
Numerical Analysis
GC / SIE

Floating point number representation
and round-off errors

Daniel Kressner
Chair for Numerical Algorithms and HPC

Institute of Mathematics, EPFL
daniel.kressner@epfl.ch

Slides by Pablo Antoĺın and Fabio Nobile.

1



Real number presentation in a computer

▶ Real numbers are stored in the following way (floating point
representation) in a computer:

(−1)s · (0.a1a2 . . . at) · βe = (−1)s ·m · βe−t ; a1 ̸= 0

▶ sign: s = 0 ou 1
▶ mantissa: m = a1 · · · at (t integer digits 0 ≤ ai ≤ β − 1, with a1 ̸= 0)
▶ base: β (usually 2)
▶ exponent: e

Example

−23 =⇒ (−1)1 ∗ (0.10111000 · · · ) ∗ 25

2



Single and double precision

▶ The floating point representation uses a fixed number of digits (bits)
for the mantissa and exponent, plus an additional digit for the sign.

t e bytes bits

Single precision 24 −125 ≤ e ≤ 128 4 32
Double precision 53 −1021 ≤ e ≤ 1024 8 64

(1 byte = 8 bits)

▶ Common practice in scientific/engineering applications is to use
double precision:
▶ In base 10 this roughly correponds to 16 decimal digits and 3 digits

for the exponent
▶ The largest representable number: 1.797693134862316 · 10+308

▶ The smallest representable number: 2.225073858507201 · 10−308

▶ In machine learning, GPUs, etc. uses single or even half precision.

3



Single and double precision

▶ The floating point representation uses a fixed number of digits (bits)
for the mantissa and exponent, plus an additional digit for the sign.

t e bytes bits

Single precision 24 −125 ≤ e ≤ 128 4 32
Double precision 53 −1021 ≤ e ≤ 1024 8 64

(1 byte = 8 bits)

▶ Common practice in scientific/engineering applications is to use
double precision:
▶ In base 10 this roughly correponds to 16 decimal digits and 3 digits

for the exponent
▶ The largest representable number: 1.797693134862316 · 10+308

▶ The smallest representable number: 2.225073858507201 · 10−308

▶ In machine learning, GPUs, etc. uses single or even half precision.

3



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.1000000000000000 10−15

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0100000000000000 10−14

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0010000000000000 10−13

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0001000000000000 10−12

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000100000000000 10−11

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000010000000000 10−10

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000001000000000 10−9

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000100000000 10−8

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000010000000 10−7

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000001000000 10−6

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000100000 10−5

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000010000 10−4

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000001000 10−3

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000000100 10−2

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000000010 10−1

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000000001 100

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 1: Try to evaluate in Python the function

f (x) =
(1 + x)− 1

x

for x = 10−1, 10−2, . . . , 10−16.

In Python we get:
▶ f (10−1) = 1.000000000000001
▶ f (10−6) = 0.999999999917733
▶ f (10−16) = 0

This phenomenon is known as loss of significance.

Explanation: when the computer does the addition 1 + 10−16 firstly it
must “align the exponents” of both numbers

1 =0.1000000000000000 101

x = 10−16 =0.0000000000000000 101

=⇒ 1 + 10−16 = 1 !!!

4



Examples and dangers
Example 2: Ariane 5, Guyane, June 1996

Photo Credit: Jeremy Beck / SpaceFlight Insider

5



Examples and dangers
Example 2: Ariane 5, Guyane, June 1996 . . . 37 seconds after the launch

Photo Credit: Pool VENTURIER/LE CORRE

5



Examples and dangers
Example 2: Ariane 5, Guyane, June 1996 → an overflow error

From SIAM News, Vol. 29. Number 8, October 1996:
The internal SRI software exception was caused during execu-
tion of a data conversion from a 64-bit floating-point number
to a 16-bit signed integer value. The value of the floating-point
number was greater than what could be represented by a 16-
bit signed integer. The result was an operand error. The data
conversion instructions (in Ada code) were not protected from
causing operand errors, although other conversions of compara-
ble variables in the same place in the code were protected.

An OVERFLOW error with no human losses, but a cost of 500
million dollars and 10 years of work!!

6



Examples and dangers
Example 2: Ariane 5, Guyane, June 1996 → an overflow error

From SIAM News, Vol. 29. Number 8, October 1996:
The internal SRI software exception was caused during execu-
tion of a data conversion from a 64-bit floating-point number
to a 16-bit signed integer value. The value of the floating-point
number was greater than what could be represented by a 16-
bit signed integer. The result was an operand error. The data
conversion instructions (in Ada code) were not protected from
causing operand errors, although other conversions of compara-
ble variables in the same place in the code were protected.

An OVERFLOW error with no human losses, but a cost of 500
million dollars and 10 years of work!!

6



Examples and dangers

Example 3: Let’s consider

A =


1 1

2
1
3 · · ·

1
2

1
3 · · · · · ·

1
3

...
. . .

...
...

 ∈ Rn×n, x =


1
1
...
1

 ∈ Rn et b = Ax .

We resolved the linear system Ax = b for n = 5, 10, 15, 20, . . ., i.e.,
x = A−1b is computed

What happens?

7


