(x*)=0,i=1,...,p.
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Karush-Kuhn-Tucker: second-order necessary conditions

Theorem 6.13

» f:R" >R, g:R”" = RP, h:R" — R™ twice differentiable.

» x* local optimal of the problem.

» If the constraints are “qualified” at x*, there exists a unique A* € R™, a

unique pu* € RP, u* > 0, such that

yTV2 L(x, A", 1)y >0,

for each y € R” such that

., p, if gi(x*) =0.
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Notes

» Linear constraints are always “qualified”.
» Lagrangian, and Lagrange multipliers A* and p* are related to duality.
» The fact that gj(x*) = 0 plays a role. We say that the constraint is “active”.
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Active constraints

Motivation
» Active constraints = constraints that matter.

» In linear optimization, finding the optimum solution amounts to finding the
constraints that are active at the solution.
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First example

subject to

min x
xER

10 < x <4,

f(x)




First example

subject to

min x
xER

10 < x <4,

f(x)

Y



First example

subject to

min x
xER

10 < x <4,

f(x)

-10

Y



First example

subject to

min x
xER

10 < x <4,

f(x)

-10 4



First example

subject to

min x
xER

10 < x <4,

f(x)
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Second example

subject to




Second example

subject to

Y



Second example

subject to




Second example

subject to




Second example

subject to
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Definition

Inequality constraints
Consider g : R” — R and the

constraint
g(x) <0.

It is active at x* if

g(x") =0.
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Definition

Inequality constraints
Consider g : R” — R and the

constraint
g(x) <0.

It is active at x* if

g(x") =0.

Equality constraints
Consider h : R" — R and the constraint

h(x) = 0.
It is active at x* if

h(x*) = 0.
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Optimization

» Consider the problem

o )

subject to

where g : R” — RP.
» x* is a local optimum and

A(x*)={i=1,...,p|gi(x") = 0}.

» x* is also a local optimum of
min f(x)

xER"

subject to
gi(x) =0, Vi e A(x").
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Summary

vvyVvyVvVvyyvYyy

vy

Modeling.

Problem transformations.

Definitions of optimum: global/local, strict.

In the following, we work only with minimization.

We assume that there is at least one optimum.

It means that the objective function must be bounded from below on the

feasible set.
But it is not sufficient. See Weierstrass theorem for sufficient conditions.
Optimality conditions: Fermat, Karush-Kuhn-Tucker.

Constraints that do not play a role at the solution can be ignored.

59 /59



