Optimization and Operations Research

Introduction

Michel Bierlaire

Introduction to optimization and operations research

Modeling

Motivation

- ▶ Translating a concrete problem into a mathematical model is difficult.
- It is more of an art, but it requires rigor and systematism.
- ▶ We introduce the process and illustrates it on a small example.

Motivation

Mathematical model

- ► Mathematical representation
- of a phenomenon,
- done in order to better study it.

Model for optimization

Decision variables

$$x \in \mathbb{R}^n$$

Objective function

$$f(x) \in \mathbb{R}$$

Constraints

$$x \in X \subseteq \mathbb{R}^n$$

Example: Château Laupt-Himum

Problem description

Rosé and red wine using local grapes.

- Grape: max. 1 ton of Pinot. Price: 3€/kilo.
- Vinification as rosé: cost 2€ per kilo of grape.
- Vinification as red (Pinot Noir): cost 3.50 € per kilo of grape.
- For one liter of wine, one kilo of grapes is needed.

Example: Château Laupt-Himum

Problem description

Marketing strategy: rebate proportional to the production

- ▶ Price rosé: $15 \in /\ell$. Rebate: $2 \in \text{per } 100\ell$.
- ▶ Example: if 100 ℓ of rosé are produced, the price is $13 \in /\ell$
- ▶ Price red: $23 \in /\ell$. Rebate: $1 \in \text{per } 100\ell$.
- Example: if 100 \(\ell \) of red are produced, the price is 22 \(\int \ell \ell \)

Château Laupt-Himum: decision variables

Liters of rosé to produce per year

*X*₁

Liters of red to produce per year

 X_2

Kilos of grapes to buy

Château Laupt-Himum: objective function

Revenue per liter of rosé

$$15 - \frac{2}{100}x_1$$

Revenue per liter of red

$$23 - \frac{1}{100}x_2$$

Total revenues

$$x_1\left(15-\frac{2}{100}x_1\right)+x_2\left(23-\frac{1}{100}x_2\right)$$

Château Laupt-Himum: objective function

Cost for producing rosé

 $2x_{1}$

Cost for producing red

 $3.5x_2$

Cost for buying grapes

 $3x_3$

Château Laupt-Himum: objective function

Total benefits

$$x_1\left(15-\frac{2}{100}x_1\right)+x_2\left(23-\frac{1}{100}x_2\right)-\left(2x_1+3.5x_2+3x_3\right)$$

Château Laupt-Himum: constraints

Maximum quantity of grapes

$$x_3 \le 1000$$

1 kilo of grapes produces 1 liter of wine

$$x_1+x_2\leq x_3$$

Non negativity

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0$$

Mathematical model

$$\max_{x \in \mathbb{R}^3} f(x) = x_1 \left(15 - \frac{2}{100} x_1 \right) + x_2 \left(23 - \frac{1}{100} x_2 \right) - \left(2x_1 + 3.5x_2 + 3x_3 \right)$$

subject to

$$x_1 + x_2 \le x_3$$

 $x_3 \le 1000$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_3 \ge 0$

Notations

$$f(x) = (x_1 - 1)^2 + (x_2 + 2)^2$$
 $y = \min_{x \in \mathbb{R}^n} f(x)$ $y \in \mathbb{R}$
 $x^* = \operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$ $x^* \in \mathbb{R}^n$
 $y = f(x^*)$ $y = \min_{x \in \mathbb{R}^n} f(x) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Problem transformations

Motivation

- ► There are many ways to write an optimization problem.
- Algorithms usually require a specific type of formulation.
- For instance, most optimization software are designed only for minimization, or only for maximization.

Equivalence

Definition

Problems P_1 and P_2 are equivalent if a feasible point of P_1 can be created from a feasible point of P_2 , with the same value of the objective function.

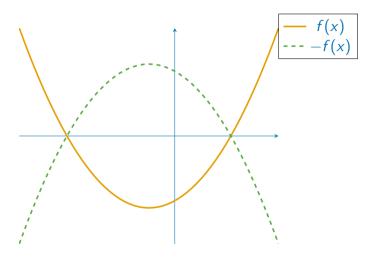
$$P_1: \min 2 - x$$
 s. t. $x \ge 0$ and $x \le 1$

