
Mock Exam

Course: Numerical Analysis - Sections SIE-GC

Lecturer: Daniel Kressner

Date: 19/12/2024 Duration: 1h

Sciper: Student: Section:

Do not turn the page before the start of the exam. Read carefully the
instructions below.

EXAM RULES

• Write everything with a blue or black pen.

• Please write your surname, name, and sciper on EVERY PAGE of this document!

• All Python code and all the results (the plots and images if they are requested, too) MUST BE
TRANSCRIBED ON THESE SHEETS, which must be submitted at the end of the exam.

• It is NOT possible to submit the Python/Jupyter code electronically.

• Scratch paper is provided for your personal notes, but it will not be considered for the evaluation
of the exam.

• Exercise 1 is of single-choice type. It is the only exercise on this exam where you do not need to
justify your answer.

AUTHORIZED MATERIAL

The only authorized material is 1 A4 cheat sheet (front and back) handwritten with
pen/pencil. No other sheets, notes or books (paper or electronics), or calculator, mobile phone,
tablet, laptop or other electronic devices. The access to Internet (e-mail, websites) is prohibited.

VIRTUAL MACHINE LOGIN INSTRUCTIONS

Log-in credentials:

Username and password: Your GASPAR account

Virtual machine:

SB-MATH-WIN11

Sciper: Student: Section:

Exercise 1 - Single-choice questions

This is a single-choice exercise. One, and only one, answer is correct for every question. Clearly
mark your answer choice with a cross.

Question 1 We want to find an approximate solution of the ordinary differential equation
du(t)

dt
= −2u(t) + (t+ 1)

u(0) = u0,

with the following scheme: un+1 =
1

2∆t+ 1
un +∆t

(n+ 1)∆t+ 1

2∆t+ 1
u0 = u0.

Which scheme is it?

□ Forward Euler (explicit).

□ Backward Euler (implicit).

□ Crank-Nicolson.

□ Heun.

□ None of the above.

Question 2 Consider the data
x1 = −1 y1 = 12
x2 = 0 y2 = 12
x3 = 2 y3 = 6.

The derivative at x = 1 of a quadratic polynomial (degree 2) that interpolates the data (xi, yi), i = 1, 2, 3,
is

□ -3

□ 0

□ 1

□ 5

□ 11

1

Question 3 Consider the first-order linear differential equation system

du(t)

dt
= Au(t) + b(t), with A =

 −1 3 2
0 0 1
0 −1 0

 . (1)

The forward Euler method to approximate the problem (1) is

□ absolutely stable if and only if 0 < ∆t < 4
5

□ absolutely stable if and only if 0 < ∆t < 1
2

□ absolutely stable if and only if 0 < ∆t < 1

□ absolutely stable if and only if ∆t > 0 (unconditionally absolutely stable)

□ never absolutely stable (not stable for any ∆t > 0)

Question 4 Let f : (0,∞) → R be defined by f(x) = (x− 1)3 + 2 log(x) + 1. We are interested in the
unique fixed point α = 1 of f . Under what condition on ω is the composite fixed point method defined
for ω ∈ R by

x(k+1) = ϕ(x(k)) = (1− ω)x(k) + ωf(x(k))

of order 2?

□ ω = −1

□ ω = 0

□ ω = 1

□ ω = 1/2

□ none of the values of ω proposed above

2

Sciper: Student: Section:

Exercise 2 - Implementation

Question 1 Complete the following Python function which implements the Heun method.

def heun(f, u 0, T, N):
"""
Solves the ordinary differential equation

u' = f(t,u), t in (0, T],
u(0) = u 0

using Heun's method on an equispaced grid of stepsize dt = T/N.

Parameters
−−−−−−−−−−
f : function

The function whose zero we search
u 0 : float

Starting value.
T : float > 0

End point.
N : int

The number of sub−intervals

Returns
−−−−−−−
u : list or NumPy array

Approximation of the solution [u 0, u 1, u 2,...,u N]
"""

dt = T / N
YOUR CODE HERE

for n in range(N):
YOUR CODE HERE

return u

3

Question 2 Complete the following Python function which implements the bisection method.

def bisection(f, a, b, tol):
"""
Finds a zero of the continuous function f in the interval [a, b] with
the bisection method. The function f must be such that f(a) and f(b)
have opposite signs.

Parameters
−−−−−−−−−−
f : function

The function whose zero we search
a : float

Start point of the search interval [a, b]
b : float > a

End point of the search interval [a, b]
tol : float > 0

Tolerance to be used.

Returns
−−−−−−−
alpha : float

The computed zero.
niter : int

Number of iterations.
"""

alpha = a # current approximate root
k min = int(np.ceil(np.log2((b − a) / tol) − 1)) # number of iterations needed
x k = (a + b) / 2 # mid−point of current search interval
for k in range(k min):

YOUR CODE HERE

alpha = x k
niter = k + 1

return alpha, niter

4

