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Chapter 1

Nonlinear Equations

In this chapter, we are interested in finding numerically the roots of a con-
tinuous function f(x) : [a, b] → R, also known as the values α ∈ [a, b] such
as

f(α) = 0. (1.1)

For this purpose, we will study several numerical methods which allow us
to find an approximate solution of (1.1)

1.1 Example: electrical circuit

Let us consider the electrical circuit shown in Figure 1.1 (left)
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Figure 1.1: Left: Electrical circuit including a voltage generator, a resistance R
and a standard diode.
Right: Current–voltage relationship of a standard diode.

which includes:

• A voltage generator that generates a constant voltage V .

• An electrical resistance R with a linear relationship vR = Ri between
the current i and the voltage vR.
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6 CHAPTER 1. NONLINEAR EQUATIONS

• A standard diode. The current–voltage (I–V) relationship is given by
the Shockley diode equation

i = i0

(
evD/v0 − 1

)
,

where v0 and i0 are two constants that define the diode’s behavior.
This relationship is shown in Figure 1.1 (right).

To find the voltage across the diode, we combine the following expressions:
vR + vD = V

vR = Ri

i = i0
(
evD/v0 − 1

) =⇒ Ri0

(
evD/v0 − 1

)
+ vD = V.

The voltage vD across the diode is therefore the root of the nonlinear equa-
tion

f(x) = 0, where f(x) = Ri0

(
ex/v0 − 1

)
+ x− V. (1.2)

1.2 Bisection
Bisection (also called method of dichotomy) is based on the following obser-
vation:

Remark 1.1. Consider a continuous function f : [a, b] → R such that
f(a)f(b) < 0. Then f has at least one root in [a, b].

Let us now consider the midpoint of the interval [a, b]: xm = a+b
2 . We

then have the following three possibilities:

• If f(xm)f(a) < 0 =⇒ then a root exists in the interval [a, xm];

• If f(xm)f(b) < 0 =⇒ then a root exists in the interval [xm, b];

• If f(xm) = 0 =⇒ we found a root of f .

In the first two cases, we can repeat this process for the sub-interval that is
known to contain a root.

Algorithm 1.1: Bisection method (without stopping criterion)

We set a(0) = a, b(0) = b and x(0) = a(0)+b(0)

2 ;
for k = 0, 1, . . . do

if f(x(k))f(a(k)) < 0 then // new interval [a(k), x(k)]

a(k+1) = a(k), b(k+1) = x(k);
else // new interval [x(k), b(k)]

a(k+1) = x(k), b(k+1) = b(k);
end
x(k+1) = a(k+1)+b(k+1)

2 ;
end
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The algorithm shown above is still incomplete because we have to setup
a stopping criterion for the iterations, which we will do below.

Error check

At the kth iteration, the root is inside the interval I(k) = [a(k), b(k)] of length
|I(k)| = (b−a)

2k
. The root is approximated by the midpoint x(k) = a(k)+b(k)

2 . If
α represents the actual root of f , the error at the kth step of the algorithm
is bounded by

|α− x(k)| ≤ 1

2
|I(k)| =

(
1

2

)k+1

(b− a). (1.3)

If we want to find an approximation of the root with a prescribed toler-
ance tol, the bound (1.3) tells us that we can stop the iterations of Algorithm
1.1 when |I(k)| < 2 · tol. Therefore, we shall perform kmin iterations of the
algorithm so that(

1

2

)kmin+1

(b− a) ≤ tol =⇒ kmin > log2

(
b− a

tol

)
− 1.

We note that the bound (1.3) is guaranteed, which means that if we
perform kmin iterations, bisection is guaranteed to return an approximation
with an error smaller than tol. Here is the complete algorithm that includes
the stopping criterion:

Algorithm 1.2: Bisection method (with stopping criterion)
Data: f(x), [a, b], tol
Result: α (approximate root), niter (number of iterations)
a(0) = a, b(0) = b, x(0) = a(0)+b(0)

2 ;
kmin = dlog2

(
b−a
tol

)
− 1e;

for k = 0, 1, . . . , kmin − 1 do
if f(x(k))f(a(k)) < 0 then // new interval [a(k), x(k)]

a(k+1) = a(k), b(k+1) = x(k);
else // new interval [x(k), b(k)]

a(k+1) = x(k), b(k+1) = b(k);
end
x(k+1) = a(k+1)+b(k+1)

2 ;
end
α = x(kmin), niter=kmin.

Advantages and disadvantages

+ Once we find an interval where the (continuous) function changes sign,
the algorithm is guaranteed to converge to a root.
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+ We have a precise control on the error.

- If the function does not change sign around a root (f(x) = x2), it is
not possible to use this algorithm.

- The convergence of the algorithm is relatively slow; the error is divided
only by two at every iteration.

Example 1.1 (Electrical circuit). Let us come back to the example of the
electrical circuit from Section 1.1. Using Python, we visualize the function
f(x) for i0 = 1, v0 = 0.1, R = 1, V = 1.

import numpy as np
import matplotlib.pyplot as plt

i0 = 1
v0 = 0.1
R = 1
V = 1
f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x - V
x = np.linspace(-0.2, 0.2, 40)
plt.plot(x, f(x), color="b", linewidth=2)
plt.plot(x, 0 * x, "--k", linewidth=2)
plt.grid(True)

Figure 1.2 shows the function f(x). There is obviously a root in the interval
[−0.2, 0.2].
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Figure 1.2: Plot of the function f(x) from Eqn (1.2)

We apply the bisection method using the function bisection from the
Moodle page (call help(bisection ) for details about the inputs and outputs
of the function).

import numpy as np
from functions import bisection

i0 = 1
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v0 = 0.1
R = 1
V = 1
f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x - V
zero, res, niter, inc, err = bisection(f, -0.2, 0.2, 1e-8, 10000)
print("zero " + str(zero))
print("res " + str(res))
print("iterations " + str(niter))

# OUTPUT
# zero 0.06596105694770812
# res 7.085173225895858e-08
# iterations 25

1.3 Fixed-point iterations

1.3.1 Introduction using the electrical circuit example

Let us consider again the electrical circuit from Section 1.1. To find an
approximation of the root, we could follow the process below:

1st method

• Let us suppose that we have a good general idea about the voltage
across the diode, which we name v

(0)
D . For example, if the diode is

open, we would expect the voltage across the diode to be zero and we
can set v

(0)
D = 0.

• Given the voltage v
(0)
D across the diode, we can find the voltage across

the resistance v
(0)
R = V − v

(0)
D and thus the current i(0) = v

(0)
R /R =

(V − v
(0)
D )/R.

• As the currents passing through the resistance and the diode are the
same, we can find a new estimation of the voltage across the diode by
reversing the characteristic curve of the diode:

v
(1)
D = v0 log

(
i(0)

i0
+ 1

)
.

We expect the new estimation v
(1)
D to be better than the previous one.

We can repeat this process and find the second estimation v
(2)
D and so on.

