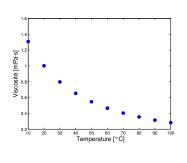
Numerical Analysis GC / SIE Curve Fitting

Daniel Kressner

Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch

Example 1: Water viscosity

Temperature	Viscosity
[°C]	[mPa·s]
10	1.308
20	1.002
30	0.7978
40	0.6531
50	0.5471
60	0.4658
70	0.4044
80	0.3550
90	0.3150
100	0.2822
Course Wikingdia	

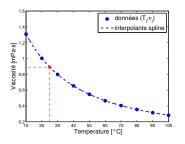


Source: Wikipedia

But we want to calculate the water viscosity at 25 $^{\circ}$ C.

Data interpolation

Goal: Find a function $\nu = p(T)$ that correctly describes the relation between viscosity and temperature.



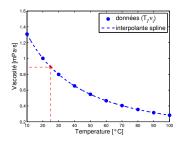
Data interpolation problem: Find a function p(T) (from a class of functions) such that

$$\nu_i = p(T_i)$$

where (ν_i, T_i) are the values from the table

Data interpolation

Goal: Find a function $\nu = p(T)$ that correctly describes the relation between viscosity and temperature.

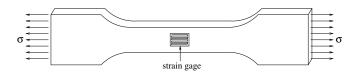


Data interpolation problem: Find a function p(T) (from a class of functions) such that

$$\nu_i = p(T_i)$$

where (ν_i, T_i) are the values from the table.

Example 2: Dog bone tensile test

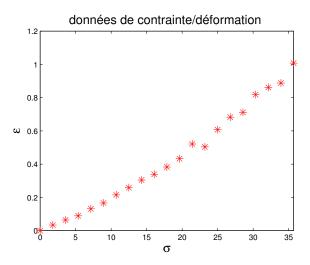


- We apply a stress σ and measure the corresponding strain ε with a strain gauge.
- We apply increasingly larger stresses σ_i , i = 1, ..., n, equidistant between 0 and σ_{max} , and measure the corresponding strains ε_i .
- Measurement error is not negligible. Conceptual model

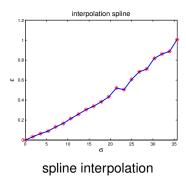
$$\varepsilon_i = f(\sigma_i) + \eta_i$$

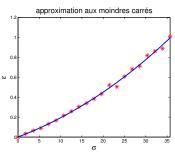
where η_i describes measurement error.

Measured data (with measurement error)



Measured data (with measurement error)





Data approximation with least-squares

- We look for an approximation $p(\sigma)$ of a "true" (unknown) function $f(\sigma)$ that "best" approximates the data $(\sigma_i, \varepsilon_i)$
- In this case, finding an interpolating function is not a good idea because it will also interpolate the measurement error.

Least-square approximation problem: We look for a function p, from a given class of functions \mathcal{W} , such that the squared distance between $p(\sigma_i)$ and the corresponding measurements ε_i will be *minimal*.

$$p = \underset{q \in \mathcal{W}}{\operatorname{argmin}} \sum_{i=1}^{n} |\varepsilon_i - q(\sigma_i)|^2$$

Data approximation with least-squares

- We look for an approximation $p(\sigma)$ of a "true" (unknown) function $f(\sigma)$ that "best" approximates the data $(\sigma_i, \varepsilon_i)$
- In this case, finding an interpolating function is not a good idea because it will also interpolate the measurement error.

Least-square approximation problem: We look for a function p, from a given class of functions \mathcal{W} , such that the squared distance between $p(\sigma_i)$ and the corresponding measurements ε_i will be *minimal*.

$$p = \underset{q \in \mathcal{W}}{\operatorname{argmin}} \sum_{i=1}^{n} |\varepsilon_i - q(\sigma_i)|^2$$

Data approximation with least-squares

- We look for an approximation $p(\sigma)$ of a "true" (unknown) function $f(\sigma)$ that "best" approximates the data $(\sigma_i, \varepsilon_i)$
- In this case, finding an interpolating function is not a good idea because it will also interpolate the measurement error.

Least-square approximation problem: We look for a function p, from a given class of functions \mathcal{W} , such that the squared distance between $p(\sigma_i)$ and the corresponding measurements ε_i will be *minimal*.

$$p = \underset{q \in \mathcal{W}}{\operatorname{argmin}} \sum_{i=1}^{n} |\varepsilon_i - q(\sigma_i)|^2$$