Introduction to duality

Another way to look at optimization

Michel Bierlaire

Introduction to optimization and operations research

Duality

Motivation

- ▶ We take a different point of view about the optimization problem: the point of view of the person who defines the constraint.
- ▶ We introduce an important concept in optimization: duality.
- ▶ It will help to solve complex problems (e.g. shortest path problem).
- ▶ It will allow to calculate useful bounds (e.g. in discrete optimization).

Simple example

Deal

- Win 1€ per meter of altitude.
- Must stay in the Alps.

Model

x: position, f(x): altitude at x

$$\max_{x} f(x)$$
 s.t. $x \in Alps$

Solution for the alpinist

Mont Blanc: 4807€

Simple example

4807m

8848m

New deal

- Pay a fine if out of the Alps.
- ► What fine?

Model

x: position, f(x): altitude at x, a(x)=fine at x

$$\max_{x} f(x) - a(x)$$

Solution

$$a(x) = 4041 \in \text{if } x \notin Alps$$

Duality

Primal problem

- ► Point of view of the alpinist
- Optimization under strict constraint

Dual problem

- ▶ Point of view of the billionaire
- Penalization of the constraints

Constraint relaxation

Primal problem

$$\min_{x \in \mathbb{R}^2} 2x_1 + x_2$$

subject to

$$1 - x_1 - x_2 = 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Solution: (0,1)Optimal value: 1

Constraint relaxation

$$\min_{x \in \mathbb{R}^2} 2x_1 + x_2 + \lambda (1 - x_1 - x_2)$$

subject to

$$x_1 \geq 0$$

$$x_2 \ge 0$$

Dual problem

What is the value of λ ?

$$\lambda = 0$$

$$\min_{x \in \mathbb{R}^2} 2x_1 + x_2 + \lambda (1 - x_1 - x_2) = 2x_1 + x_2$$

subject to

$$x_1 \geq 0$$

$$x_2 \ge 0$$

Solution: (0,0)

Optimal value: 0 < 1.

Comments

- ► We obtain a lower bound,
- but a strict one.

$$\lambda = 2$$

$$\min_{x \in \mathbb{R}^2} 2x_1 + x_2 + \lambda (1 - x_1 - x_2) = 2 - x_2$$

subject to

$$x_1 \geq 0$$

$$x_2 \ge 0$$

Solution: none

Optimal value: $-\infty < 1$.

Comments

- This value of λ generates an unbounded problem.
- lt must be avoided.

$$\lambda = 1$$

$$\min_{x \in \mathbb{R}^2} 2x_1 + x_2 + \lambda (1 - x_1 - x_2) = x_1 + 1$$

subject to

$$x_1 \ge 0$$
$$x_2 > 0$$

Solution: $(0, x_2)$, $\forall x_2$ Optimal value: 1 = 1.

Comments

- We obtain the same optimal value as for the primal.
- ► The same solution is optimal as well.

Lagrangian and dual problem

Motivation

- Rigorous definition of the concepts.
- ▶ The objective function including the penalty term is called the Lagrangian.
- ▶ The problem to find the values of the penalty coefficients is the dual problem.

Lagrangian

Primal problem

$$\min f(x) \ [f: \mathbb{R}^n \to \mathbb{R}]$$

subject to

$$h(x) = 0$$
 $[h : \mathbb{R}^n \to \mathbb{R}^m]$
 $g(x) \le 0$ $[g : \mathbb{R}^n \to \mathbb{R}^p]$

Lagrangian

$$L(x, \lambda, \mu) = f(x) + \lambda^{T} h(x) + \mu^{T} g(x)$$
$$\lambda \in \mathbb{R}^{m} \ \mu \in \mathbb{R}^{p}$$

Dual function

Lagrangian

$$L(x, \lambda, \mu) = f(x) + \lambda^{T} h(x) + \mu^{T} g(x)$$

Dual function

$$q:\mathbb{R}^{m+p}
ightarrow\mathbb{R}:q(\lambda,\mu)=\min_{\mathbf{x}\in\mathbb{R}^n}L(\mathbf{x},\lambda,\mu)$$

Note

We want

$$\mu^T g(x) \geq 0$$
 when $g(x) > 0$.

Therefore, we impose $\mu \geq 0$.

Dual bound

Theorem 4.5

 x^* is an optimal solution of the primal.

If $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$, $\mu \geq 0$, then

$$q(\lambda, \mu) \leq f(x^*).$$

Proof

$$q(\lambda, \mu) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda, \mu)$$

$$\leq L(\mathbf{x}^*, \lambda, \mu)$$

$$= f(\mathbf{x}^*) + \lambda^T h(\mathbf{x}^*) + \mu^T g(\mathbf{x}^*)$$

$$= f(\mathbf{x}^*) + \mu^T g(\mathbf{x}^*) \leq f(\mathbf{x}^*)$$

Dual bound

Corollary 4.6

 x^* is an optimal solution of the primal.

x is a feasible solution of the primal.