We expect the sequence v
(0)
D , v

(1)
D , v

(2)
D , . . . to converge towards the “true”

voltage of the diode. Formally, the method we just described takes the
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following form: Given an approximation v
(k)
D at the kth iteration, we find

the new estimation v
(k+1)
D using

v
(k+1)
D = v0 log

(
V − v

(k)
D

Ri0
+ 1

)
. (1.4)

Let us try (1.4) in Python:

import numpy as np

i0 = 1
v0 = 0.1
R = 1
V = 1
vD = 0
for i in range(10):

vD = v0 * np.log((V - vD) / (R * i0) + 1)
# formats to 15 decimal places
formatted_string = "{:.15f}".format(vD)
vD = float(formatted_string)
print("vD = " + str(vD))

# OUTPUT
# vD = 0.069314718055995
# vD = 0.065787500825971
# vD = 0.065970026647302
# vD = 0.065960589502512
# vD = 0.065961077453676
# vD = 0.065961052224034
# vD = 0.065961053528539
# vD = 0.065961053461089
# vD = 0.065961053464577
# vD = 0.065961053464397

It can be seen that the sequence (1.4) converges to the same value we
previously found using the bisection method. Moreover, after 10 iterations,
12 significant decimal figures appear to be “stable” and we expect the error
to be smaller than 10−12. This method seems to converge more quickly than
bisection.

The sequence (1.4) is not the only way to set up a recursion. In fact, we
could have defined another process:
2nd method

• Given an initial value of the voltage v
(0)
D across the diode, we can find

the current i(0) going through the diode: i(0) = i0

(
ev

(0)
D /v0 − 1

)
.

• We then find the voltage across the resistance v
(0)
R = Ri(0).
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• Finally, we can compute a new approximation of the voltage across
the diode by v

(1)
D = V − v

(0)
R ,

and so on. The complete procedure takes the following form: Given an
estimation v

(k)
D at the kth iteration, we compute the new approximation

v
(k+1)
D by

v
(k+1)
D = V −Ri0

(
ev

(k)
D /v0 − 1

)
. (1.5)

Let us also try (1.5) in Python:

import numpy as np

i0 = 1
v0 = 0.1
R = 1
V = 1
vD = 0
for i in range(10):

vD = V - R * i0 * (np.exp(vD / v0) - 1)
# formats to 15 decimal places
formatted_string = "{:.15f}".format(vD)
vD = float(formatted_string)
print("vD = " + str(vD))

# OUTPUT
# vD = 1.0
# vD = -22024.465794806718
# vD = 2.0
# vD = -485165193.4097903
# vD = 2.0
# vD = -485165193.4097903
# vD = 2.0
# vD = -485165193.4097903
# vD = 2.0
# vD = -485165193.4097903

Even though the motivation for the recursion (1.5) is as reasonable as
the one for (1.4), it does not seem to converge at all. This means that we
obviously cannot use it to find the voltage across the diode.

Let us now try to recapitulate and formalize everything that we did up
to now. We had to solve the following equation:

f(x) = Ri0

(
ex/v0 − 1

)
+ x− V = 0.
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For the first method, we rewrote this equation under its equivalent form

Current through the diode: i0

(
ex/v0 − 1

)
=

V − x

R

Voltage across the diode: x = v0 log

(
V − x

Ri0
+ 1

)
.

Then we performed the iteration x(k+1) = v0 log
(
V−x(k)

Ri0
+ 1
)

.
For the second method, we rewrote the equation simply under the form:

x = V −Ri0

(
ex/v0 − 1

)
and we performed the iterations x(k+1) = V −Ri0

(
ex

(k)/v0 − 1
)
.

In both cases, we rewrote the nonlinear equation f(x) = 0 under an
equivalent form

x = φ(x), (1.6)

leading to the iterative method

x(k+1) = φ(x(k)), k = 0, 1, . . . . (1.7)

An equation of the form (1.6) is called fixed-point equation because the
value α that satisfies the equation: α = φ(α) has the property that φ applied
to α does not change the value of α. This value is therefore called a fixed
point of the function φ.

The iterative process (1.7) is called fixed-point method or fixed-point it-
eration.

1.3.2 Fixed-point method

Given a nonlinear equation f(x) = 0, the fixed-point method consists in
rewriting, under an equivalent form, the equation f(x) = 0 as a fixed-point
equation x = φ(x), so that if α is the root of f

f(α) = 0 =⇒ α = φ(α).

Algorithm 1.3: Fixed-point method (without stopping criterion)
Choose a starting point x(0) sufficiently close to a fixed point α. for
k = 0, 1, . . . do

x(k+1) = φ(x(k))
end
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Graphical interpretation

The fixed-point method admits a graphical interpretation. The solution
of the fixed-point equation x = φ(x) can be viewed as the solution of the
system {

y = φ(x),

y = x.

Graphically, this means that the fixed points of φ are given by the intersec-
tion between the function y = φ(x) and the line y = x.

In the same manner, the fixed-point method starts from a value x(k) and
first computes y(k+1) = φ(x(k)) and then x(k+1) = y(k+1). Therefore, the
value x(k+1) on the abscissa has the same distance from the origin as the
value y(k+1) on the ordinate axis. Let us now consider the equation

f(x) = x+ log(x+ 1)− 2 = 0

and the 4 equivalent fixed-point equations

x = φ1(x) = x− 1

2
(log(x+ 1) + x− 2),

x = φ2(x) = 2− log(x+ 1),

x = φ3(x) = e2−x − 1,

x = φ4(x) =
1

2
x(log(x+ 1) + x),

(1.8)

We can notice from Figure 1.3 that the fixed-point methods for φ1 and φ2

converge whereas the fixed-point methods for φ3 and φ4 do not converge.

Convergence analysis

A detailed study of the results in Figure 1.3 reveals that the fixed-point
method converges when the slope of the function φ at the fixed point, φ′(α),
is in the interval (−1, 1) whereas it diverges when |φ′(α)| > 1. This conclu-
sion holds at least for all initial points x(0) in the interval [0, 5]. For initial
points further from the fixed point, this conclusion can be false.

Let us establish more rigorously this result. We are interested in studying
the behavior of the error e(k) = |x(k)−α| at the kth iteration, at least when
x(k) is not too far away from α. For this purpose, we recall the Taylor series
of 1st order of φ around the fixed point α:

φ(x) = φ(α)︸︷︷︸
=α

+φ′(α)(x− α) +R(x).

The remainder term satisfies

R(x) = o(|x− α|) ⇐⇒ lim
x→α

R(x)

|x− α|
= 0,
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Figure 1.3: First 5 iterations of the fixed-point method using one of the four differ-
ent fixed-point equations (1.8). The dashed line is the line with slope
−1 through the fixed-point.
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that is, the function R(x) approaches zero more quickly than the function
|x − α|, as x → α. This allows us to approximate the error at the first
iteration as follows:

x(1) − α = φ(x(0))− φ(α) = φ′(α)(x(0) − α) + o(|x(0) − α|)︸ ︷︷ ︸
small term

and, hence,
e(1) = |φ′(α)|e(0) + o(e(0))︸ ︷︷ ︸

small term

.

The term o(e(0)) is negligible compared to the term |φ′(α)|e(0) when x(0) is
sufficiently close to α. We can now iterate the previous reasoning

e(k) = |φ′(α)|e(k−1) + small term
= |φ′(α)|2e(k−2) + small term
...

= |φ′(α)|ke(0) + small term.

We conclude that the error e(k) approaches zero if |φ′(α)| < 1 as we al-
ready guessed graphically. The result we just showed is summarized in the
following theorem:

Theorem 1.1. Consider a function φ : [a, b]→ R of class C1 (continuously
differentiable) and a fixed point α ∈ (a, b) of φ.
If

|φ′(α)| < 1

then there exists δ > 0 such that the fixed-point iteration x(k+1) = φ(x(k))
converges to α for every x(0) ∈ [α− δ, α+ δ]. Moreover,

lim
k→∞

|x(k+1) − α|
|x(k) − α|

= |φ′(α)|.