$$P_2: -\max y$$
 s. t. $y \ge -2$ and $y \le -1$
$$x \to y = x - 2$$

$$x = 0.5, y = -1.5$$

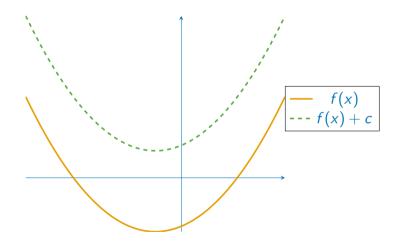
Obj.
$$P_1 = \text{Obj. } P_2 = 1.5$$

Minimization or maximization

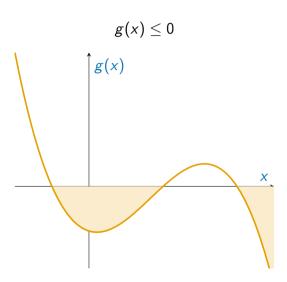


$$\min f(x) = -\max -f(x)$$
, $\operatorname{argmin} f(x) = \operatorname{argmax} -f(x)$

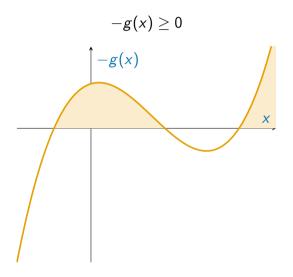
Constant term



Inequality constraints



Inequality constraints



Equality and inequality constraints

$$g(x) = 0 \Longleftrightarrow \left\{ \begin{array}{l} g(x) \leq 0 \\ g(x) \geq 0 \end{array} \right.$$

Signed variables

Some software impose only non negative variables $x \in \mathbb{R}$, $x = x^+ - x^-$ with $x^+ \ge 0$, $x^- \ge 0$

Translation

Constraint $x \ge a$. Change of variable: $x = \tilde{x} + a$. Constraint become $\tilde{x} \ge 0$

Slack variables

Linear

$$g(x) \le 0 \Longleftrightarrow \begin{cases} g(x) + y = 0 \\ y \ge 0. \end{cases}$$

Non linear

$$g(x) \leq 0 \iff g(x) + z^2 = 0.$$

Problem definition

Motivation

- ▶ We provide a generic definition of an optimization problem.
- ▶ We discuss the types of solutions that can be found.

Problem definition

$$\min_{x \in \mathbb{R}^n} f(x) \ f : \mathbb{R}^n \to \mathbb{R}, n > 0,$$

subject to

$$h(x) = 0, \quad h: \mathbb{R}^n \to \mathbb{R}^m, m \ge 0,$$

 $g(x) \le 0, \quad g: \mathbb{R}^n \to \mathbb{R}^p, p \ge 0,$

and

$$x \in X$$
, Xconvex.

Feasible set

subject to

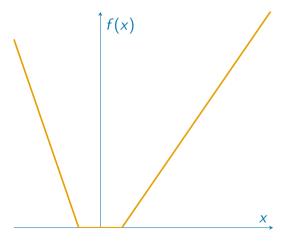
$$Y=\left\{x\in\mathbb{R}^n\mid h(x)=0\,,\;g(x)\leq0\; ext{and}\;x\in X
ight\}$$

$$\min_{x\in\mathbb{R}^n}f(x)$$

$$x\in Y$$

26 / 59

Global optimum

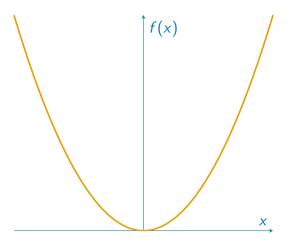


Global minimum

 x^* is a global minimum if

$$f(x^*) \le f(x), \quad \forall x \in Y.$$

Strict global optimum

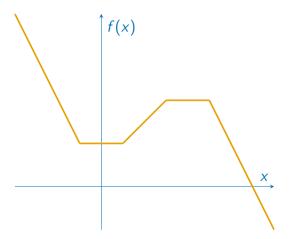


Strict global minimum

 x^* is a strict global minimum if

$$f(x^*) < f(x), \quad \forall x \in Y, x \neq x^*.$$

Local optimum

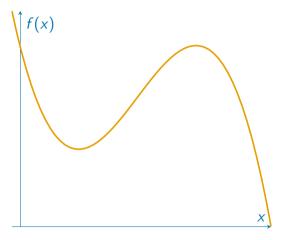


Local minimum

 x^* is a local minimum if there exists $\varepsilon > 0$ such that

$$f(x^*) \le f(x)$$
, $\forall x \in Y$ such that $||x - x^*|| < \varepsilon$.

