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Example 1: Water viscosity

Temperature Viscosity
[○C] [mPa⋅s]
10 1.308
20 1.002
30 0.7978
40 0.6531
50 0.5471
60 0.4658
70 0.4044
80 0.3550
90 0.3150

100 0.2822
Source: Wikipedia
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But we want to calculate the water viscosity at 25 ○C.
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Data interpolation

Goal: Find a function ν = p(T ) that correctly describes the relation
between viscosity and temperature.
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interpolante spline

Data interpolation problem: Find a function p(T ) (from a class of
functions) such that

νi = p(Ti)
where (νi ,Ti) are the values from the table.
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Example 2: Dog bone tensile test

σσ

strain gage

▸ We apply a stress σ and measure the corresponding strain ε with
a strain gauge.

▸ We apply increasingly larger stresses σi , i = 1, . . . ,n, equidistant
between 0 and σmax , and measure the corresponding strains εi .

▸ Measurement error is not negligible. Conceptual model

εi = f (σi) + ηi

where ηi describes measurement error.
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Measured data (with measurement error)
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Measured data (with measurement error)
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spline interpolation
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approximation aux moindres carrés

least-squares approximation
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Data approximation with least-squares

▸ We look for an approximation p(σ) of a “true” (unknown) function
f (σ) that “best” approximates the data (σi , εi)

▸ In this case, finding an interpolating function is not a good idea
because it will also interpolate the measurement error.

Least-square approximation problem: We look for a function p,
from a given class of functionsW, such that the squared distance
between p(σi) and the corresponding measurements εi will be
minimal.

p = argmin
q∈W

n

∑
i=1
∣εi − q(σi)∣2

7



Data approximation with least-squares

▸ We look for an approximation p(σ) of a “true” (unknown) function
f (σ) that “best” approximates the data (σi , εi)

▸ In this case, finding an interpolating function is not a good idea
because it will also interpolate the measurement error.

Least-square approximation problem: We look for a function p,
from a given class of functionsW, such that the squared distance
between p(σi) and the corresponding measurements εi will be
minimal.

p = argmin
q∈W

n

∑
i=1
∣εi − q(σi)∣2

7



Data approximation with least-squares

▸ We look for an approximation p(σ) of a “true” (unknown) function
f (σ) that “best” approximates the data (σi , εi)

▸ In this case, finding an interpolating function is not a good idea
because it will also interpolate the measurement error.

Least-square approximation problem: We look for a function p,
from a given class of functionsW, such that the squared distance
between p(σi) and the corresponding measurements εi will be
minimal.

p = argmin
q∈W

n

∑
i=1
∣εi − q(σi)∣2

7


