Numerical Analysis
GC / SIE
Floating point number representation
and round-off errors

Daniel Kressner

Chair for Numerical Algorithms and HPC
Institute of Mathematics, EPFL
daniel.kressner@epfl.ch

=PrFL

Slides by Pablo Antolin and Fabio Nobile.

Real number presentation in a computer

» Real numbers are stored in the following way (floating point
representation) in a computer:

(=1)°-(0.a182...a;) - B =(-1)° - m- et £0

sign: s=0oul

mantissa: m = a1 - - - a; (t integer digits 0 < a; < 8 — 1, with a; # 0)
base: § (usually 2)

exponent: e

vvyyvyy

Example

-23 = (—1)' % (0.10111000- - -) % 2°

Single and double precision

> The floating point representation uses a fixed number of digits (bits)
for the mantissa and exponent, plus an additional digit for the sign.

] [t] e | bytes [bits |
Single precision 24 —125 < e <128 4 32
Double precision || 53 | —1021 < e <1024 8 64

(1 byte = 8 bits)

» Common practice in scientific/engineering applications is to use

double precision:

Single and double precision

> The floating point representation uses a fixed number of digits (bits)
for the mantissa and exponent, plus an additional digit for the sign.

] [t] e | bytes [bits |
Single precision 24 —125 < e <128 4 32
Double precision || 53 | —1021 < e <1024 8 64

(1 byte = 8 bits)

» Common practice in scientific/engineering applications is to use
double precision:
» In base 10 this roughly correponds to 16 decimal digits and 3 digits
for the exponent
> The largest representable number: 1.797693134862316 - 10+3%
» The smallest representable number: 2.225073858507201 - 10~ 3%

» In machine learning, GPUs, etc. uses single or even half precision.

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =

for x = 1071,1072,...,1076.

Examples and dangers
Example 1: Try to evaluate in Python the function
(1+x)—1
flx)=——21—=
() =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =1071® =0.1000000000000000 10~'°

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0100000000000000 1014

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0010000000000000 10~'3

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0001000000000000 10~'2

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000100000000000 10~!!

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000010000000000 10~1°

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000001000000000 10°

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000100000000 108

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000010000000 10~

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000001000000 10~°

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000100000 105

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000010000 10~*

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000001000 103

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000000100 102

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000000010 10!

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000000001 10°

Examples and dangers

Example 1: Try to evaluate in Python the function
(1+x)—1

X

f(x) =
for x =10"1,1072,...,10716.
In Python we get:
» £(10~1) = 1.000000000000001
> £(107%) = 0.999999999917733
> £(1071%) =0
This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10716 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 10!
x =107 =0.0000000000000000 10!

— 1+107% =111

Examples and dangers

June 1996

Guyane,

Example 2: Ariane 5

0@

Photo Credit: Jeremy Beck / SpaceFlight Insider

Examples and dangers
Example 2: Ariane 5, Guyane, June 1996 ... 37 seconds after the launch

i . gettyimages’

Pool AVENTURIER/LE GORRE

124062183

Photo Credit: Pool VENTURIER/LE CORRE

Examples and dangers

Example 2: Ariane 5, Guyane, June 1996 — an overflow error

From SIAM News, Vol. 29. Number 8, October 1996:

The internal SRI software exception was caused during execu-
tion of a data conversion from a 64-bit floating-point number
to a 16-bit signed integer value. The value of the floating-point
number was greater than what could be represented by a 16-
bit signed integer. The result was an operand error. The data
conversion instructions (in Ada code) were not protected from
causing operand errors, although other conversions of compara-
ble variables in the same place in the code were protected.

Examples and dangers

Example 2: Ariane 5, Guyane, June 1996 — an overflow error

From SIAM News, Vol. 29. Number 8, October 1996:

The internal SRI software exception was caused during execu-
tion of a data conversion from a 64-bit floating-point number
to a 16-bit signed integer value. The value of the floating-point
number was greater than what could be represented by a 16-
bit signed integer. The result was an operand error. The data
conversion instructions (in Ada code) were not protected from
causing operand errors, although other conversions of compara-
ble variables in the same place in the code were protected.

An OVERFLOW error with no human losses, but a cost of 500
million dollars and 10 years of work!!

Examples and dangers

Example 3: Let's consider

11

1 3 L 1

11

2 3 1

A= |, . cR™" x=|.| €eR" et b= Ax.

3 ;

: 1

We resolved the linear system Ax = b for n =5,10,15,20,.. ., i.e.,

x = A"1b is computed

What happens?