If $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$, $\mu \geq 0$, then

$$q(\lambda,\mu) \le f(x^*) \le f(x)$$

Motivation
Find the best lower bound

Motivation

Find the best lower bound

$$\max_{\lambda,\mu} q(\lambda,\mu)$$

Motivation

Find the best lower bound

$$\max_{\lambda,\mu} q(\lambda,\mu)$$

subject to

$$\mu \geq 0$$

Motivation

Find the best lower bound

$$\max_{\lambda,\mu} q(\lambda,\mu)$$

subject to

$$\mu \geq 0$$

and

$$(\lambda,\mu) \in \{\lambda,\mu \mid q(\lambda,\mu) > -\infty\}.$$

Weak duality theorem

lf

- \triangleright x^* is the optimal solution of the primal,
- \triangleright (λ^*, μ^*) is the optimal solution of the dual, then

$$q(\lambda^*, \mu^*) \leq f(x^*)$$
.

Duality and feasibility

$$q(\lambda^*, \mu^*) \leq f(x^*)$$
.

Corollary 4.10

If one problem is unbounded, the other one is infeasible.

Duality and feasibility

		Dual problem			
		Optimal	Unbounded	Infeasible	
problem	Optimal		NO		
Primal p	Unbounded	NO	NO	YES	
	Infeasible		YES		

Optimality of primal and dual

Corollary 4.11

If $\exists x^*$, λ^* , μ^* such that

$$q(\lambda^*, \mu^*) = f(x^*),$$

then they are optimal.

Proof

Consider *x* primal-feasible. By weak-duality:

$$f(x) \ge q(\lambda^*, \mu^*) = f(x^*)$$

Consider (λ, μ) dual-feasible. By weak-duality:

$$q(\lambda^*, \mu^*) = f(x^*) \ge q(\lambda, \mu)$$

Duality and feasibility

		Dual problem		
		Optimal	Unbounded	Infeasible
problem	Optimal	YES	NO	NO
Primal	Unbounded	NO	NO	YES
	Infeasible	NO	YES	??

Duality in linear optimization

Motivation

- ▶ We consider now the specific case of linear optimization.
- ▶ We show that the dual problem has some nice properties in this context.

Linear optimization

p. 102

$$h(x) = b - Ax, g(x) = -x$$

 $\min c^T x$ subject to

$$L(x, \lambda, \mu) = c^{T}x + \lambda^{T}(b - Ax) - \mu^{T}x$$
$$= (c - A^{T}\lambda - \mu)^{T}x + \lambda^{T}b$$

Ax = bx > 0

Dual problem:

 $A \in \mathbb{R}^{m \times n}$ $b \in \mathbb{R}^m$

 $c \in \mathbb{R}^n$

 $\max \lambda^T b$ subject to $\mu = c - A^T \lambda \ge 0$.

Equivalent formulation:

 $\min -b^T x$ subject to $A^T x \leq c$.

Linear optimization

p. 103

$$g(x) = A^T x - c$$

$$\min_{x \in \mathbb{R}^m} -b^T x$$

$$L(x,\mu) = -b^{\mathsf{T}}x + \mu^{\mathsf{T}}(A^{\mathsf{T}}x - c)$$

= $(-b + A\mu)^{\mathsf{T}}x - \mu^{\mathsf{T}}c$

subject to

Dual problem:

$$A^T x \leq c$$

$$\max_{a} -\mu^T c$$
 subject to $A\mu = b, \mu \geq 0$.

 $A \in \mathbb{R}^{m \times n}$ $b \in \mathbb{R}^m$

Equivalent formulation:

$$c \in \mathbb{R}^n$$

 $\min_{x} c^{T} x$ subject to $Ax = b, x \ge 0$.

Theorem 4.14

The dual of a linear optimization problem is another linear optimization problem. The dual can be derived for each possible specification.

Theorem 4.15

The dual of the dual is the primal.

Theorem 4.17

► Consider the primal problem and its dual.

Theorem 4.17

- ► Consider the primal problem and its dual.
- ▶ If one problem has an optimal solution, so does the other one,

Theorem 4.17

- Consider the primal problem and its dual.
- ▶ If one problem has an optimal solution, so does the other one,
- and the optimal value of their objective functions are the same.

Motivation

- ▶ An optimal solution of the primal is obtained when a basis is available such that all reduced costs are non negative.
- ▶ We show here that the same basis can be used to obtain an optimal solution of the dual problem.