Error control

Algorithm 1.3 is not complete as we need to add a stopping criterion (oth-
erwise, we end up with infinite loops!).

Ideally, one would like to finish the iterations when the error e(k) =
|x(k)−α| is smaller than a given tolerance. Sadly, we cannot use this criterion
as we do not know the exact solution. Therefore, we will have to proceed
differently.

Suppose that we computed the iteration x(k). If x(k) was a fixed point
of φ, we would have x(k) = φ(x(k)). It is likely that this is not true and
x(k) − φ(x(k)) 6= 0. This mismatch is measured by the residual

r(k) = |x(k) − φ(x(k))|.
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We expect the residual to be small if x(k) is close to a fixed point α and it
can be used as an error indicator. This motivates the

stopping criterion : |x(k) − φ(x(k))| ≤ tol.

Here is the complete version of the fixed-point method that includes a stop-
ping criterion:

Algorithm 1.4: Fixed-point method with stopping criterion
Data: φ, x(0), tol
Result: α, res, niter
r(0) = tol+ 1; k = 0;
while r(k) > tol do

x(k+1) = φ(x(k));
r(k) = |x(k+1) − x(k)|;
k = k + 1;

end
α = x(k), res=r(k), niter=k ;

Algorithm 1.4 stops at the kth iteration for which r(k) ≤ tol is satisfied
for the first time. Usually, r(k) ≤ tol does not guarantee that the true
error |x(k) − α| is also smaller than tol but often it is of the same order of
magnitude. This is a consequence of the following result:

x(k) − α = x(k) − φ(x(k)) + φ(x(k))− α

= x(k) − φ(x(k)) + φ(x(k))− φ(α)

= x(k) − φ(x(k)) + φ′(ξ(k))(x(k) − α),

where ξ(k) is a suitable point of the interval [α, x(k)] (implied by the mean
value theorem). It follows that

|x(k) − α| = 1

|1− φ′(ξ(k))|
r(k).

When the residual is smaller than tol, this implies for the error that

e(k) ≤ 1

|1− φ′(ξ(k))|
tol.

If φ′(ξ(k)) is not close to 1 then e(k) . tol, whereas if φ′(ξ(k)) ≈ 1 then
the true error can be a lot larger than the residual, thus making our error
control unreliable. Note that φ′(ξ(k))

k→∞−−−→ φ′(α) if the method converges.
This once again shows the importance of the value of the slope φ at the fixed
point.
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1.3.3 Higher-order methods

Theorem 1.1 predicts fast convergence close to the fixed point when |φ′(α)|
is small. Note that φ′(α) = 0 does not imply that the method converges
immediately; it just implies that the method converges very quickly as x(k)

approaches α. The following definition of order provides a qualitative char-
acterization of the speed of convergence close to α.

Definition 1.1. Let α be a fixed point of φ. The fixed-point method x(k+1) =
φ(x(k)) is said to be of order p if the following holds: Whenever the sequence
{x(k)} converges to α, there exists C > 0 such that

lim
k→∞

|x(k+1) − α|
|x(k) − α|p

= C.

For the method to be of order 1, then it is required that C < 1.

The methods we studied for the functions φ1 and φ2 in Equation (1.8)
are first-order methods. We can check this by using Python. As we do not
know the exact solution, we use the result

|x(k) − α| = 1

|1− φ′(ξ(k))|
r(k)

and then

lim
k→∞

r(k+1)

(r(k))p
= lim

k→∞

|1− φ′(ξ(k+1))|
|1− φ′(ξ(k))|p

|x(k+1) − α|
|x(k) − α|p

=
1

|1− φ′(α)|p−1
C 6= 0.

So we check if the limit limk→∞
r(k+1)

(r(k))p
approaches a constant (nonzero) for

p = 1. For this purpose, we use the function fixed_point available on
Moodle:
import numpy as np
from functions import fixed_point

phi = lambda x: x - 0.5 * (np.log(x + 1) + x - 2)
x0 = 4
tol = 1e-3
nmax = 1000
x, res, niter = fixed_point(phi, x0, tol, nmax)
print("x ")
print(x)
print("res")
print(res)
print("Number of iterations")
print(niter)
# Prints ratio of res:
print("Ratio of RES")
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print(res[1:] / (res[:-1] ** 2))

# OUTPUT
# x
# [4. 2.19528104 1.516803 1.29690678 1.23267172 1.21473639
# 1.2098015 1.2084494 ]
# res
# [1.80471896e+00 6.78478046e-01 2.19896221e-01 6.42350574e-02
# 1.79353340e-02 4.93488414e-03 1.35209708e-03 3.70023111e-04]
# Number of iterations
# 7
# Ratio of RES
# [ 0.20831313 0.47769002 1.3284236 4.34675574 15.34115371
# 55.52057452 202.40120959]

We can see that the value of r(k+1)/r(k) approaches a constant for p = 1,
whereas it diverges for p = 2.

According to Definition 1.1, for a method of order p, we have

|x(k+1) − α| ≈ C|x(k) − α|p

when x(k) is sufficiently close to α. Let us illustrate the benefit of having
a method of order higher than 1 with a simple example: Given an initial
error |x(0) − α| = 10−1, consider two fixed-point methods: the first of order
1 with C = 0.5 and the second of order 2 with C = 1. Then the errors are
approximately determined by the values in the table below:

First order method Second order method
(C = 0.5) (C = 1)

e(0) = |x(0) − α| 0.1 0.1

e(1) = |x(1) − α| 0.05 10−2

e(2) = |x(2) − α| 0.025 10−4

e(3) = |x(3) − α| 0.0125 10−8

From the table, it is clear that the error of the second order method decreases
a lot faster than the error of the first order method!

We now aim at understanding under which conditions a method has an
order greater than 1. This will help us develop new high order methods. For
this purpose, let us come back to the approximation error of a fixed-point
method:

x(k+1) − α = φ(x(k))− φ(α) = φ′(α)(x(k) − α) + o(|x(k) − α|)︸ ︷︷ ︸
small term

.

What happens if φ′(α) = 0? To gain more insight into this case, we use a
Taylor series of second order:

x(k+1)−α = φ(x(k))−φ(α) = φ′(α)(x(k) − α)︸ ︷︷ ︸
=0

+
1

2
φ′′(α)(x(k)−α)2+o(|x(k) − α|2)︸ ︷︷ ︸

small term

.
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If we neglect the “small” term, we can say that

x(k+1) − α ≈ 1

2
φ′′(α)(x(k) − α)2

when x(k) is close to α. Hence, the method has order 2.
More generally, if φ′(α) = φ′′(α) = . . . = φp−1(α) = 0 and φp(α) 6= 0,

the method has order p. The following theorem collects our considerations.

Theorem 1.2. Consider a function φ : [a, b] → R of class Cp (p times
continuously differentiable) and a fixed point α ∈ (a, b) of φ. If

φ′(α) = φ′′(α) = . . . = φp−1(α) = 0 and φp(α) 6= 0, p ≥ 2,

then there exists δ > 0 such that the iterations x(k+1) = φ(x(k)) converge to
α for every x0 ∈ [α− δ, α+ δ]. Moreover,

lim
k→∞

|x(k+1) − α|
|x(k) − α|p

=
1

p!
|φp(α)|,

that is, the fixed-point method is of order p.

