Introduction to duality

Another way to look at optimization
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Duality

Motivation

» We take a different point of view about the optimization problem: the point
of view of the person who defines the constraint.

» We introduce an important concept in optimization: duality.
» It will help to solve complex problems (e.g. shortest path problem).
» It will allow to calculate useful bounds (e.g. in discrete optimization).
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Simple example

Deal

» Win 1€ per meter of altitude.

» Must stay in the Alps.

Model

x: position, f(x): altitude at x

max f(x) s.t. x € Alps

Solution for the alpinist
Mont Blanc: 4807 €
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Simple example

New deal
» Pay a fine if out of the Alps.
» What fine?

Model
x: position, f(x): altitude at x,
a(x)=fine at x

max f(x) — a(x)

X

Solution

a(x) =4041€ if x ¢ Alps
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Duality

Primal problem Dual problem
» Point of view of the alpinist » Point of view of the billionaire
» Optimization under strict » Penalization of the constraints
constraint
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Constraint relaxation

Primal problem

min 2x; + x»
xER2

subject to

1—X1—X2:O
X120
XQZO

Solution: (0, 1)
Optimal value: 1

Constraint relaxation

min 2X1 + X2+)\(1 — X1 — X2)
x€R?

subject to

Dual problem
What is the value of \?
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min 2X1 + X + /\(]. — X1 — X2): 2X1 + Xo

x€R?
subject to
x1 >0
X >0
Solution: (0, 0)
Optimal value: 0 < 1. Comments

» We obtain a lower bound,

» but a strict one.
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min 2X1 —+ X5 + )\(1 — X1 — XQ): 2 — X2

x€ER?
subject to
x1 >0
x >0
Solution: none
Optimal value: —oco < 1. Comments

» This value of A\ generates an
unbounded problem.

> |t must be avoided.
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min 2x; +x + A(1 — x1 — x2)=x; + 1

x€eR?
subject to
x1 >0
X >0
Solution: (0, x2), Vx,
Optimal value: 1 = 1. Comments

» We obtain the same optimal value
as for the primal.

» The same solution is optimal as
well.
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Lagrangian and dual problem

Motivation
» Rigorous definition of the concepts.
» The objective function including the penalty term is called the Lagrangian.

» The problem to find the values of the penalty coefficients is the dual
problem.
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Lagrangian
Primal problem

min f(x) [f:R" — R]

subject to
h(x)=0 [h:R" — R"]
g(x) <0 [g:R"—=R”|

Lagrangian

L(x, A, 1) = (x) + ATh(x) + 1" g(x)
A€eR™ peRP

11/37



Dual function

Lagrangian
L0x, A, ) = F(x) + ATh(x) + 1" g(x)

Dual function

q:R™P = R:q(A p) = min L(x, A, 1)
x€eR"

Note
We want

1" g(x) > 0 when g(x) > 0.
Therefore, we impose 1 > 0.
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Dual bound
Theorem 4.5

x* is an optimal solution of the primal.
If A€ R™ and p € RP, i > 0, then

q(A, 1) < F(x7).

Proof

q(A, ) = min L(x, A, p

x€eR"
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Dual bound

Corollary 4.6

x* is an optimal solution of the primal.
x is a feasible solution of the primal.

If A€ R™ and € RP, u > 0, then

a(A, 1) < F(x)< F(x)
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Dual problem

Motivation
Find the best lower bound
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Dual problem
Motivation

Find the best lower bound

max q(A, 1)
A
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Dual problem

Motivation
Find the best lower bound

max q(A, 1)
A

subject to
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Dual problem

Motivation
Find the best lower bound

max q(A, 1)
A

subject to
=0

and
() e {xul g\ p)>—oc}.
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Weak duality theorem

If
» x* is the optimal solution of the primal,

» (\*, %) is the optimal solution of the dual, then

q(A", p*) < F(x7).
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Duality and feasibility

q(A\", p*) < F(x7).

Corollary 4.10

If one problem is unbounded, the other one is infeasible.
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Duality and feasibility

Dual problem
Optimal Unbounded Infeasible

Optimal NO

Unbounded NO NO YES

Primal problem

Infeasible YES
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Optimality of primal and dual

Corollary 4.11
If 3 x*, \*, u* such that

then they are optimal.

Proof

Consider x primal-feasible. By weak-duality:
fF(x) 2q(X*, 1) = F(x7)
Consider (A, 1) dual-feasible. By weak-duality:

g\, 1*) = F(x*)> q(\, )

19/37



Duality and feasibility

Dual problem
Optimal Unbounded Infeasible

Optimal  YES NO NO

Unbounded NO NO YES

Primal problem

Infeasible NO YES 77
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Duality in linear optimization

Motivation
» We consider now the specific case of linear optimization.