Strict local optimum



Strict local minimum

 x^* is a strict local minimum if there exists $\varepsilon > 0$ such that

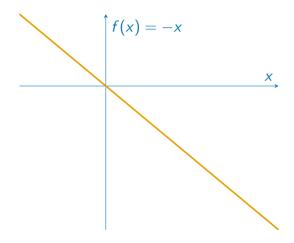
$$f(x^*) < f(x)$$
, $\forall x \in Y$ such that $||x - x^*|| < \varepsilon, x \neq x^*$.

Properties

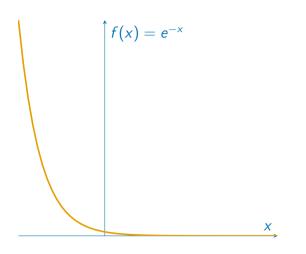
Motivation

- We introduce some important properties of optimization problems.
- ▶ We consider from now on only minimization.
- ► The lecture provides the intuitions. We refer to Section 1.4 of the book for a more rigorous discussion.

Function bounded from below



Infimum vs optimum



Bounded from below, but no optimum

- Give me any x.
- \triangleright x+1 is always better.
- Indeed, $\exp(-(x+1)) < \exp(-x)$.

Infimum vs optimum

Infimum

Largest lower bound

$$\inf_{y\in Y}f(y)\leq f(x),\ \forall x\in Y$$

For each $M > \inf_{y \in Y} f(y)$,

$$\exists x \in Y \text{ such that } f(x) < M.$$

Always exists is f is bounded.

Optimum

$$x^*$$
 such that $f(x^*) = \inf_{y \in Y} f(y)$

Does not always exist. See Weierstrass theorem 1.14 for sufficient conditions.

Optimality conditions

Motivation

- Characterization of optimal solutions.
- Central role in optimization.
- Key ingredients for the algorithms.
- Unconstrained optimization: Fermat's theorem.
- Constrained optimization: Karush-Kuhn-Tucker conditions.

Unconstrained optimization

Problem definition

$$\min_{x \in \mathbb{R}^n} f(x)$$

where f is twice differentiable.

Fermat's theorem

- x^* is a local minimum of $f: \mathbb{R}^n \to \mathbb{R}$.
- ► If f is differentiable around x*, then

$$\nabla f(x^*)=0.$$

► If f is twice differentiable around x*, then

$$\nabla^2 f(x^*) \ge 0$$
 [positive semidefinite].

Theorem 5.1

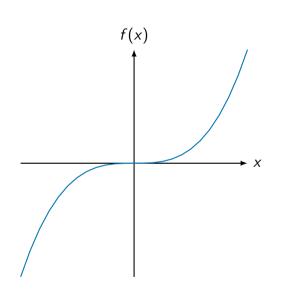
Necessary, but not sufficient

Example

$$f(x) = x^{3}$$

$$f'(x) = 3x^{2}, f''(x) = 6x$$

$$f'(0) = 0, f''(0) > 0$$



Sufficient optimality conditions

Theorem 5.7

- ▶ Consider x^* and $f: \mathbb{R}^n \to \mathbb{R}$ twice differentiable.
- ► If

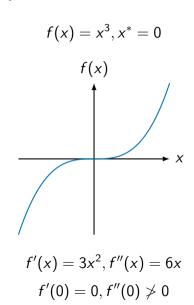
$$\nabla f(x^*) = 0$$

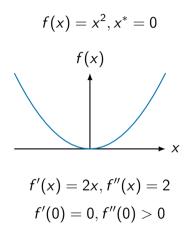
and

$$\nabla^2 f(x^*) > 0$$
 [positive definite]

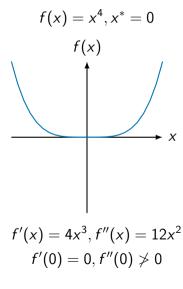
▶ then x^* is a local minimum of f.

Examples





Examples



Convexity

Set

A set X is convex if, $\forall x, y \in X$, $\forall 0 \le \lambda \le 1$,

$$\alpha x + (1 - \alpha)y \in X$$
.

Function

A function f is convex $\forall x, y, \forall 0 \leq \lambda \leq 1$,

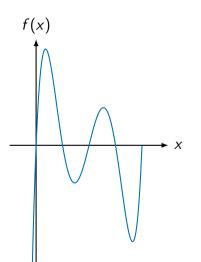
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Convexity and second derivatives

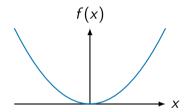
- ▶ Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $\nabla^2 f(x^*)$
- $\nabla^2 f(x^*) > 0 \iff \lambda_i > 0, i = 1, \dots, n$
- ► Eigenvalue = curvature along the eigenvector.

