Mock Exam (Solution)						
EPFL	Course:	Numerical Ana	Numerical Analysis - Sections SIE-GC			
	Lecturer:	Daniel Kressner				
	Date:	19/12/2024	Duration: 1h			
Sciper:	Student:		Section:			

Do not turn the page before the start of the exam. Read carefully the instructions below.

EXAM RULES

- Write everything with a blue or black pen.
- Please write your surname, name, and sciper on EVERY PAGE of this document!
- All Python code and all the results (the plots and images if they are requested, too) **MUST BE TRANSCRIBED ON THESE SHEETS**, which must be submitted at the end of the exam.
- It is **NOT** possible to submit the Python/Jupyter code electronically.
- Scratch paper is provided for your personal notes, but it will not be considered for the evaluation of the exam.
- Exercise 1 is of single-choice type. It is the only exercise on this exam where you do not need to justify your answer.

AUTHORIZED MATERIAL

The only authorized material is 1 A4 cheat sheet (front and back) handwritten with pen/pencil. No other sheets, notes or books (paper or electronics), or calculator, mobile phone, tablet, laptop or other electronic devices. The access to Internet (e-mail, websites) is prohibited.

VIRTUAL MACHINE LOGIN INSTRUCTIONS

Log-in credentials:

Username and password: Your GASPAR account

Virtual machine:

SB-MATH-WIN11

Exercise 1 - Single-choice questions

This is a single-choice exercise. One, and only one, answer is correct for every question. Clearly mark your answer choice with a cross.

Question 1 We want to find an approximate solution of the ordinary differential equation

$$\begin{cases} \frac{\mathrm{d}u(t)}{\mathrm{d}t} = -2u(t) + (t+1)\\ u(0) = u_0, \end{cases}$$

with the following scheme:

$$\begin{cases} u^{n+1} = \frac{1}{2\Delta t + 1}u^n + \Delta t \frac{(n+1)\Delta t + 1}{2\Delta t + 1} \\ u^0 = u_0. \end{cases}$$

Which scheme is it?

- ☐ Forward Euler (explicit).
- ⊠ Backward Euler (implicit).
- \square Crank-Nicolson.
- ☐ Heun.
- \square None of the above.

Solution: Solve the backward finite differences approximation $\frac{u^{n+1}-u^n}{\Delta t} = -2u^{n+1} + (t_{n+1}+1)$ for u^{n+1} where $t_{n+1} = (n+1)\Delta t$.

Question 2 Consider the data

$$x_1 = -1$$
 $y_1 = 12$
 $x_2 = 0$ $y_2 = 12$
 $x_3 = 2$ $y_3 = 6$.

The derivative at x = 1 of a quadratic polynomial (degree 2) that interpolates the data (x_i, y_i) , i = 1, 2, 3, is

- □ -3
- \Box 0
- \Box 1
- \Box 5
- \Box 11

Solution: The Lagrange polynomial is $p(x) = y_1\phi_1(x) + y_2\phi_2(x) + y_3\phi_3(x) = 12\frac{x(x-2)}{3} + 12\frac{(x+1)(x-2)}{-2} + 6\frac{(x+1)x}{6} = -x^2 - x + 12$, hence, p'(1) = -3.

Question 3 Consider the first-order linear differential equation system

$$\frac{\mathrm{d}\mathbf{u}(t)}{\mathrm{d}t} = A\mathbf{u}(t) + \mathbf{b}(t), \quad \text{with} \quad A = \begin{pmatrix} -1 & 3 & 2\\ 0 & 0 & 1\\ 0 & -1 & 0 \end{pmatrix}. \tag{1}$$

The forward Euler method to approximate the problem (1) is

- \square absolutely stable if and only if $0 < \Delta t < \frac{4}{5}$
- \square absolutely stable if and only if $0 < \Delta t < \frac{1}{2}$
- \square absolutely stable if and only if $0 < \Delta t < 1$
- \square absolutely stable if and only if $\Delta t > 0$ (unconditionally absolutely stable)
- \boxtimes never absolutely stable (not stable for any $\Delta t > 0$)

Solution: Two eigenvalues of A are $\lambda = \pm i$, meaning $|1 + \lambda \Delta t| > 1$ for all $\Delta t > 0$. See proof of Lemma 6.4 (lecture notes) for details.

Question 4 Let $f:(0,\infty)\to\mathbb{R}$ be defined by $f(x)=(x-1)^3+2\log(x)+1$. We are interested in the unique fixed point $\alpha=1$ of f. Under what condition on ω is the composite fixed point method defined for $\omega\in\mathbb{R}$ by

$$x^{(k+1)} = \phi(x^{(k)}) = (1 - \omega)x^{(k)} + \omega f(x^{(k)})$$

of order 2?

- $\boxtimes \omega = -1$
- $\square \omega = 0$
- $\square \ \omega = 1$
- $\square \omega = 1/2$
- \square none of the values of ω proposed above

Solution: We have $\phi'(x) = (1 - \omega) + \omega(3(x - 1)^2 + \frac{2}{x})$. Therefore $\phi'(1) = 0 \iff \omega = -1$. Since for $\omega = -1$, $\phi^p(1) \neq 0$ for all $p \geq 2$, the method is of order 2 by Theorem 1.2 (lecture notes) if $\omega = -1$.

Sciper: Student: Section:

Exercise 2 - Implementation

Question 1 Complete the following Python function which implements the Heun method.

```
def heun(f, u_0, T, N):
   Solves the ordinary differential equation
      u' = f(t, u), t in (0, T],
       u(0) = u_0
   using Heun's method on an equispaced grid of stepsize dt = T/N.
   Parameters
   f : function
       The function whose zero we search
   u_0: float
       Starting value.
   T : float > 0
       End point.
   N : int
       The number of sub-intervals
   Returns
   u : list or NumPy array
       Approximation of the solution [u_0, u_1, u_2, \ldots, u_N]
   dt = T / N
   ### BEGIN SOLUTION
   u = np.zeros(N + 1)
   u[0] = u_0
    ### END SOLUTION
   for n in range(N):
        ### BEGIN SOLUTION
       u[n + 1] = u[n] + dt / 2 * f(n * dt, u[n]) + dt / 2 * f((n + 1) * dt, u[n] + dt
           * f(n * dt, u[n]))
        ### END SOLUTION
   return u
```

Question 2 Complete the following Python function which implements the bisection method.

```
def bisection(f, a, b, tol):
   Finds a zero of the continuous function f in the interval [a, b] with
   the bisection method. The function f must be such that f(a) and f(b)
   have opposite signs.
   Parameters
   _____
   f: function
       The function whose zero we search
   a : float
       Start point of the search interval [a, b]
   b: float > a
       End point of the search interval [a, b]
   tol: float > 0
       Tolerance to be used.
   Returns
   _____
   alpha : float
      The computed zero.
   niter : int
      Number of iterations.
   alpha = a # current approximate root
   k_{min} = int(np.ceil(np.log2((b - a) / tol) - 1)) # number of iterations needed
   x_k = (a + b) / 2 # mid-point of current search interval
   for k in range(k_min):
       ### BEGIN SOLUTION
       if f(x_k) * f(a) < 0:
           b = x_k
       else:
           a = x_k
       x_k = (a + b) / 2
       ### END SOLUTION
   alpha = x_k
   niter = k + 1
   return alpha, niter
```