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Modeling

Motivation
◮ Translating a concrete problem into a mathematical model is difficult.

◮ It is more of an art, but it requires rigor and systematism.

◮ We introduce the process and illustrates it on a small example.
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Motivation

Mathematical model
◮ Mathematical representation

◮ of a phenomenon,

◮ done in order to better study it.
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Model for optimization

Decision variables

x ∈ R
n

Objective function

f (x) ∈ R

Constraints

x ∈ X ⊆ R
n
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Example: Château Laupt-Himum

Problem description
Rosé and red wine using local grapes.

◮ Grape: max. 1 ton of Pinot. Price:
3e/kilo.

◮ Vinification as rosé: cost 2e per kilo of
grape.

◮ Vinification as red (Pinot Noir) : cost
3.50e per kilo of grape.

◮ For one liter of wine, one kilo of grapes is
needed.
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Example: Château Laupt-Himum

Problem description
Marketing strategy: rebate proportional to the
production

◮ Price rosé: 15e/ℓ. Rebate: 2e per 100ℓ.

◮ Example: if 100 ℓ of rosé are produced, the
price is 13e/ℓ

◮ Price red: 23e/ℓ. Rebate: 1e per 100ℓ.

◮ Example: if 100 ℓ of red are produced, the
price is 22e/ℓ
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Château Laupt-Himum: decision variables

Liters of rosé to produce per year

x1

Liters of red to produce per year

x2

Kilos of grapes to buy

x3
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Château Laupt-Himum: objective function

Revenue per liter of rosé

15−
2

100
x1

Revenue per liter of red

23−
1

100
x2

Total revenues

x1

(

15−
2

100
x1

)

+ x2

(

23−
1

100
x2

)
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Château Laupt-Himum: objective function

Cost for producing rosé

2x1

Cost for producing red

3.5x2

Cost for buying grapes

3x3
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Château Laupt-Himum: objective function

Total benefits

x1

(

15−
2

100
x1

)

+ x2

(

23−
1

100
x2

)

− (2x1 + 3.5x2 + 3x3)
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Château Laupt-Himum: constraints

Maximum quantity of grapes

x3 ≤ 1000

1 kilo of grapes produces 1 liter of wine

x1 + x2 ≤ x3

Non negativity

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
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Mathematical model

max
x∈R3

f (x) = x1

(

15−
2

100
x1

)

+ x2

(

23−
1

100
x2

)

− (2x1 + 3.5x2 + 3x3)

subject to

x1 + x2 ≤ x3

x3 ≤ 1000

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0
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Notations

y = min
x∈Rn

f (x) y ∈ R

x∗ = argminx∈Rn f (x) x∗ ∈ R
n

y = f (x∗)

f (x) = (x1 − 1)2 + (x2 + 2)2

x∗ = argminx∈Rn f (x) =

(

1
−2

)

y = min
x∈Rn

f (x) = 0.
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Problem transformations

Motivation
◮ There are many ways to write an optimization problem.

◮ Algorithms usually require a specific type of formulation.

◮ For instance, most optimization software are designed only for minimization,
or only for maximization.
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Equivalence

Definition
Problems P1 and P2 are equivalent if a
feasible point of P1 can be created
from a feasible point of P2, with the
same value of the objective function.

P1 : min 2− x s. t. x ≥ 0 and x ≤ 1

P2 : −max y s. t. y ≥ −2 and y ≤ −1

x → y = x − 2

x = 0.5, y = −1.5

Obj. P1 = Obj. P2 = 1.5
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Minimization or maximization

f (x)
−f (x)

min f (x) = −max−f (x), argmin f (x) = argmax−f (x)
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Constant term

f (x)
f (x) + c
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Inequality constraints

g(x) ≤ 0

x

g(x)
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Inequality constraints

−g(x) ≥ 0

x

−g(x)
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Equality and inequality constraints

g(x) = 0 ⇐⇒

{

g(x) ≤ 0
g(x) ≥ 0 .
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Signed variables

Some software impose only non negative variables
x ∈ R, x = x+ − x− with x+ ≥ 0, x− ≥ 0
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Translation

Constraint x ≥ a. Change of variable: x = x̃ + a. Constraint become x̃ ≥ 0
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Slack variables

Linear

g(x) ≤ 0 ⇐⇒

{

g(x) + y = 0
y ≥ 0 .

Non linear

g(x) ≤ 0 ⇐⇒ g(x) + z2 = 0.
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Problem definition

Motivation
◮ We provide a generic definition of an optimization problem.

