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Duality

Motivation
◮ We take a different point of view about the optimization problem: the point

of view of the person who defines the constraint.

◮ We introduce an important concept in optimization: duality.

◮ It will help to solve complex problems (e.g. shortest path problem).

◮ It will allow to calculate useful bounds (e.g. in discrete optimization).
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Simple example

Deal
◮ Win 1e per meter of altitude.

◮ Must stay in the Alps.

Model
x : position, f (x): altitude at x

max
x

f (x) s.t. x ∈ Alps

Solution for the alpinist
Mont Blanc: 4807e
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Simple example

4807m

8848m

New deal
◮ Pay a fine if out of the Alps.

◮ What fine?

Model
x : position, f (x): altitude at x ,
a(x)=fine at x

max
x

f (x)− a(x)

Solution

a(x) = 4041e if x 6∈ Alps
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Duality

Primal problem

◮ Point of view of the alpinist

◮ Optimization under strict
constraint

Dual problem

◮ Point of view of the billionaire

◮ Penalization of the constraints
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Constraint relaxation

Primal problem

min
x∈R2

2x1 + x2

subject to

1− x1 − x2 = 0

x1 ≥ 0

x2 ≥ 0

Solution: (0, 1)
Optimal value: 1

Constraint relaxation

min
x∈R2

2x1 + x2+λ(1− x1 − x2)

subject to
x1 ≥ 0

x2 ≥ 0

Dual problem
What is the value of λ?
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λ = 0

min
x∈R2

2x1 + x2 + λ(1− x1 − x2)= 2x1 + x2

subject to
x1 ≥ 0

x2 ≥ 0

Solution: (0, 0)
Optimal value: 0 < 1. Comments

◮ We obtain a lower bound,

◮ but a strict one.
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λ = 2

min
x∈R2

2x1 + x2 + λ(1− x1 − x2)= 2− x2

subject to
x1 ≥ 0

x2 ≥ 0

Solution: none
Optimal value: −∞ < 1. Comments

◮ This value of λ generates an
unbounded problem.

◮ It must be avoided.
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λ = 1

min
x∈R2

2x1 + x2 + λ(1− x1 − x2)= x1 + 1

subject to
x1 ≥ 0

x2 ≥ 0

Solution: (0, x2), ∀x2
Optimal value: 1 = 1. Comments

◮ We obtain the same optimal value
as for the primal.

◮ The same solution is optimal as
well.
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Lagrangian and dual problem

Motivation
◮ Rigorous definition of the concepts.

◮ The objective function including the penalty term is called the Lagrangian.

◮ The problem to find the values of the penalty coefficients is the dual
problem.
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Lagrangian

Primal problem

min f (x) [f : Rn → R]

subject to
h(x) = 0 [h : Rn → R

m]

g(x) ≤ 0 [g : Rn → R
p]

Lagrangian

L(x , λ, µ) = f (x) + λTh(x) + µTg(x)

λ ∈ R
m µ ∈ R

p
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Dual function

Lagrangian

L(x , λ, µ) = f (x) + λTh(x) + µTg(x)

Dual function

q : Rm+p → R : q(λ, µ) = min
x∈Rn

L(x , λ, µ)

Note
We want

µTg(x) ≥ 0 when g(x) > 0.

Therefore, we impose µ ≥ 0.
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Dual bound

Theorem 4.5
x∗ is an optimal solution of the primal.
If λ ∈ R

m and µ ∈ R
p, µ ≥ 0, then

q(λ, µ) ≤ f (x∗).