» We show that the dual problem has some nice properties in this context.
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Linear optimization

p. 102
h(x) = b — Ax, g(x) = —x
min ¢’ x
xR Lx, \p) =c"x+ AT (b— Ax) — u"x
subject to _ (c AT M) T, L ATh
Ax =
x=b Dual problem:
x>0
max A7 b subject to 1 =c — ATA > 0.
A 6 Rmxn by
lc) g ﬁli:’ Equivalent formulation:

min —b " x subject to ATx < c.
X
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Linear optimization
p. 103
gx)=ATx—c

L(x, 1) = —bx+ uT(ATx — )
— (~b+An)Tx— e

min —b' x
xeRm

bject to
St Dual problem:
ATx < c :
= max —u" ¢ subject to Au = b, ;1 > 0.
A E Ran
beR™ Equivalent formulation:

C € R" . T .
min ¢’ x subject to Ax = b, x > 0.
X

23/37



Dual problem

Theorem 4.14
The dual of a linear optimization problem is another linear optimization problem.
The dual can be derived for each possible specification.

Theorem 4.15
The dual of the dual is the primal.
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Strong duality

Theorem 4.17

» Consider the primal problem and its dual.
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Strong duality

Theorem 4.17
» Consider the primal problem and its dual.

» If one problem has an optimal solution, so does the other one,
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Strong duality

Theorem 4.17
» Consider the primal problem and its dual.
» If one problem has an optimal solution, so does the other one,

» and the optimal value of their objective functions are the same.
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Strong duality

Motivation
» An optimal solution of the primal is obtained when a basis is available such
that all reduced costs are non negative.

» We show here that the same basis can be used to obtain an optimal solution
of the dual problem.
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Context

Data

AERan
beR™
ceR”
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Context

Data

AERan
beR™
ceR”

Primal
min ¢’ x
xER"
subject to
Ax=b

x>0
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Context

Data

AERan
beR™
ceR”

Primal
min ¢’ x
xER"
subject to
Ax=b

x>0

Dual
max A" b
AER™
subject to
ATA < c
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Optimal solutions: primal

Assumptions

A= (BIN)
Bb>0
c=c—A"B Tcg>0
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Optimal solutions: primal

Assumptions Primal solution

A= (B|N) xp = B7'b, xj, = 0.
B'b>0
c=c—A"B Tcg>0
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Optimal solutions: dual

Assumptions Dual solution

A = (B|N) N =B Tcg.
B 'b>0
c=c—A"B Tcg>0

A* is dual-feasible A" is dual-optimal
AT =ATB Teg=c—Cc<c AT b=cIBb=clxs=cTx*
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Strong duality

» If the primal or the dual has an optimal solution,
» so does the other one,

» and the optimal objective values are equal.
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Karush-Kuhn-Tucker optimality conditions

Theorem 6.13
» f:R" >R, g:R” = RP, h:R" — R™ continuously differentiable.

» x* local optimal of the problem.

» If the constraints are “qualified” at x*, there exists a unique A\* € R™, a

unique pu* € RP, u* > 0, such that
vXL(X7 )\*7 /’[/*) - 07

and
pigi(x*)y=0,i=1,...,p.

» Linear constraints are qualified.
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Karush-Kuhn-Tucker optimality conditions

Lx, A\, p) = c"x+ AT (b— Ax) — " x.
V. L(x*, X\, u*) = ¢ — ATA* — " = 0. [Dual constraints).
p'=c—A"\*>0 <= c— A"B "cg > 0. [Non negative reduced costs].

pixt = 0. [Complementarity slackness].

(C,' — Z aj,-/\}‘)x,f" =0
j=1
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Complementarity slackness

Primal problem

» If a constraint of the dual is not active, the corresponding primal variable is
zero.

» If a primal variable is non zero, the corresponding dual constraint is active.

Dual problem

» If a constraint of the primal is not active, the corresponding dual variable is
zero.

» If a dual variable is non zero, the corresponding primal constraint is active.
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Physical interpretation

gravity

Constr. 3
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Optimization problem

Problem solved by mother nature

min ¢’ x = x, min ¢’ x = x,
x€ER2 x€R2
subject to subject to
aixy + axe > by, al x > by,
ax1x1 + anxy > by, a] x > by,
az1x1 + asaxo > bs, a3 x > bs,

where

a1
a; = .
dp2
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Dual problem

Forces
» Constraints: a;u;.
max by jt1 + bojin + b3z, w0
s 1M1 22 + D33 » Gravity: —c = ( 1 )
subject to » Constraints of the dual: sum of
forces is zero.
’ 0
D aiti = ( 1 ) =c Complementarity slackness
i=1

wi(al x* —b)=0,i=1,23.

Only active constraints apply a force.
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Summary

Constraint relaxation and Lagrangian.
Dual function: lower bound.

>
>
» Dual problem: best lower bound (weak duality).
» Linear optimization: strong duality.

>

Complementarity slackness.
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