Global and local optimum

Sufficient conditions are verified both for local and global minima.



For convex functions, local optimum = global optimum.



Global optimum

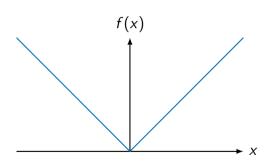
Theorem 5.9

- $ightharpoonup f: \mathbb{R}^n \to \mathbb{R}$ continuous.
- $\triangleright x^* \in \mathbb{R}^n$ a local minimum of f.
- ► If *f* is convex, then *x** is a global minimum of *f*.
- ▶ If f is strictly convex, x* is the unique global minimum of f.

Global optimum

Theorem 5.9

- $ightharpoonup f: \mathbb{R}^n \to \mathbb{R}$ continuous.
- $ightharpoonup x^* \in \mathbb{R}^n$ a local minimum of f.
- ► If f is convex, then x* is a global minimum of f.
- ► If f is strictly convex, x* is the unique global minimum of f.



Constrained optimization: the convex case

$$\min_{x \in \mathbb{R}^n} f(x) \ f : \mathbb{R}^n \to \mathbb{R}, n > 0, \text{convex},$$
 subject to

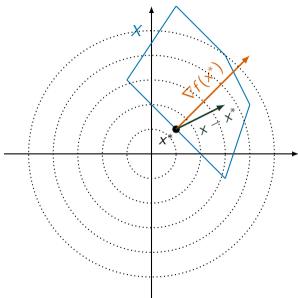
 $x \in X$, Xconvex.

Necessary and sufficient condition

x* global optimum

$$\forall x \in X, \nabla f(x^*)^T (x - x^*) \geq 0.$$

Necessary and sufficient condition



Constrained optimization: the general case

$$\min_{x \in \mathbb{R}^n} f(x) \quad f: \mathbb{R}^n \to \mathbb{R}, n > 0,$$

subject to

$$h(x) = 0, \quad h : \mathbb{R}^n \to \mathbb{R}^m, m \ge 0,$$

 $g(x) \le 0, \quad g : \mathbb{R}^n \to \mathbb{R}^p, p \ge 0.$

Definition: Lagrangian

$$L(x, \lambda, \mu) = f(x) + \lambda^{T} h(x) + \mu^{T} g(x).$$
$$\lambda \in \mathbb{R}^{m}, \ \mu \in \mathbb{R}^{p}.$$

Karush-Kuhn-Tucker: first-order necessary conditions

Theorem 6.13

- $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^p, h: \mathbb{R}^n \to \mathbb{R}^m$ continuously differentiable.
- \triangleright x^* local optimal of the problem.
- ▶ If the constraints are "qualified" at x^* , there exists a unique $\lambda^* \in \mathbb{R}^m$, a unique $\mu^* \in \mathbb{R}^p$, $\mu^* \geq 0$, such that

$$\nabla_{\mathsf{x}} L(\mathsf{x}, \lambda^*, \mu^*) = 0,$$

and

$$\mu_i^* g_i(x^*) = 0, \ i = 1, \dots, p.$$

Karush-Kuhn-Tucker: second-order necessary conditions

Theorem 6.13

- $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^p, h: \mathbb{R}^n \to \mathbb{R}^m$ twice differentiable.
- \triangleright x^* local optimal of the problem.
- ▶ If the constraints are "qualified" at x^* , there exists a unique $\lambda^* \in \mathbb{R}^m$, a unique $\mu^* \in \mathbb{R}^p$, $\mu^* \geq 0$, such that

$$y^T \nabla^2_{xx} L(x, \lambda^*, \mu^*) y \geq 0,$$

for each $y \in \mathbb{R}^n$ such that

$$y^T h(x_i^*) = 0, i = 1, ..., m,$$

 $y^T g(x_j^*) = 0, j = 1, ..., p, \text{ if } g_i(x^*) = 0.$

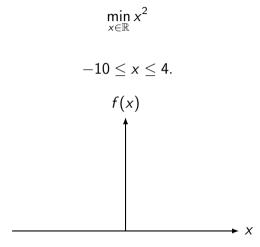
Notes

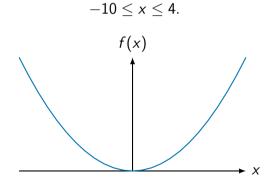
- Linear constraints are always "qualified".
- ▶ Lagrangian, and Lagrange multipliers λ^* and μ^* are related to duality.
- ▶ The fact that $g_i(x^*) = 0$ plays a role. We say that the constraint is "active".

