
Introduction to optimization and operations

research

Interactive session

Michel Bierlaire

December 6, 2024

The correct answer is identified by the bold font.

1 Discrete optimization

1.1 Bounds

Consider a minimization problem P

min
x∈Rn

f(x)

subject to

g(x) ≤ 0,

h(x) = 0,

x ≥ 0,

x ∈ X ⊆ R
n.

Consider x∗ an optimal solution of this problem. For each of the following meth-

ods, decide if it provides a lower bound of f(x∗), an upper bound, or none.

1. Consider the problem

min
x∈Rn

f(x)

subject to

g(x) ≤ 0,

h(x) = 0,

x ≥ 0,

1



and x1 its optimal solution. Then, f(x1) is

(a) a lower bound.

(b) an upper bound.

(c) neither an upper or a lower bound.

It is a lower bound on f(x∗). This is exploited by the branch and bound

algorithm, where X = Z
n. The relaxation of an integer linear optimization

problem is solved with the simplex algorithm to obtain a lower bound.

2. Consider a feasible point x2. Then, f(x2) is

(a) a lower bound.

(b) an upper bound.

(c) neither an upper or a lower bound.

It is an upper bound on f(x∗), by definition of the optimal solution of a

minimization problem.

3. Consider the problem

min
x∈Rn

L(x;λ) = f(x) + λTh(x)

subject to

g(x) ≤ 0,

x ≥ 0,

x ∈ X ⊆ R
n.

and x3 its optimal solution. Then, for any λ, L(x3;λ) is

(a) a lower bound.

(b) an upper bound.

(c) neither an upper or a lower bound.

It is a lower bound on f(x∗). L is the Lagrangian.

L(x3;λ) ≤ L(x∗;λ) = f(x∗) + λTh(x∗) = f(x∗).

Note that x3 may not be feasible for the original problem.

4. Consider the origin of the coordinate system, x4 = 0. Then, f(x4) is
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(a) a lower bound.

(b) an upper bound.

(c) neither an upper or a lower bound.

It is not a bound on f(x∗) in the general case. If x4 happens to be feasible,

it provides an upper bound. If not, nothing can be said.
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2 Non linear optimization

2.1 Newton local

Let f be a twice differentiable function. Which statement about Newton’s local

method for the minimization of f is correct?

Remember that the quadratic model is defined as

mxk
(d) = f(xk) + dT∇f(xk) +

1

2
dT∇2f(xk) (1)

and Newton’s equation is defined as

∇2f(xk)d = −∇f(xk). (2)

1. If the algorithm converges, it always converges to a stationary point of

the function f . Indeed, a stationary point x∗ is such that ∇f(x∗) = 0,

which is exactly the set of equations that Newton’s method is solving.

2. The point obtained during the kth iteration of the algorithm maximizes the

quadratic model of the function f in point xk. No. It minimizes it, if the

model is convex. If the function is concave, either it maximizes it (if New-

ton’s equation (2) is solved) or it fails (if the quadratic model (1) is mini-

mized).

3. If we start the algorithm from two different starting points, it will always

converge to two different local minima. No. If x∗ is a local mimimum,

there is a neighborhood around x∗ such that the method converges to x∗ if

started from any point within this neighborhood.

4. If the algorithm converges, it enables to always find a point that satisfies

the second order necessary optimality condition. No, the method may con-

verge to a stationary point that is a saddle point or a maximum, where the

necessary optimality conditions are not verified.
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2.2 Newton local

We want to minimize the function f(x). We consider the iterate xk of the local

Newton method, such that the function f is not convex at xk. The method builds

a quadratic model of f at xk, and minimizes this model to obtain xk+1. Which

statement is correct?

1. f(xk+1) > f(xk).

2. The iteration is unsuccessful.

3. The iteration is successful, but we cannot say if f(xk+1) > f(xk) or f(xk+1) <
f(xk).

4. f(xk+1) < f(xk).

As the function is not convex at xk, the quadratic model is not bounded from

below. Therefore, there is no minimum, and the next iterate is not defined. The

iteration is unsuccessful.
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2.3 Line search

Consider a function f , a point xk such that ∇f(xk) 6= 0, and a descent direction

dk at xk. Let α∗ be the step that minimizes the function f in the direction dk:

α∗ = argmin
α
f(xk + αdk).

Which statement is wrong?

1. f(xk + α∗dk) < f(xk). This is correct, from the definition of α∗, and the

fact that dk is a descent direction.

2. The first Wolfe condition is verified at α∗ for any β1 between 0 and 1:

f(xk + α∗dk) ≤ f(xk) + α∗β1∇f(xk)
Tdk ,

for all 0 < β1 < 1. This is incorrect. It depends on the value of β1. If it is

close to 1, the condition may be quite conservative, and the optimal step α∗

may be deemed too long.

3. The second Wolfe condition is verified at α∗ for any β2 between 0 and 1

∇f(xk + α∗dk)
Tdk ≥ β2∇f(xk)

Tdk

for all 0 < β2 < 1. Indeed, as α∗ is the minimum of the function f along

dk, we have

∇f(xk + α∗dk)
Tdk = 0.

Therefore, the second Wolfe condition at α∗ is

β2∇f(xk)
Tdk ≤ 0.

As dk is a descent direction and β2 > 0, this is always verified.
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2.4 Preconditioner

Consider a function f : R2 → R and an iterate xk such that the function is not con-

vex at xk. Among the following matrices, which one can be used to precondition

the gradient?

1. Dk = ∇2f(xk). No. As the function is not convex, ∇2f(xk) is not positive

definite.

2. Dk =
1

2
∇2f(xk). No, for the same reason as above.

3. Dk = ∇2f(xk)
−1. No. As ∇2f(xk) is not positive definite, the same is true

for its inverse.

4. Dk =
(

2 0
0 6

)

Yes. It is a positive definite matrix.

5. Dk =
(

1 0
2 0

)

No. It is a singular matrix.

6. Dk =
(

−1 0
0 1

)

No. It is not a positive definite matrix.
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