◮ We discuss the types of solutions that can be found.
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Problem definition

min
x∈Rn

f (x) f : Rn → R, n > 0,

subject to

h(x) = 0, h : Rn → R
m,m ≥ 0,

g(x) ≤ 0, g : Rn → R
p, p ≥ 0,

and
x ∈ X , X convex.
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Feasible set

Y =
{

x ∈ R
n | h(x) = 0 , g(x) ≤ 0 and x ∈ X

}

min
x∈Rn

f (x)

subject to
x ∈ Y
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Global optimum

x

f (x)
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Global minimum

x∗ is a global minimum if

f (x∗) ≤ f (x) , ∀x ∈ Y .
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Strict global optimum

x

f (x)
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Strict global minimum

x∗ is a strict global minimum if

f (x∗) < f (x) , ∀x ∈ Y , x 6= x∗.
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Local optimum

x

f (x)
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Local minimum

x∗ is a local minimum if there exists ε > 0 such that

f (x∗) ≤ f (x) , ∀x ∈ Y such that
∥

∥x − x∗
∥

∥ < ε .
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Strict local optimum

x

f (x)
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Strict local minimum

x∗ is a strict local minimum if there exists ε > 0 such that

f (x∗) < f (x) , ∀x ∈ Y such that
∥

∥x − x∗
∥

∥ < ε, x 6= x∗.
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Properties

Motivation
◮ We introduce some important properties of optimization problems.

◮ We consider from now on only minimization.

◮ The lecture provides the intuitions. We refer to Section 1.4 of the book for
a more rigorous discussion.
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Function bounded from below

x

f (x) = −x
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Infimum vs optimum

x

f (x) = e−x

Bounded from below, but
no optimum

◮ Give me any x .

◮ x + 1 is always better.

◮ Indeed,
exp(−(x + 1)) < exp(−x).
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Infimum vs optimum

Infimum
Largest lower bound

inf
y∈Y

f (y) ≤ f (x), ∀x ∈ Y

For each M > infy∈Y f (y),

∃x ∈ Y such that f (x) < M .

Optimum

x∗ such that f (x∗) = inf
y∈Y

f (y)

Always exists is f is bounded. Does not always exist. See Weierstrass
theorem 1.14 for sufficient conditions.
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Optimality conditions

Motivation
◮ Characterization of optimal solutions.

◮ Central role in optimization.

◮ Key ingredients for the algorithms.

◮ Unconstrained optimization: Fermat’s theorem.

◮ Constrained optimization: Karush-Kuhn-Tucker conditions.
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Unconstrained optimization

Problem definition

min
x∈Rn

f (x)

where f is twice differentiable.

Fermat’s theorem
◮ x∗ is a local minimum of

f : Rn → R.

◮ If f is differentiable around x∗,
then

∇f (x∗) = 0.

◮ If f is twice differentiable around
x∗, then

∇2f (x∗) ≥ 0 [positive semidefinite].

Theorem 5.1
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Necessary, but not sufficient

Example

f (x) = x3

f ′(x) = 3x2, f ′′(x) = 6x

f ′(0) = 0, f ′′(0) ≥ 0

x

f (x)
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Sufficient optimality conditions

Theorem 5.7
◮ Consider x∗ and f : Rn → R twice differentiable.

◮ If
∇f (x∗) = 0

◮ and
∇2f (x∗) > 0 [positive definite]

◮ then x∗ is a local minimum of f .
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Examples

f (x) = x3, x∗ = 0

x

f (x)

f ′(x) = 3x2, f ′′(x) = 6x

f ′(0) = 0, f ′′(0) 6> 0

f (x) = x2, x∗ = 0

x

f (x)

f ′(x) = 2x , f ′′(x) = 2

f ′(0) = 0, f ′′(0) > 0

43 / 59



Examples

f (x) = x4, x∗ = 0

x

f (x)

f ′(x) = 4x3, f ′′(x) = 12x2

f ′(0) = 0, f ′′(0) 6> 0
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Convexity

Set
A set X is convex if, ∀x , y ∈ X , ∀0 ≤ λ ≤ 1,

αx + (1− α)y ∈ X .

Function
A function f is convex ∀x , y , ∀0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Convexity and second derivatives

◮ Let λ1, . . . , λn be the eigenvalues of ∇2f (x∗)

◮ ∇2f (x∗) ≥ 0 ⇐⇒ λi ≥ 0, i = 1, . . . , n

◮ Eigenvalue = curvature along the eigenvector. 45 / 59



Global and local optimum
Sufficient conditions are verified both for
local and global minima.

x

f (x)

For convex functions, local optimum =
global optimum.

x

f (x)
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Global optimum

Theorem 5.9
◮ f : Rn → R continuous.

◮ x∗ ∈ R
n a local minimum of f .

◮ If f is convex, then x∗ is a global
minimum of f .

◮ If f is strictly convex, x∗ is the
unique global minimum of f .
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Global optimum

Theorem 5.9
◮ f : Rn → R continuous.

◮ x∗ ∈ R
n a local minimum of f .

◮ If f is convex, then x∗ is a global
minimum of f .

