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The correct answer is identified by the bold font.

1 Discrete optimization

1.1 Bounds

Consider a minimization problem P

min f(z)

subject to
g(z) <0,
h(z) =0,
x>0,
rze X CR™
Consider z* an optimal solution of this problem. For each of the following meth-
ods, decide if it provides a lower bound of f(z*), an upper bound, or none.

1. Consider the problem

min f(x)

zeR™
subject to



and z its optimal solution. Then, f(x;) is

(a) alower bound.
(b) an upper bound.

(c) neither an upper or a lower bound.

It is a lower bound on f(z*). This is exploited by the branch and bound
algorithm, where X = Z". The relaxation of an integer linear optimization
problem is solved with the simplex algorithm to obtain a lower bound.

2. Consider a feasible point z5. Then, f(z3) is

(a) alower bound.
(b) an upper bound.

(c) neither an upper or a lower bound.

It is an upper bound on f(z*), by definition of the optimal solution of a
minimization problem.

3. Consider the problem

min L(z; \) = f(z) + A h(z)

z€R™

subject to

g9(zx) <0,
x>0,
re X CR"™

and z3 its optimal solution. Then, for any A, L(z3; \) is

(a) alower bound.
(b) an upper bound.

(c) neither an upper or a lower bound.
It is a lower bound on f(z*). L is the Lagrangian.
Lz A) < L(a"5A) = f(2") + XN h(z") = f(z").
Note that x3 may not be feasible for the original problem.

4. Consider the origin of the coordinate system, x; = 0. Then, f(xz4) is
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(a) alower bound.
(b) an upper bound.
(c) neither an upper or a lower bound.

It is not a bound on f(z*) in the general case. If x4 happens to be feasible,
it provides an upper bound. If not, nothing can be said.



2 Non linear optimization

2.1 Newton local

Let f be a twice differentiable function. Which statement about Newton’s local
method for the minimization of f is correct?
Remember that the quadratic model is defined as

1
i (d) = fxe) +d"V f(wg) + 5d"V° f () (1)
and Newton’s equation is defined as
V2 f(xr)d = =V f(2). (2)

1. If the algorithm converges, it always converges to a stationary point of
the function f. Indeed, a stationary point z* is such that V f(z*) = 0,
which is exactly the set of equations that Newton’s method is solving.

2. The point obtained during the k" iteration of the algorithm maximizes the
quadratic model of the function f in point x;. No. It minimizes it, if the
model is convex. If the function is concave, either it maximizes it (if New-
ton’s equation (@) is solved) or it fails (if the quadratic model (I)) is mini-
mized).

3. If we start the algorithm from two different starting points, it will always
converge to two different local minima. No. If z* is a local mimimum,
there is a neighborhood around x* such that the method converges to z* if
started from any point within this neighborhood.

4. If the algorithm converges, it enables to always find a point that satisfies
the second order necessary optimality condition. No, the method may con-
verge to a stationary point that is a saddle point or a maximum, where the
necessary optimality conditions are not verified.



2.2 Newton local

We want to minimize the function f(x). We consider the iterate x; of the local
Newton method, such that the function f is not convex at x;. The method builds
a quadratic model of f at x;, and minimizes this model to obtain z;.;. Which
statement is correct?

L f(zpe1) > flap).
2. The iteration is unsuccessful.

3. The iteration is successful, but we cannot say if f(xg1) > f(zg) or f(Tg11) <

f (@)
4. f(zpe1) < flap).

As the function is not convex at xj, the quadratic model is not bounded from
below. Therefore, there is no minimum, and the next iterate is not defined. The
iteration is unsuccessful.



2.3 Line search

Consider a function f, a point xj, such that V f(x) # 0, and a descent direction
dy. at x. Let o* be the step that minimizes the function f in the direction dj:

o = argmin,, f(xy + ady).
Which statement is wrong?

1. f(xg + o*dy) < f(xy). This is correct, from the definition of a*, and the
fact that dj, is a descent direction.

2. The first Wolfe condition is verified at o* for any 5, between 0 and 1:
flax +ardy) < flax) + BV f(ax)" dy,

for all 0 < ; < 1. This is incorrect. It depends on the value of 5. If it is
close to 1, the condition may be quite conservative, and the optimal step o*
may be deemed too long.

3. The second Wolfe condition is verified at o* for any 3, between 0 and 1
Vf(l’k + Oé*dk)Tdk Z ﬁgi(.Z‘k)Tdk

forall 0 < 3 < 1. Indeed, as o* is the minimum of the function f along
d;,, we have

Vf<$k + a*dk)Tdk = 0.

Therefore, the second Wolfe condition at «* is
BV f ()T dly < 0.

As dy is a descent direction and 5 > 0, this is always verified.



2.4 Preconditioner

Consider a function f : R> — R and an iterate x;, such that the function is not con-
vex at xx. Among the following matrices, which one can be used to precondition
the gradient?

1. Dy = V2f(x). No. As the function is not convex, V2 f(x;,) is not positive
definite.

2. D), = %VQf(:vk). No, for the same reason as above.

3. Dy = V2f(xx)'. No. As V2 f(x},) is not positive definite, the same is true

for its inverse.
2 0
0 6

Yes. It is a positive definite matrix.

(2 0)
(0 V)

No. Itis not a positive definite matrix.

4. Dy =

5. Dy =

No. It is a singular matrix.

6. Dy =
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