In the next section, we will study a second-order method, the Newton
method.

Error control

Let us recall the previously established link between the error and the resid-
ual:

|x(k) − α| = 1

|1− φ′(ξ(k))|
r(k).

For an order p method with p > 1 we have φ′(α) = 0 and in this case

|x(k) − α| ≈ r(k).

Hence, for a method of order 2 or larger, the residual is an excellent approx-
imation of the error when x(k) is close to α.

1.4 Newton Method

The Newton method is one of the most popular methods for solving a non-
linear equation f(x) = 0. Suppose that α is the desired root of f and we
start from an initial value x(0) (sufficiently close to α). Then the first-order
Taylor expansion of f around α gives

f(α) = f(x(0)) + f ′(x(0))(α− x(0)) + “small term”.
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If we neglect the “small term” and take into account the fact that f(α) = 0,
we arrive at

f(x(0)) + f ′(x(0))(α− x(0)) ≈ 0.

A new (and hopefully better) approximation of α is provided by taking the
root of this linear equation:

x(1) = x(0) − f(x(0))

f ′(x(0))
.

By repeating this process, we find x(2), and so on.
Algorithm 1.5: Newton method (without stopping criterion)

Given f , f ′ and x(0);
for k = 0, 1, . . . do

x(k+1) = x(k) − f(x(k))

f ′(x(k))
end
Figure 1.4 provides a graphical interpretation of the method. From the

initial value x(0), we approach the curve f(x) by the tangent line in x(0) and
we find the root of the tangent line.

x (1)x (2) x (0)

f(x)

α

Figure 1.4: Graphical illustration of the Newton method.

Convergence analysis

We first notice that Algorithm 1.5 can be viewed as a fixed-point method:

x(k+1) = φ(x(k)) where φ(x) = x− f(x)

f ′(x)
.
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Figure 1.5: Two cases of non-convergence of the Newton method if the initial value
is too far from the root.

To understand the order of this method, we need to determine the derivatives
of φ at α. Computing the first and second derivatives gives

φ′(x) =
f(x)f ′′(x)

(f ′(x))2
,

φ′′(x) =
f ′(x)2f ′′(x) + f(x)f ′(x)f ′′′(x)− 2f(x)f ′′(x)2

(f ′(x))3
,

and thus

φ′(α) = 0 if f ′(α) 6= 0,

φ′′(α) =
f ′′(α)

f ′(α)
6= 0 if f ′′(α) 6= 0.

In the exceptional situation f ′(α) = 0, the Newton method is of first order
at best. On the other hand, if f ′(α) 6= 0, the Newton method has (at least)
second order.

Theorem 1.3. Consider a function f of class C2 and a root α of f . if
f ′(α) 6= 0 and f ′′(α) 6= 0, the Newton method converges with order two for
every x(0) sufficiently close to α. Moreover

lim
k→∞

|x(k+1) − α|
|x(k) − α|2

=
1

2

|f ′′(α)|
|f ′(α)|

.

It is important to notice that the convergence established by Theorem 1.3
is only local, that is, the convergence is guaranteed only if the initial value
x(0) is sufficiently close to the root α. Figure 1.5 shows two cases of non-
convergence of the Newton method if the initial value is too far from the
root.

Error control

In Section 1.3.3 we have seen that controlling the error of a second-order
method using the increment |x(k+1) − x(k)| (residual of the corresponding
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fixed-point equation) is very reliable if x(k) is sufficiently close to α. Thus,
we can use the following stopping criterion for the Newton method

|x(k+1) − x(k)| ≤ tol.

The complete algorithm is given below:
Algorithm 1.6: Newton method (with stopping criterion)

Data: f , f ′, x(0), tol, nmax
Result: α, res, niter
r(0) = tol+ 1; k = 0;
while r(k) > tol AND k < nmax do

x(k+1) = x(k) − f(x(k))

f ′(x(k))
;

r(k+1) = |x(k+1) − x(k)|;
k = k + 1;

end
α = x(k), res=r(k), niter=k ;

Example 1.2 (Electrical circuit). Let us come back to the electrical circuit
from Section 1.1 and let us solve the Equation (1.2) using the Newton method
with the initial value x(0) = 0.1. For this purpose, we use the function newton
available on Moodle:

import numpy as np
from functions import newton

i0 = 1
v0 = 0.1
R = 1
V = 1
f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x - V
df = lambda x: R * i0 * np.exp(x / v0) / v0 + 1
x0 = 0
zero, res, niter, inc = newton(f, df, x0, 1e-8, 100000)
print("Results")
print("zero = " + str(zero))
print("residual = " + str(res))
print("number of iterations = " + str(niter))

# OUTPUT
# Results
# zero = 0.06596105346440571
# residual = 3.552713678800501e-15
# number of iterations = 5

It is clear here that the Newton method converges much faster than the
fixed-point method (1.4). The function newton also returns us the list of
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increments |x(k+1)−x(k)| in the variable inc. This provides us the possibility
of verifying the order of convergence

import numpy as np
from functions import newton

i0 = 1
v0 = 0.1
R = 1
V = 1
f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x - V
df = lambda x: R * i0 * np.exp(x / v0) / v0 + 1
x0 = 0
zero, res, niter, inc = newton(f, df, x0, 1e-8, 100000)
print("convergence")
print("--------------------------------")
for i in range(1, 5):

print("order " + str(i))
print(inc[1:] / inc[:-1] ** i)

# OUTPUT
# order 1
# [2.44095936e-01 1.22648213e-01 1.31765451e-02 1.70533784e-04]
# order 2
# [2.68505529 5.5270496 4.8414167 4.75532045]
# order 3
# [2.95356082e+01 2.49072339e+02 1.77886658e+03 1.32601717e+05]
# order 4
# [3.24891691e+02 1.12242579e+04 6.53603376e+05 3.69758790e+09]

We observe that the ratio |x(k+1)− x(k)|/|x(k)− x(k−1)|2 for k = 1, 2, 3, 4
is stable around 5 whereas the ratio |x(k+1)−x(k)|/|x(k)−x(k−1)| approaches
zero, which confirms that the method is of second order.

1.5 Systems of nonlinear equations

In this section, we will generalize the Newton method to a system of non-
linear equations: 

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,
...

fn(x1, . . . , xn) = 0.

For this purpose, let us introduce the compact notation

f(x) = 0
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where

x =

x1...
xn

 , f(x) =

f1(x1, . . . , xn)...
fn(x1, . . . , xn)

 .

We call α = [α1, . . . , αn]
> ∈ Rn a root of f if it satisfies f(α) = 0.

Example 1.3. Let us consider the system of two equations in the two un-
knowns x1, x2: {

f1(x1, x2) = x21 + x1x2 − 10 = 0,

f2(x1, x2) = x2 + 3x1x
2
2 − 57 = 0.

(1.9)

The first equation implicitly defines the curve

f1(x1, x2) = x21 + x1x2 − 10 = 0 =⇒ x2 = g1(x1) =
10− x21

x1
,

whereas the second equation defines the curve

f2(x1, x2) = x2 + 3x1x
2
2 − 57 = 0 =⇒ x1 = g2(x2) =

57− x2
3x22

.