Proof

q(λ, µ) = min
x∈Rn

L(x , λ, µ)

≤ L(x∗, λ, µ)

= f (x∗) + λTh(x∗) + µTg(x∗)

= f (x∗) + µTg(x∗) ≤ f (x∗)
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Dual bound

Corollary 4.6
x∗ is an optimal solution of the primal.
x is a feasible solution of the primal.
If λ ∈ R

m and µ ∈ R
p, µ ≥ 0, then

q(λ, µ) ≤ f (x∗)≤ f (x)
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Dual problem

Motivation
Find the best lower bound
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Dual problem

Motivation
Find the best lower bound

max
λ,µ

q(λ, µ)

15 / 37



Dual problem

Motivation
Find the best lower bound

max
λ,µ

q(λ, µ)

subject to
µ ≥ 0
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Dual problem

Motivation
Find the best lower bound

max
λ,µ

q(λ, µ)

subject to
µ ≥ 0

and
(λ, µ) ∈

{

λ, µ | q(λ, µ) > −∞
}

.
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Weak duality theorem

If

◮ x∗ is the optimal solution of the primal,

◮ (λ∗, µ∗) is the optimal solution of the dual, then

q(λ∗, µ∗) ≤ f (x∗) .
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Duality and feasibility

q(λ∗, µ∗) ≤ f (x∗) .

Corollary 4.10
If one problem is unbounded, the other one is infeasible.
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Duality and feasibility

Dual problem
Optimal Unbounded Infeasible

P
ri
m
al

pr
ob
le
m Optimal NO

Unbounded NO NO YES

Infeasible YES
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Optimality of primal and dual

Corollary 4.11
If ∃ x∗, λ∗, µ∗ such that

q(λ∗, µ∗) = f (x∗),

then they are optimal.

Proof
Consider x primal-feasible. By weak-duality:

f (x) ≥q(λ∗, µ∗) = f (x∗)

Consider (λ, µ) dual-feasible. By weak-duality:

q(λ∗, µ∗) = f (x∗)≥ q(λ, µ)
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Duality and feasibility

Dual problem
Optimal Unbounded Infeasible

P
ri
m
al

pr
ob
le
m Optimal YES NO NO

Unbounded NO NO YES

Infeasible NO YES ??
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Duality in linear optimization

Motivation
◮ We consider now the specific case of linear optimization.

◮ We show that the dual problem has some nice properties in this context.
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Linear optimization

min
x∈Rn

cTx

subject to

Ax = b

x ≥ 0

A ∈ R
m×n

b ∈ R
m

c ∈ R
n

p. 102
h(x) = b − Ax , g(x) = −x

L(x , λ, µ) = cTx + λT (b − Ax)− µTx

=
(

c − ATλ− µ
)T

x + λTb

Dual problem:

max
λ

λTb subject to µ = c − ATλ ≥ 0.

Equivalent formulation:

min
x

−bTx subject to ATx ≤ c .
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Linear optimization

min
x∈Rm

−bTx

subject to

ATx ≤ c

A ∈ R
m×n

b ∈ R
m

c ∈ R
n

p. 103
g(x) = ATx − c

L(x , µ) = −bTx + µT (ATx − c)

= (−b + Aµ)Tx − µT c

Dual problem:

max
λ

−µT c subject to Aµ = b, µ ≥ 0.

Equivalent formulation:

min
x

cTx subject to Ax = b, x ≥ 0.
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Dual problem

Theorem 4.14
The dual of a linear optimization problem is another linear optimization problem.
The dual can be derived for each possible specification.

Theorem 4.15
The dual of the dual is the primal.

24 / 37



Strong duality

Theorem 4.17
◮ Consider the primal problem and its dual.
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Strong duality

Theorem 4.17
◮ Consider the primal problem and its dual.

◮ If one problem has an optimal solution, so does the other one,
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Strong duality

Theorem 4.17
◮ Consider the primal problem and its dual.

◮ If one problem has an optimal solution, so does the other one,

◮ and the optimal value of their objective functions are the same.
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Strong duality

Motivation
◮ An optimal solution of the primal is obtained when a basis is available such

that all reduced costs are non negative.