◮ If f is strictly convex, x∗ is the
unique global minimum of f . x

f (x)
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Constrained optimization: the convex case

min
x∈Rn

f (x) f : Rn → R, n > 0, convex,

subject to

x ∈ X , X convex.

Necessary and sufficient condition

x∗ global optimum
⇐⇒

∀x ∈ X ,∇f (x∗)T (x − x∗) ≥ 0.
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Necessary and sufficient condition

X

x∗

∇
f (
x
∗ )

x −
x
∗
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Constrained optimization: the general case

min
x∈Rn

f (x) f : Rn → R, n > 0,

subject to

h(x) = 0, h : Rn → R
m,m ≥ 0,

g(x) ≤ 0, g : Rn → R
p, p ≥ 0.

Definition: Lagrangian

L(x , λ, µ) = f (x) + λTh(x) + µTg(x).

λ ∈ R
m, µ ∈ R

p.
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Karush-Kuhn-Tucker: first-order necessary conditions

Theorem 6.13
◮ f : Rn → R, g : Rn → R

p, h : Rn → R
m continuously differentiable.

◮ x∗ local optimal of the problem.

◮ If the constraints are “qualified” at x∗, there exists a unique λ∗ ∈ R
m, a

unique µ∗ ∈ R
p, µ∗ ≥ 0, such that

∇xL(x , λ
∗, µ∗) = 0,

and
µ∗

i gi(x
∗) = 0, i = 1, . . . , p.
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Karush-Kuhn-Tucker: second-order necessary conditions

Theorem 6.13
◮ f : Rn → R, g : Rn → R

p, h : Rn → R
m twice differentiable.

◮ x∗ local optimal of the problem.

◮ If the constraints are “qualified” at x∗, there exists a unique λ∗ ∈ R
m, a

unique µ∗ ∈ R
p, µ∗ ≥ 0, such that

yT∇2
xxL(x , λ

∗, µ∗)y ≥ 0,

for each y ∈ R
n such that

yTh(x∗i ) = 0, i = 1, . . . ,m,

yTg(x∗j ) = 0, j = 1, . . . , p, if gi(x
∗) = 0.
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Notes

◮ Linear constraints are always “qualified”.

◮ Lagrangian, and Lagrange multipliers λ∗ and µ∗ are related to duality.

◮ The fact that gj(x
∗) = 0 plays a role. We say that the constraint is “active”.
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Active constraints

Motivation
◮ Active constraints = constraints that matter.

◮ In linear optimization, finding the optimum solution amounts to finding the
constraints that are active at the solution.
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First example

min
x∈R

x2

subject to
−10 ≤ x ≤ 4.

x

f (x)



First example

min
x∈R

x2

subject to
−10 ≤ x ≤ 4.

x

f (x)



First example

min
x∈R

x2

subject to
−10 ≤ x ≤ 4.

x

f (x)

-10



First example

min
x∈R

x2

subject to
−10 ≤ x ≤ 4.

x

f (x)

-10 4



First example

min
x∈R

x2

subject to
−10 ≤ x ≤ 4.

x

f (x)

-10 4
•
x∗
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Second example

min
x∈R

x2

subject to
1 ≤ x ≤ 4.

x

f (x)



Second example

min
x∈R

x2

subject to
1 ≤ x ≤ 4.

x

f (x)



Second example

min
x∈R

x2

subject to
1 ≤ x ≤ 4.

x

f (x)

1



Second example

min
x∈R

x2

subject to
1 ≤ x ≤ 4.

x

f (x)

1 4



Second example

min
x∈R

x2

subject to
1 ≤ x ≤ 4.

x

f (x)

1 4

•x∗
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Definition

Inequality constraints
Consider g : Rn → R and the
constraint

g(x) ≤ 0.

It is active at x∗ if

g(x∗) = 0.
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Definition

Inequality constraints
Consider g : Rn → R and the
constraint

g(x) ≤ 0.

It is active at x∗ if

g(x∗) = 0.

Equality constraints
Consider h : Rn → R and the constraint

h(x) = 0.

It is active at x∗ if

h(x∗) = 0.
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Optimization
◮ Consider the problem

min
x∈Rn

f (x)

subject to
g(x) ≤ 0,

where g : Rn → R
p.

◮ x∗ is a local optimum and

A(x∗) = {i = 1, . . . , p | gi(x
∗) = 0}.

◮ x∗ is also a local optimum of
min
x∈Rn

f (x)

subject to
gi(x) = 0, ∀i ∈ A(x∗).
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Summary

◮ Modeling.

◮ Problem transformations.

◮ Definitions of optimum: global/local, strict.

◮ In the following, we work only with minimization.

◮ We assume that there is at least one optimum.

◮ It means that the objective function must be bounded from below on the
feasible set.

◮ But it is not sufficient. See Weierstrass theorem for sufficient conditions.

◮ Optimality conditions: Fermat, Karush-Kuhn-Tucker.

◮ Constraints that do not play a role at the solution can be ignored.
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