Figure 1.6 shows the two curves x2 = g1(x2) and x1 = g2(x2) plotted in
Python. Their intersection corresponds to the root of the system (1.9).

import numpy as np
import matplotlib.pyplot as plt

g1 = lambda x1: (10 - x1**2) / x1
g2 = lambda x2: (57 - x2) / (3 * x2**2)
# plot de x2=g1(x1)
x1 = np.linspace(1, 3, 50)
plt.plot(x1, g1(x1), "b", linewidth=2)
# plot de x1=g2(x2)
x2 = np.linspace(1, 4.5, 50)
plt.plot(g2(x2), x2, "r", linewidth=2)
plt.legend([r"$f_1(x_1,x_2)$", r"$f_2(x_1,x_2)$"])
plt.grid(True)
plt.xlim([1, 4.5])

1.5.1 Newton method for systems of equations

To derive the Newton method for a system of equations, we proceed in an
analogous way as in the case of a scalar equation. The (multivariate) first-
order Taylor series of f around an initial point x(0) (sufficiently close to α)
gives:

0 = f(α) = f(x(0)) + Jf (x
(0))(α− x(0)) + “small term”. (1.10)
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Figure 1.6: Intersection of the two functions f1(x1, x2) = 0 (blue) and f2(x1, x2) =
0 (red) from (1.9)

Here, the Jacobian matrix Jf ∈ Rn×n is defined by

Jf =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · ·
...

...
...

∂fn
∂x1

· · · ∂fn
∂xn

 .

After neglecting the “small term”, the equation (1.10) becomes a linear
system in α. Solving this linear system, we find an approximation of the
root α which we will name x(1) and for which

Jf (x
(0))(x(1) − x(0)) = −f(x(0)).

The Newton method is obtained by repeating the process for x(1). The
solution of linear systems (needed to compute x(1)) will be discussed in
Chapters 4 and 5. For the moment, we will simply use the Python command
numpy.linalg.solve(A,b) to solve a linear system Ax = b.

We can stop the iterations when ‖x(k+1) − x(k)‖ ≤ tol where we use ‖v‖
to denote the Euclidean norm of a vector v ∈ Rn: ‖v‖ :=

√
v21 + . . .+ v2n.
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Algorithm 1.7: Newton method for systems of equations
Data: f , Jf , x(0), tol, nmax
Result: α, res, niter
r(0) = tol+ 1; k = 0;
while r(k) > tol AND k < nmax do

Solve linear system Jf (x
(k))δx = −f(x(k));

x(k+1) = x(k) + δx;
r(k+1) = ‖x(k+1) − x(k)‖;
k = k + 1;

end
α = x(k), res=r(k), niter=k ;

The convergence analysis is done in the same way as for the scalar case.
Here, we will just quote the main result.

Theorem 1.4. Consider a function f : Rn → Rn of class C2 and a root α
of f . If det(Jf (α)) 6= 0 (the Jacobian matrix is invertible) then the Newton
method converges with order (at least) 2 for all x(0) sufficiently close to α.

Example 1.4. Let us apply the Newton method to the system (1.9) with
the initial point x(0) = (1, 0). The first iteration of the Newton method is
computed as follows:

f(x(0)) =

[
f1(1, 0)
f2(1, 0)

]
=

[
−9
−57

]
,

Jf (x) =

[
2x1 + x2 x1

3x22 1 + 6x1x2

]
=⇒ Jf (x

(0)) =

[
2 1
0 1

]
.

Hence, we have to solve the linear system[
2 1
0 1

] [
δx1
δx2

]
=

[
9
57

]
,

which has the solution δx = (−24, 57). This gives x(1) = x(0) + δx =
(−23, 57).

Example 1.5. We now solve (1.9) using the Newton method in Python,
with the help of the function newtonsys available on Moodle. We choose
x(0) = [3, 4]> as initial value.

import numpy as np
from functions import newtonsys

f = lambda x: np.array([x[0] ** 2 + x[0] * x[1] - 10,
x[1] + 3 * x[0] * x[1] ** 2 - 57])

df = lambda x: np.array([[2 * x[0] + x[1], x[0]],
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[3 * x[1] ** 2,1 + 6 * x[0] * x[1]]])
x0 = [3, 4]
x, inc, niter = newtonsys(f, df, x0, 1e-8, 1000)
print("x= " + str(x[-1]))
print("number of iterations " + str(niter))
print("increments=" + str(inc))

# OUTPUT
# x= [2. 3.]
# number of iterations 5
# increments=[1.11487660e+00 3.27957413e-01 3.58120064e-02
# 1.96157782e-04 1.10946122e-09]

We observe that the method converges to the exact solution α = (2, 3)
in only 5 iterations. We can also check the order of convergence. As in the
scalar case, the function newtonsys gives us also the list of the increments
‖x(k+1)− x(k)‖ in the variable inc. This means we can compute the ratio of
two consecutive increments

‖x(k+1) − x(k)‖
‖x(k) − x(k−1)‖p

for different values of p.
import numpy as np
from functions import newtonsys

f = lambda x: np.array([x[0] ** 2 + x[0] * x[1] - 10,
[1] + 3 * x[0] * x[1] ** 2 - 57])

df = lambda x: np.array([[2 * x[0] + x[1], x[0]],
[3 * x[1] ** 2, 1 + 6 * x[0] * x[1]]])

x0 = [3, 4]
x, inc, niter = newtonsys(f, df, x0, 1e-8, 1000)
print("x= " + str(x[-1]))
print("number of iterations " + str(niter))
print("increments=" + str(inc))
print("ratio with p=1")
print(inc[1:] / inc[:-1])
print("ratio with p=2")
print(inc[1:] / inc[:-1] ** 2.0)
print("ratio with p=3")
print(inc[1:] / inc[:-1] ** 3.0)

# OUTPUT
# ratio with p=1
# [2.94164765e-01 1.09197124e-01 5.47743064e-03 5.65596310e-06]
# ratio with p=2
# [0.2638541 0.33296129 0.15294956 0.02883374]
# ratio with p=3
# [ 0.23666664 1.01525771 4.27090173 146.99260448]
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For p = 2, the ratio appears to be constant, allowing us to conclude that
the method converges with order 2.

We conclude this section with a few words on ensuring global convergence
of the Newton method, that is, convergence also from initial points that are
not necessarily close to a root. For this purpose, let us first write the Newton
method in compact form:

x(k+1) = x(k) −
(
Jf (x

(k)
)−1

f(x(k)).

Divergence of the Newton method is often caused by “overshooting”, that
is, the new approximation x(k+1) gets further away from the root than x(k).
Overshooting can be cured by considering the damped Newton method:

x(k+1) = x(k) − λk

(
Jf (x

(k)
)−1

f(x(k)),

where 0 < λk ≤ 1 is a damping factor. This damping factor is selected
from the set {1, 1/2, 1, 4, . . .} by choosing the first value for which f(x(k+1))
becomes (significantly) smaller than f(x(k)).



Chapter 2

Curve fitting

Suppose that we have at our disposal measures of a quantity y, for example
the water temperature of the Leman lake, at n different depths. Let xi, i =
1, . . . , n be the depths at which we collect the measures and yi, i = 1, . . . , n
the corresponding measured temperatures.

We try to find a continuous function p(x) that best describes the data
(xi, yi), namely p(xi) ≈ yi.