Context

Data

 $A \in \mathbb{R}^{m \times n}$

 $b \in \mathbb{R}^m$

 $c \in \mathbb{R}^n$

Context

Data

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m$$

$$c \in \mathbb{R}^n$$

Primal

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to

$$Ax = b$$

$$x \ge 0$$

Context

Data

$$A \in \mathbb{R}^{m \times n}$$

$$b \in \mathbb{R}^m$$

$$c \in \mathbb{R}^n$$

Primal

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to

$$Ax = b$$
$$x \ge 0$$

Dual

$$\max_{\lambda \in \mathbb{R}^m} \lambda^T b$$

subject to

$$A^T\lambda \leq c$$

Optimal solutions: primal

Assumptions

$$A = (B|N)$$
 $B^{-1}b \ge 0$
 $ar{c} = c - A^T B^{-T} c_B \ge 0$

Optimal solutions: primal

Assumptions

$$A = (B|N)$$
 $B^{-1}b \ge 0$
 $ar{c} = c - A^T B^{-T} c_B \ge 0$

Primal solution

$$x_B^* = B^{-1}b, \ x_N^* = 0.$$

Optimal solutions: dual

Assumptions

$$A = (B|N)$$
 $B^{-1}b \ge 0$
 $ar{c} = c - A^T B^{-T} c_B \ge 0$

λ^* is dual-feasible

$$A^T \lambda^* = A^T B^{-T} c_B = c - \bar{c} \le c$$

Dual solution

$$\lambda^* = B^{-T} c_B.$$

$$\lambda^*$$
 is dual-optimal

$$(\lambda^*)^T b = c_B^T B^{-1} b = c_B^T x_B^* = c^T x^*$$

- ▶ If the primal or the dual has an optimal solution,
- so does the other one,
- and the optimal objective values are equal.

Karush-Kuhn-Tucker optimality conditions

Theorem 6.13

- $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^p, h: \mathbb{R}^n \to \mathbb{R}^m$ continuously differentiable.
- \triangleright x^* local optimal of the problem.
- ▶ If the constraints are "qualified" at x^* , there exists a unique $\lambda^* \in \mathbb{R}^m$, a unique $\mu^* \in \mathbb{R}^p$, $\mu^* \geq 0$, such that

$$\nabla_{\mathsf{x}} L(\mathsf{x}, \lambda^*, \mu^*) = 0,$$

and

$$\mu_i^* g_i(x^*) = 0, \ i = 1, \dots, p.$$

Linear constraints are qualified.

Karush-Kuhn-Tucker optimality conditions

$$L(x,\lambda,\mu) = c^T x + \lambda^T (b - Ax) - \mu^T x.$$

$$\nabla_x L(x^*,\lambda^*,\mu^*) = c - A^T \lambda^* - \mu^* = 0. \text{ [Dual constraints]}.$$

$$\mu^* = c - A^T \lambda^* \ge 0 \iff c - A^T B^{-T} c_B \ge 0. \text{ [Non negative reduced costs]}.$$

$$\mu_i^* x_i^* = 0. \text{ [Complementarity slackness]}.$$

$$(c_i - \sum_{i=1}^m a_{ji} \lambda_j^*) x_i^* = 0$$

Complementarity slackness

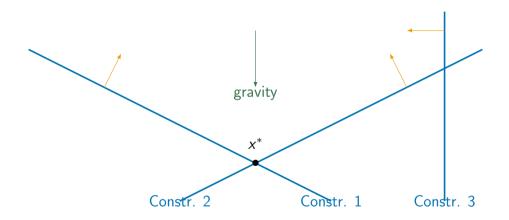
Primal problem

- ▶ If a constraint of the dual is not active, the corresponding primal variable is zero.
- ▶ If a primal variable is non zero, the corresponding dual constraint is active.

Dual problem

- ▶ If a constraint of the primal is not active, the corresponding dual variable is zero.
- ▶ If a dual variable is non zero, the corresponding primal constraint is active.

Physical interpretation



Optimization problem

Problem solved by mother nature

$$\min_{x \in \mathbb{R}^2} c^T x = x_2$$
 subject to subject to $a_{11}x_1 + a_{12}x_2 \geq b_1,$ $a_{21}x_1 + a_{22}x_2 \geq b_2,$ $a_{31}x_1 + a_{32}x_2 \geq b_3,$

 $\min_{x \in \mathbb{R}^2} c^T x = x_2$

subject to

$$a_1^T x \geq b_1,$$

 $a_2^T x \geq b_2,$
 $a_3^T x \geq b_3,$

where

$$a_i = \left(\begin{array}{c} a_{i1} \\ a_{i2} \end{array} \right).$$

$$\max_{\mu\in\mathbb{R}^3}b_1\mu_1+b_2\mu_2+b_3\mu_3,$$

subject to

$$\sum_{i=1}^3 a_i \mu_i = \left(\begin{array}{c} 0 \\ 1 \end{array}\right) = c.$$

Forces

- ightharpoonup Constraints: $a_i \mu_i$.
- Gravity: $-c = -\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- Constraints of the dual: sum of forces is zero.

Complementarity slackness

$$\mu_i^*(a_i^T x^* - b_i) = 0, \ i = 1, 2, 3.$$

Only active constraints apply a force.

Summary

- ► Constraint relaxation and Lagrangian.
- Dual function: lower bound.
- Dual problem: best lower bound (weak duality).
- Linear optimization: strong duality.
- Complementarity slackness.