Numerical Analysis GC / SIE

Floating point number representation and round-off errors

Daniel Kressner

Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch

Slides by Pablo Antolín and Fabio Nobile.

Real number presentation in a computer

Real numbers are stored in the following way (floating point representation) in a computer:

$$(-1)^{s} \cdot (0.a_{1}a_{2} \dots a_{t}) \cdot \beta^{e} = (-1)^{s} \cdot m \cdot \beta^{e-t}; \quad a_{1} \neq 0$$

- ightharpoonup sign: s = 0 ou 1
- ▶ mantissa: $m = a_1 \cdots a_t$ (t integer digits $0 \le a_i \le \beta 1$, with $a_1 \ne 0$)
- base: β (usually 2)
- exponent: e

Example

$$-23 \implies (-1)^1 * (0.10111000 \cdots) * 2^5$$

Single and double precision

► The floating point representation uses a fixed number of digits (bits) for the mantissa and exponent, plus an additional digit for the sign.

	t	е	bytes	bits
Single precision	24	$-125 \le e \le 128$	4	32
Double precision	53	$-1021 \le e \le 1024$	8	64

$$(1 \text{ byte} = 8 \text{ bits})$$

- Common practice in scientific/engineering applications is to use double precision:
 - In base 10 this roughly correponds to 16 decimal digits and 3 digits for the exponent
 - ▶ The largest representable number: $1.797693134862316 \cdot 10^{+308}$
 - ▶ The smallest representable number: $2.225073858507201 \cdot 10^{-308}$
- ▶ In machine learning, GPUs, etc. uses single or even half precision.

Single and double precision

► The floating point representation uses a fixed number of digits (bits) for the mantissa and exponent, plus an additional digit for the sign.

	t	е	bytes	bits
Single precision	24	$-125 \le e \le 128$	4	32
Double precision	53	$-1021 \le e \le 1024$	8	64

$$(1 \text{ byte} = 8 \text{ bits})$$

- Common practice in scientific/engineering applications is to use double precision:
 - In base 10 this roughly correponds to 16 decimal digits and 3 digits for the exponent
 - ▶ The largest representable number: $1.797693134862316 \cdot 10^{+308}$
 - ▶ The smallest representable number: $2.225073858507201 \cdot 10^{-308}$
- ▶ In machine learning, GPUs, etc. uses single or even half precision.

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition $1 + 10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{ll}
1 & = 0.100000000000000 & 10 \\
x = 10^{-16}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{ll}
1 & = 0.100000000000000 & 10^{\frac{1}{2}} \\
x = 10^{-16} & & & & \\
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll} 1 & = 0.10000000000000 & 10^1 \\ x = 10^{-16} & = 0.10000000000000 & 10^{-15} \end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & = 0.10000000000000 & 10^1 \\
x = 10^{-16} & = 0.0100000000000 & 10^{-14}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & = 0.10000000000000 & 10^1 \\
x = 10^{-16} & = 0.0010000000000 & 10^{-13}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll} 1 & = 0.10000000000000 & 10^1 \\ x = 10^{-16} & = 0.00010000000000 & 10^{-12} \end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & =0.10000000000000 & 10^1 \\
x = 10^{-16} & =0.00001000000000 & 10^{-11}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll} 1 & = 0.10000000000000 & 10^1 \\ x = 10^{-16} & = 0.000001000000000 & 10^{-10} \end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000100000000 & 10^{-9}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{rcl}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000010000000 & 10^{-8}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{rcl}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000001000000 & 10^{-7}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000000100000 & 10^{-6}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{rcl}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.000000000100000 & 10^{-5}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{rcl}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000000010000 & 10^{-4}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{rcl}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.000000000001000 & 10^{-3}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{rcl}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000000000100 & 10^{-2}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000000000010 & 10^{-1}
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000000000000 & 10^0
\end{array}$$

Example 1: Try to evaluate in Python the function

$$f(x) = \frac{(1+x)-1}{x}$$

for
$$x = 10^{-1}, 10^{-2}, \dots, 10^{-16}$$
.

In Python we get:

- $f(10^{-1}) = 1.0000000000000001$
- $f(10^{-6}) = 0.999999999917733$
- $f(10^{-16}) = 0$

This phenomenon is known as **loss of significance**.

Explanation: when the computer does the addition $1+10^{-16}$ firstly it must "align the exponents" of both numbers

$$\begin{array}{lll}
1 & =0.100000000000000 & 10^1 \\
x = 10^{-16} & =0.00000000000000 & 10^1
\end{array}$$

$$\implies 1 + 10^{-16} = 1!!!$$

Example 2: Ariane 5, Guyane, June 1996

 $Photo\ Credit:\ Jeremy\ Beck\ /\ SpaceFlight\ Insider$

,

Example 2: Ariane 5, Guyane, June 1996 ... 37 seconds after the launch

Photo Credit: Pool VENTURIER/LE CORRE

Example 2: Ariane 5, Guyane, June 1996 ightarrow an overflow error

From SIAM News, Vol. 29. Number 8, October 1996:

The internal SRI software exception was caused during execution of a data conversion from a 64-bit floating-point number to a 16-bit signed integer value. The value of the floating-point number was greater than what could be represented by a 16-bit signed integer. The result was an operand error. The data conversion instructions (in Ada code) were not protected from causing operand errors, although other conversions of comparable variables in the same place in the code were protected.

An OVERFLOW error with no human losses, but a cost of 500 million dollars and 10 years of work!!

Example 2: Ariane 5, Guyane, June 1996 ightarrow an overflow error

From SIAM News, Vol. 29. Number 8, October 1996:

The internal SRI software exception was caused during execution of a data conversion from a 64-bit floating-point number to a 16-bit signed integer value. The value of the floating-point number was greater than what could be represented by a 16-bit signed integer. The result was an operand error. The data conversion instructions (in Ada code) were not protected from causing operand errors, although other conversions of comparable variables in the same place in the code were protected.

An OVERFLOW error with no human losses, but a cost of 500 million dollars and 10 years of work!!

Example 3: Let's consider

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots \\ \frac{1}{2} & \frac{1}{3} & \cdots & \cdots \\ \frac{1}{3} & \vdots & \ddots & \\ \vdots & \vdots & & \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad x = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n \quad \text{et} \quad b = Ax.$$

We resolved the linear system Ax = b for n = 5, 10, 15, 20, ..., i.e., $x = A^{-1}b$ is computed

What happens?