A different way of framing this problem is the following: We make the
hypothesis that a function f exists which describes the link between y and
x, that is, y = f(x). Importantly, f is defined for all x and not only for the
values xi at which we obtained the measures yi. We say that y = f(x) is
a conceptual model. For the example above, we imagine that there exists a
function y = f(x) that gives the temperature of the water at every depth
of the lake. However, our only knowledge about this function are the values
(xi, yi) that we measured. We are aiming at building the complete function
f(x) from the available measures. This will allow us to estimate the water
temperature at every depth and not only at the measured ones xi.

Example 2.1 (Dynamic viscosity of water). The viscosity of water depends
on the temperature, as shown in Table 2.1 and Figure 2.1 (left). Suppose
that we are interested in the viscosity of water at 25°C. This temperature
is not in the table. To find a good approximation of the viscosity at this
temperature, we can proceed as follows: First find a continuous function
p(T ) that interpolates the data, that is,

find p(T ) such that p(Ti) = νi, (2.1)

where T1 = 10, T2 = 20, . . . , T10 = 100 are the temperature values from
the table and ν1 = 1.308, ν2 = 1.002, . . . , ν10 = 0.2822 are the corresponding
viscosity values. A problem of the form (2.1) is called interpolation problem.

Once such a function p is found, we can evaluate the viscosity at a
temperature of 25 °C using ν = p(25). Figure 2.1 (right) shows a pos-

29
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Temperature [°C] Viscosity [mPa·s]
10 1.308
20 1.002
30 0.7978
40 0.6531
50 0.5471
60 0.4658
70 0.4044
80 0.3550
90 0.3150
100 0.2822

Table 2.1: Viscosity of water depending on the temperature (source: Wikipedia)
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Figure 2.1: Left: Available date of water viscosity vs. temperature. Right: Spline
function interpolating the data. In red: Viscosity at 25°C

sible interpolating function obtained by spline interpolation, which will be
discussed in Section 2.3.

Example 2.2 (Dog bone tensile test). We want to measure the mechanical
characteristics of a material. To this end, we perform tensile testing on
a sample with the geometry shown in Figure 2.2 (dog bone). The sample
is submitted to a stress σ (force by area). The corresponding strain ε is
measured by a device called strain gauge. We apply multiple stresses σi, i =
1, . . . , n uniformly distributed (also called equidistant) between 0 and σmax

and we measure the corresponding strains εi. We then want to characterize

σσ

strain gage

Figure 2.2: Sample of a material for tensile testing
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the stress-strain law of this material. However, the values measured for εi
are affected by non-negligible measurement error. Figure 2.3 (left) shows
possible data obtained in such an experiment. Let us imagine that there
exists a true function f that links the strain to the stress: ε = f(σ) and that
the measurements εi are given by

εi = f(σi) + ηi,

where ηi contains measurement errors.
We aim at obtaining a good approximation p(σ) for the true function

f(σ) from the data (σi, εi). In this case, it is not a good idea to find
an interpolating function, as such a function would also interpolate the
measurement error. It would be better to aim at finding a function p(σ) that
approximates the data well (but not perfectly) and at the same time filters
the measurement error. For this purpose, one often searches for p in a class
of functions W (for example fixed-degree polynomials) that minimizes the
sum of the squared data distances:

p = argmin
q∈W

n∑
i=1

|εi − q(σi)|2.

This is called least-squares approximation. Figure 2.3 (middle) shows a
reconstruction of the stress-strain law by spline interpolation of the data,
while Figure 2.3 (right) shows the reconstruction obtained using least-squares
polynomial approximation of third degree. Intuitively, the least-squares ap-
proximation appears to more sensible.
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Figure 2.3: Left: Strain measures obtained with a strain gauge. Middle: Spline
interpolation of data. Right: Least-squares approximation with poly-
nomial of degree three.

2.1 Polynomial interpolation of data

We first consider the case where measures are not affected by measurement
errors and the goal is to interpolate data. Suppose we have n + 1 data
(xi, yi), with i = 1, . . . , n + 1, and that there is a function f (unknown to
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us) that links the variables y and x. Therefore, our model is

yi = f(xi), i = 1, . . . , n+ 1.

A common approach is to find a polynomial of degree (at most) n that
interpolates the data.

Definition 2.1. Consider given data (xi, yi), i = 1, . . . , n + 1. A polyno-
mial interpolating this data is a polynomial pn of degree at most n, such
that

yi = pn(xi), i = 1, . . . , n+ 1.

We will see below, in Section 2.1, that the polynomial from Definition 2.1
always exists and is unique, provided that the values of xi are mutually
distinct. Indeed, for n = 1, it is simple to see that there is exactly one line
(first degree polynomial) that passes through the two points (x1, y1) and
(x2, y2). Likewise, there is exactly one parabola (second degree polynomial)
that interpolates three points (x1, y1), (x2, y2), and (x3, y3).

Construction using Vandermonde matrix

The most common representation of a polynomial of degree at most n is in
terms of the monomial basis (1, x, . . . , xn):

pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n, a0, . . . , an ∈ R.

Now, the task is to find the n+ 1 unknown coefficients a0, . . . , an from the
data (xi, yi), i = 1, . . . , n + 1, by using the n + 1 interpolation conditions
yi = pn(xi):

pn(x1) = a0 + a1x1 + a2x
2
1 + . . .+ anx

n
1 = y1,

pn(x2) = a0 + a1x2 + a2x
2
2 + . . .+ anx

n
2 = y2,

...

pn(xn+1) = a0 + a1xn+1 + a2x
2
n+1 + . . .+ anx

n
n+1 = yn+1.

(2.2)

This is a linear system of n+1 equations in the n+1 unknowns a0, . . . , an.
It can be written in matrix form as follows:

1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

...
1 xn+1 x2n+1 · · · xnn+1


︸ ︷︷ ︸

V


a0
a1
...
an


︸ ︷︷ ︸

a

=


y1
y2
...

yn+1


︸ ︷︷ ︸

y

. (2.3)

The V matrix is called a Vandermonde matrix. Using the fact that the
coefficients a0, . . . , an are uniquely determined (because pn is uniquely de-
termined), it follows that the linear system (2.3) has a unique solution and,
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hence, the matrix V is invertible (provided that the values of xi are mutually
distinct).

However, the matrix V is infamous for becoming a very ill-conditioned
matrix as n increases; we will discuss this notion in more detail in Chapter 4.
This makes the numerical solution of (2.3) difficult because small errors on
the right-hand side (e.g., rounding errors due to the floating point number
representation) are amplified in the solution and can lead to numerical so-
lutions of very poor quality. We have to be careful when using this method
for larger n (already n = 15 can be problematic).

Example 2.3 (Dynamic viscosity of water). Let us consider again the exam-
ple of water viscosity. We want to find the polynomial of degree 9 that inter-
polates the 10 measures from Table 2.1. The Vandermonde method explained
above is utilized by the Python command p_coef=numpy.polyfit(x,y,n), where
x is the vector containing the temperatures, y is the vector containing
the measures (water viscosity) and p_coef is the vector containing the
coefficients of the degree n interpolating polynomial in decreasing order:
p_coef=(an, an−1, . . . , a0).

import numpy as np

T = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
nu = [1.308, 1.002, 0.7978, 0.6531, 0.5471, 0.4658, 0.4044,

0.3550, 0.3150, 0.2822]
p_coef = np.polyfit(T, nu, 9)
print("p_coef:", p_coef)

# OUTPUT
# p_coef: [-3.76432981e-16 1.86061508e-13 -3.93806217e-11
# 4.66770833e-09 -3.40309606e-07 1.58054062e-05
# -4.71143269e-04 9.11859623e-03 -1.30803159e-01
# 2.04700000e+00]
# p_coef: [-3.76432981e-16 1.86061508e-13 -3.93806217e-11

To plot the obtained polynomial, we can use the command np.polyval .

import matplotlib.pyplot as plt

T_fine = np.arange(10, 100.1, 0.1) # fine grid for visualization
p = np.polyval(p_coef, T_fine) # evaluation of polynomial in T_fine
plt.plot(T_fine, p, "b")
plt.plot(T, nu, "r*")

Figure 2.4 shows the graph of the interpolating polynomial. For this ap-
plication, the polynomial appears to describe the behavior of the data very
well.
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Figure 2.4: Data of water viscosity depending on temperature (Table 2.1) and de-
gree 9 interpolating polynomial.