◮ We show here that the same basis can be used to obtain an optimal solution
of the dual problem.
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Context

Data

A ∈ R
m×n

b ∈ R
m

c ∈ R
n
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Context

Data

A ∈ R
m×n

b ∈ R
m

c ∈ R
n

Primal

min
x∈Rn

cTx

subject to

Ax = b

x ≥ 0
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Context

Data

A ∈ R
m×n

b ∈ R
m

c ∈ R
n

Primal

min
x∈Rn

cTx

subject to

Ax = b

x ≥ 0

Dual

max
λ∈Rm

λTb

subject to

ATλ ≤ c
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Optimal solutions: primal

Assumptions

A = (B |N)

B−1b ≥ 0

c̄ = c − ATB−T cB ≥ 0
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Optimal solutions: primal

Assumptions

A = (B |N)

B−1b ≥ 0

c̄ = c − ATB−T cB ≥ 0

Primal solution

x∗B = B−1b, x∗N = 0.
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Optimal solutions: dual

Assumptions

A = (B |N)

B−1b ≥ 0

c̄ = c − ATB−T cB ≥ 0

Dual solution

λ∗ = B−TcB .

λ∗ is dual-feasible

ATλ∗ = ATB−TcB = c − c̄ ≤ c

λ∗ is dual-optimal

(λ∗)Tb = cTB B
−1b = cTB x

∗

B = cTx∗
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Strong duality

◮ If the primal or the dual has an optimal solution,

◮ so does the other one,

◮ and the optimal objective values are equal.
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Karush-Kuhn-Tucker optimality conditions

Theorem 6.13
◮ f : Rn → R, g : Rn → R

p, h : Rn → R
m continuously differentiable.

◮ x∗ local optimal of the problem.

◮ If the constraints are “qualified” at x∗, there exists a unique λ∗ ∈ R
m, a

unique µ∗ ∈ R
p, µ∗ ≥ 0, such that

∇xL(x , λ
∗, µ∗) = 0,

and
µ∗

i gi(x
∗) = 0, i = 1, . . . , p.

◮ Linear constraints are qualified.
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Karush-Kuhn-Tucker optimality conditions

L(x , λ, µ) = cTx + λT (b − Ax)− µTx .

∇xL(x
∗, λ∗, µ∗) = c − ATλ∗ − µ∗ = 0. [Dual constraints].

µ∗= c − ATλ∗ ≥ 0 ⇐⇒ c − ATB−TcB ≥ 0. [Non negative reduced costs].

µ∗

i x
∗

i = 0. [Complementarity slackness].

(ci −
m
∑

j=1

ajiλ
∗

j )x
∗

i = 0
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Complementarity slackness

Primal problem

◮ If a constraint of the dual is not active, the corresponding primal variable is
zero.

◮ If a primal variable is non zero, the corresponding dual constraint is active.

Dual problem

◮ If a constraint of the primal is not active, the corresponding dual variable is
zero.

◮ If a dual variable is non zero, the corresponding primal constraint is active.
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Physical interpretation

Constr. 1Constr. 2 Constr. 3

•
x∗

gravity
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Optimization problem

Problem solved by mother nature

min
x∈R2

cTx = x2

subject to

a11x1 + a12x2 ≥ b1,

a21x1 + a22x2 ≥ b2,

a31x1 + a32x2 ≥ b3,

min
x∈R2

cTx = x2

subject to

aT1 x ≥ b1,

aT2 x ≥ b2,

aT3 x ≥ b3,

where

ai =

(

ai1
ai2

)

.
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Dual problem

max
µ∈R3

b1µ1 + b2µ2 + b3µ3,

subject to

3
∑

i=1

aiµi =

(

0
1

)

= c .

Forces
◮ Constraints: aiµi .

◮ Gravity: −c = −

(

0
1

)

.

◮ Constraints of the dual: sum of
forces is zero.

Complementarity slackness

µ∗

i (a
T
i x

∗ − bi) = 0, i = 1, 2, 3.

Only active constraints apply a force.
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Summary

◮ Constraint relaxation and Lagrangian.

◮ Dual function: lower bound.

◮ Dual problem: best lower bound (weak duality).

◮ Linear optimization: strong duality.

◮ Complementarity slackness.
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