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Exercise 1 - Single-choice questions

This is a single-choice exercise. One, and only one, answer is correct for every question. Clearly
mark your answer choice with a cross.

Question 1 We want to find an approximate solution of the ordinary differential equation
du(t)

dt
= −2u(t) + (t+ 1)

u(0) = u0,

with the following scheme: un+1 =
1

2∆t+ 1
un +∆t

(n+ 1)∆t+ 1

2∆t+ 1
u0 = u0.

Which scheme is it?

□ Forward Euler (explicit).

⊠ Backward Euler (implicit).

□ Crank-Nicolson.

□ Heun.

□ None of the above.

Solution: Solve the backward finite differences approximation un+1−un

∆t = −2un+1 + (tn+1 + 1) for un+1

where tn+1 = (n+ 1)∆t.

Question 2 Consider the data
x1 = −1 y1 = 12
x2 = 0 y2 = 12
x3 = 2 y3 = 6.

The derivative at x = 1 of a quadratic polynomial (degree 2) that interpolates the data (xi, yi), i = 1, 2, 3,
is

⊠ -3

□ 0

□ 1

□ 5

□ 11

Solution: The Lagrange polynomial is p(x) = y1ϕ1(x) + y2ϕ2(x) + y3ϕ3(x) = 12x(x−2)
3 + 12 (x+1)(x−2)

−2 +

6 (x+1)x
6 = −x2 − x+ 12, hence, p′(1) = −3.
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Question 3 Consider the first-order linear differential equation system

du(t)

dt
= Au(t) + b(t), with A =

 −1 3 2
0 0 1
0 −1 0

 . (1)

The forward Euler method to approximate the problem (1) is

□ absolutely stable if and only if 0 < ∆t < 4
5

□ absolutely stable if and only if 0 < ∆t < 1
2

□ absolutely stable if and only if 0 < ∆t < 1

□ absolutely stable if and only if ∆t > 0 (unconditionally absolutely stable)

⊠ never absolutely stable (not stable for any ∆t > 0)

Solution: Two eigenvalues of A are λ = ±i, meaning |1 + λ∆t| > 1 for all ∆t > 0. See proof of Lemma
6.4 (lecture notes) for details.

Question 4 Let f : (0,∞) → R be defined by f(x) = (x− 1)3 + 2 log(x) + 1. We are interested in the
unique fixed point α = 1 of f . Under what condition on ω is the composite fixed point method defined
for ω ∈ R by

x(k+1) = ϕ(x(k)) = (1− ω)x(k) + ωf(x(k))

of order 2?

⊠ ω = −1

□ ω = 0

□ ω = 1

□ ω = 1/2

□ none of the values of ω proposed above

Solution: We have ϕ′(x) = (1 − ω) + ω(3(x − 1)2 + 2
x). Therefore ϕ′(1) = 0 ⇐⇒ ω = −1. Since for

ω = −1, ϕp(1) ̸= 0 for all p ≥ 2, the method is of order 2 by Theorem 1.2 (lecture notes) if ω = −1.
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Exercise 2 - Implementation

Question 1 Complete the following Python function which implements the Heun method.

def heun(f, u_0 , T, N):

"""

Solves the ordinary differential equation

u' = f(t,u), t in (0, T],

u(0) = u_0

using Heun's method on an equispaced grid of stepsize dt = T/N.

Parameters

----------

f : function

The function whose zero we search

u_0 : float

Starting value.

T : float > 0

End point.

N : int

The number of sub -intervals

Returns

-------

u : list or NumPy array

Approximation of the solution [u_0 , u_1 , u_2 ,...,u_N]

"""

dt = T / N

### BEGIN SOLUTION

u = np.zeros(N + 1)

u[0] = u_0

### END SOLUTION

for n in range(N):
### BEGIN SOLUTION

u[n + 1] = u[n] + dt / 2 * f(n * dt , u[n]) + dt / 2 * f((n + 1) * dt , u[n] + dt

* f(n * dt, u[n]))

### END SOLUTION

return u

3



Question 2 Complete the following Python function which implements the bisection method.

def bisection(f, a, b, tol):

"""

Finds a zero of the continuous function f in the interval [a, b] with

the bisection method. The function f must be such that f(a) and f(b)

have opposite signs.

Parameters

----------

f : function

The function whose zero we search

a : float

Start point of the search interval [a, b]

b : float > a

End point of the search interval [a, b]

tol : float > 0

Tolerance to be used.

Returns

-------

alpha : float

The computed zero.

niter : int

Number of iterations.

"""

alpha = a # current approximate root

k_min = int (np.ceil(np.log2((b - a) / tol) - 1)) # number of iterations needed

x_k = (a + b) / 2 # mid -point of current search interval

for k in range(k_min):
### BEGIN SOLUTION

i f f(x_k) * f(a) < 0:

b = x_k

else :
a = x_k

x_k = (a + b) / 2

### END SOLUTION

alpha = x_k

niter = k + 1

return alpha , niter
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