Construction using Lagrange basis

The Lagrange basis of polynomials offers an attractive alternative to the
Vandermonde method for constructing interpolating polynomials. This al-
ternative does not require the solution of any linear system and also tends
to be numerically more reliable for larger values of n. We start by defining
the Lagrange basis.

Definition 2.2. Given mutually distinct nodes x1, x2, . . . xn+1 ∈ R the
corresponding basis of Lagrange polynomials are the n+1 polynomials

φi(x) =
(x− x1)(x− x2) . . . (x− xi−1)(x− xi+1) . . . (x− xn+1)

(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn+1)

=

n+1∏
j=1
j 6=i

(x− xj)

(xi − xj)

for i = 1, . . . , n+ 1.

It can be verified that (φ1, . . . , φn+1) represents a basis of the vector space
of polynomials of degree at most n. By their definition, these polynomials
have the following important property:

φi(xk) = 0 if k 6= i and φi(xi) = 1. (2.4)

In other words, the polynomial φi(x) equals 0 at every node xk except for
the node xi where it equals 1. Figure 2.5 shows the polynomials φ1, φ3 and
φ5 associated with the nodes x1 = 0, x2 = 0.2, x3 = 0.4, . . . , x6 = 1.

Thanks to (2.4), the construction of an interpolating polynomial becomes
very simple in the basis of Lagrange polynomials.
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Figure 2.5: Lagrange polynomials φ1, φ3, φ5 associated with the nodes x1 = 0, x2 =
0.2, x3 = 0.4, . . . , x6 = 1.

Proposition 2.1. The polynomial pn interpolating the data (xi, yi), with
i = 1, . . . , n+ 1, is given by

pn(x) =
n+1∑
i=1

yiφi(x). (2.5)

Because each φi has degree n, it follows that pn has degree at most n.
Moreover, the interpolating property follows from (2.4):

pn(xk) = y1 φ1(xk)︸ ︷︷ ︸
=0

+y2 φ2(xk)︸ ︷︷ ︸
=0

+ . . .+ yk φk(xk)︸ ︷︷ ︸
=1

+ . . .+ yn+1 φn+1(xk)︸ ︷︷ ︸
=0

= yk.

Proposition 2.1 also shows that the polynomial interpolation problem
from Definition 2.1 always admits a solution. Moreover, the basis property
of φ1, . . . , φn+1 implies that this is the only solution.

Example 2.4. We want to build an interpolating polynomial for the data
(x1 = 0, y1 = 1) and (x2 = 1, y2 = 2). Let us first start by building the
Lagrange’s basis

φ1(x) =
(x− x2)

(x1 − x2)
=

x− 1

−1
= 1− x,

φ2(x) =
(x− x1)

(x2 − x1)
=

x− 0

1
= x.

Finally, the interpolating polynomial is

p1(x) = y1φ1(x) + y2φ2(x) = 1(1− x) + 2x = x+ 1

which can be easily verified.
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For large n, the evaluation of pn at a value x using directly the for-
mula (2.5) becomes somewhat expensive because the number of operations
needed grows quadratically with n. Let us mention barycentric interpolation
formulas as a common approach to reduce this cost.

Error analysis

When discussing the quality and error of polynomial interpolation, it is
important to pose the right questions. For example, one could ask whether
the interpolating polynomial pn is a good approximation of the “true” (but
unknown) function f that generated the measurements yi. However, this
question is not very fruitful because there are infinitely many functions f
that take the same values yi at the nodes xi and which could be arbitrarily
far from pn at points x outside the interpolation nodes. It is more meaningful
to ask anther question: if we interpolate more and more measurements of f ,
will we obtain an increasingly accurate approximation pn to f? In particular,
if the number of measurements n approaches infinity, will the interpolating
polynomial pn converge to the “true” function f?

These questions appear theoretical but they are of high practical rele-
vance. If pn does not approach f as n→∞, then our reconstruction method
is not correct in the limit. For larger (but finite) n one can then expect to
see strange behavior, that pn is not a good match to f . This will not happen
when pn → f when n→∞, but it is also important to know at which speed
pn converges to f . The faster pn converges to f , the less measurements are
needed to reconstruct f accurately.

The following example shows that the interpolating polynomials pn do
not always converge to the true function f .

Example 2.5. Let us consider two functions

f1(x) = sin(5x), f2(x) =
1

1 + (5x)2
,

defined in the interval [−1, 1]. We use the measurements

yi = f1(xi), zi = f2(xi), i = 1, . . . , n+ 1,

{xi}n+1
i=1 equidistant nodes in the interval [−1, 1].

Figure 2.6 shows the polynomials p(1)n and p
(2)
n interpolating f1(xi) and f2(xi),

respectively, for n = 4, 8, 16. For f1(x) = sin(5x), the degree 16 interpolat-
ing polynomial is almost superimposed on the exact function and, hence,
p
(1)
n appears to converge to the exact function when increasing the number of

measurements. On the other hand, for f2(x) = 1/(1 + (5x)2), the degree 16
interpolating polynomial provides a decent approximation of the true function
close to interval center only, and a very poor approximation close to the in-
terval endpoints (actually worse than the degree 8 interpolating polynomial).
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Figure 2.6: Interpolating polynomials p
(1)
n (left) and p

(2)
n (right) for n = 4, 8, 16.

Increasing the polynomial degree further, this effect becomes even stronger
and the interpolating polynomial diverges from the function f2 when |x| is
higher than approximately 0.6. This is known as Runge’s phenomenon.

The following result provides an upper bound on the interpolation error
in terms of the higher-order derivatives of f .

Theorem 2.2. Consider a function f : [a, b]→ R of class Cn+1 and equidis-
tant nodes a = x1 < x2 < . . . < xn+1 = b in [a, b]. Then the polynomial pn of
degree at most n that interpolates the data (xi, f(xi)), with i = 1, . . . , n+1,
satisfies the error bound

max
x∈[a,b]

|f(x)− pn(x)| ≤
1

4(n+ 1)

(
b− a

n

)n+1

max
x∈[a,b]

|f (n+1)(x)|. (2.6)

Theorem 2.2 is difficult to prove; see, e.g., [Quarteroni, Sacco, Saleri,
“Numerical Mathematics”, Springer]. The result implies convergence if
|f (n+1)(x)| grows more slowly on the interval [a, b] than 4(n+1)nn+1

(b−a)n+1 as n→∞.
This is the case for the function f1(x) = sin(5x) from Example 2.5, for which
the derivatives satisfy

max
x∈[−1,1]

|f (n+1)
1 (x)| ≤ 5n+1

and, hence,

max
x∈[a,b]

|f(x)−pn(x)| ≤
2n+1

4(n+ 1)nn+1
max

x∈[−1,1]
|f (n+1)

1 (x)| ≤ 10n+1

4(n+ 1)nn+1

n→∞−−−→ 0.