Active constraints

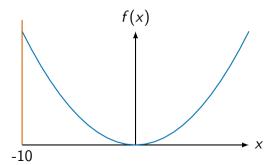
Motivation

- ► Active constraints = constraints that matter.
- ▶ In linear optimization, finding the optimum solution amounts to finding the constraints that are active at the solution.



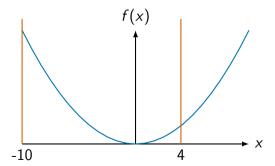


$$-10 \le x \le 4$$
.

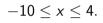


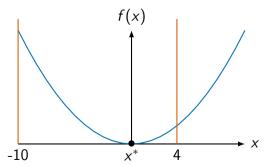
 $\min_{x \in \mathbb{R}} x^2$

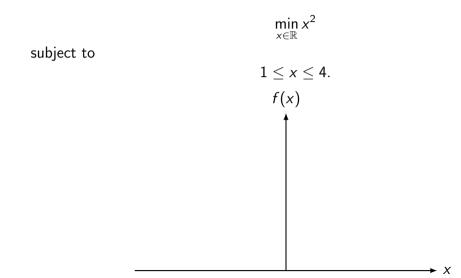
$$-10 \le x \le 4$$
.

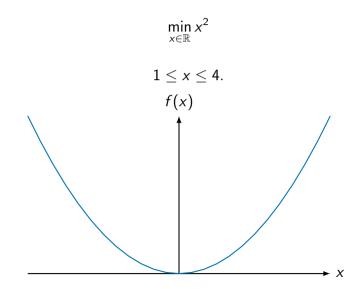


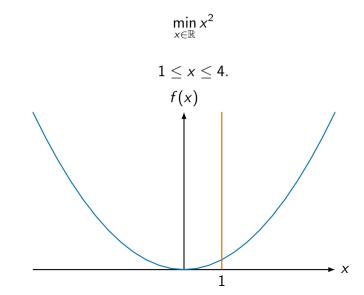
 $\min_{x \in \mathbb{R}} x^2$

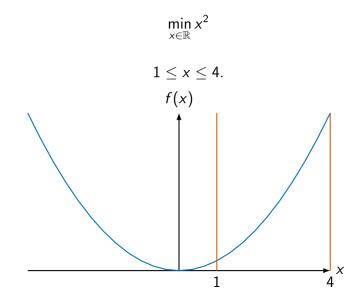


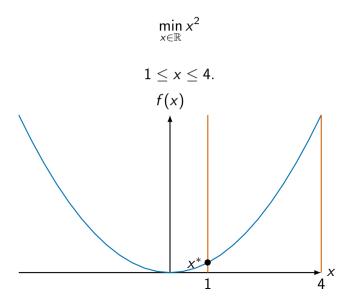












Definition

Inequality constraints

Consider $g:\mathbb{R}^n \to \mathbb{R}$ and the constraint

$$g(x) \leq 0$$
.

It is active at x^* if

$$g(x^*)=0.$$

Definition

Inequality constraints

Consider $g: \mathbb{R}^n \to \mathbb{R}$ and the constraint

$$g(x) \leq 0$$
.

It is active at x^* if

$$g(x^*)=0.$$

Equality constraints

Consider $h:\mathbb{R}^n o \mathbb{R}$ and the constraint

$$h(x)=0.$$

It is active at x^* if

$$h(x^*)=0.$$

Optimization

Consider the problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to

$$g(x) \leq 0$$
,

where $g: \mathbb{R}^n \to \mathbb{R}^p$.

 \triangleright x^* is a local optimum and

$$A(x^*) = \{i = 1, \ldots, p \mid g_i(x^*) = 0\}.$$

 \triangleright x^* is also a local optimum of

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$g_i(x) = 0, \forall i \in \mathcal{A}(x^*).$$

Summary

- Modeling.
- Problem transformations.
- Definitions of optimum: global/local, strict.
- In the following, we work only with minimization.
- ▶ We assume that there is at least one optimum.
- ▶ It means that the objective function must be bounded from below on the feasible set.
- But it is not sufficient. See Weierstrass theorem for sufficient conditions.
- Optimality conditions: Fermat, Karush-Kuhn-Tucker.
- Constraints that do not play a role at the solution can be ignored.