On the other hand, for the function f2 from Example 2.5, the derivatives
grow much more quickly (one can show that maxx∈[−1,1] |f

(n)
2 (x)| ∼ n!5n)

and convergence is not guaranteed by Theorem 2.2 and, in fact, convergence
does not happen.

It is important to emphasize that the divergence of polynomial interpo-
lation, even for very nice functions, is linked to the use of equidistant nodes
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in the interval [a, b]. There are other choices, which are typically denser
around the endpoints of the interval, that yield convergent interpolations if
f is at least differentiable. This is the case when Clenshaw-Curtis nodes are
used.

Definition 2.3. The n Clenshaw-Curtis nodes on the interval [a, b] are
defined by

xi =
a+ b

2
− b− a

2
cos

(
π(i− 1)

n

)
, i = 1, . . . , n+ 1.

The Clenshaw-Curtis nodes are obtained through projecting uniformly
distributed nodes on the semi-circle of center (a+ b)/2 and radius (b− a)/2
on the horizontal axis; see Figure 2.7. Another good choice are Chebyshev

a+b

2

x
1

x
2

x
3

x
n+1

a b

Figure 2.7: Clenshaw-Curtis nodes.

nodes. Yet, in the context of data interpolation, we usually do not have
the luxury of choosing the position of the nodes xi by ourselves. In most
practical situations, the nodes are determined by the measurements; well
before any interpolation is performed.

Stability of polynomial interpolation

In this section, we study the effects of data error on the quality of polynomial
interpolation.

Suppose we want to determine the polynomial pn(x) that interpolates
the data (xi, yi), i = 1, . . . , n + 1, with a = x1 < x2 < . . . < xn+1 = b and
yi = f(xi) for some function f .

Because of, e.g., measurement error, roundoff error, etc. the data is in-
evitably affected by error. Instead of yi, we are actually collecting perturbed
data ỹi = f(xi) + εi with an error εi that is assumed to be small: |εi| ≤ ε
for i = 1, . . . , n+ 1.

Letting p̃n denote the interpolating polynomial for the perturbed data
(xi, ỹi), we now want to estimate the distance between the “true” interpolat-
ing polynomial pn and p̃n. For this purpose, we represent both polynomials



2.1. POLYNOMIAL INTERPOLATION OF DATA 39

in the Lagrange basis with respect to x1, . . . , xn+1:

pn(x) =

n+1∑
i=1

yiφi(x), p̃n(x) =

n+1∑
i=1

(yi + εi)φi(x).

Taking the difference and using the triangle inequality, we obtain that

|p̃n(x)− pn(x)| =

∣∣∣∣∣
n+1∑
i=1

φi(x)εi

∣∣∣∣∣ ≤
n+1∑
i=1

|φi(x)||εi| ≤

(
n+1∑
i=1

|φi(x)|

)
ε

for every x ∈ [a, b].

Definition 2.4. The Lebesgue constant associated with nodes x1, . . . , xn+1 ∈
[a, b] is defined as

Ln = sup
x∈[a,b]

n+1∑
i=1

|φi(x)|.

In summary, we have the following stability result:

max
x∈[a,b]

|p̃(x)− p(x)| ≤ Ln · ε, ε = max
i=1,...,n+1

|εi|, (2.7)

that is, the input error ε is potentially magnified by Ln. In particular,
when the Lebesgue constant Ln is small, small input errors |εi| ≤ ε lead to
small perturbations in the interpolating polynomial. In this case, we say
that the polynomial interpolation on the nodes x1, . . . , xn+1 is stable or well
conditioned. If, on the contrary, the Lebesgue constant is very large then
the polynomial interpolation on the nodes x1, . . . , xn+1 is badly conditioned;
it has bad stability properties.

For polynomial interpolation on equidistant or Clenshaw-Curtis nodes,
one has the following results:

equidistant nodes Ln ∼
2n+1

en log n
, n→∞, (2.8)

Clenshaw-Curtis nodes Ln ∼
2

π
log n, n→∞. (2.9)

This tells us that polynomial interpolation on Clenshaw-Curtis nodes is rel-
atively well conditioned (stable) as the Lebesgue constant grows only very
slowly with n. On the other hand, polynomial interpolation on equidistant
nodes is very badly conditioned as the Lebesgue constant grows exponen-
tially with n, which means that small perturbations on data are potentially
highly amplified.

Example 2.6. Let us consider the function f(x) = sin(5x) from Example
2.5, for which we have already seen that polynomial interpolation provides
good results.
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Given distinct nodes {xi}n+1
i=1 on the interval [−1, 1] and the exact eval-

uations yi = f(xi), we consider perturbed evaluations

ỹi = f(xi) + εi,

where εi ∈ [−10−2, 10−2] are randomly generated errors of magnitude |εi| ≤
10−2. The polynomials pn and p̃n interpolating (xi, yi) and (xi, ỹi), respec-
tively, are computed using Python .

Figure 2.8 shows the two interpolating polynomials for equidistant nodes
and Clenshaw-Curtis nodes. In the first case, it is clear that the maximum
distance between the two polynomials is of order 1, about 100 times larger
than the perturbations εi. On the other hand, in the second case, the distance
between the polynomials is very small and, in fact, we cannot even distinguish
the two polynomials in the figure.
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Figure 2.8: Example 2.6: Polynomials pn, p̃n interpolating (xi, yi), (xi, ỹi) per-
turbed by the random errors |εi| ≤ 10−2. Left: Equidistant nodes;
right: Clenshaw-Curtis nodes.

2.2 Piecewise linear interpolation
We have seen in the previous section that enlarging the degree n of the in-
terpolating polynomial can be an excellent idea, especially when the nodes
can be freely chosen, but can also lead to disastrous results. Instead of in-
creasing the degree, another idea is to subdivide the interval [a, b] and apply
polynomial interpolation to each sub-interval. When degree 1 polynomials
are used, this idea leads to piecewise linear interpolation.

To formalize this idea, let us consider equidistant nodes a = x1 < x2 <
. . . < xn+1 = b nodes in the interval [a, b] and yi = f(xi) the corresponding
measurements, which come from the evaluation of an unknown function f .
We set Ii = [xi, xi+1], which is an interval of length h = (b− a)/n.

Definition 2.5. A piecewise linear polynomial interpolating the data
(xi, yi), with i = 1, . . . , n+ 1, is a function p1,h such that
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• p1,h is degree 1 polynomial in every interval Ii, i = 1, . . . , n,

• p1,h(xi) = yi, i = 1, . . . , n+ 1.

Definition 2.5 requires p1,h to be a degree 1 polynomial on an interval Ii.
Taking into account that p1,h interpolates the data (xi, yi) and (xi+1, yi+1),
the Lagrange basis approach allows us to express p1,h restricted to Ii in the
form

p1,h(x) = yi
x− xi+1

xi − xi+1
+ yi+1

x− xi
xi+1 − xi

, ∀x ∈ Ii.

The Python command p1h=numpy.interp(x,y,x_fine) performs piece-
wise linear interpolation, where the vector x contains the nodes, the vector
y contains the measurements vector, x_fine is a point or a vector of points
where we want to evaluate p1,h, and the output p1h contains the evaluations
p1,h(x_fine).

Example 2.7. Once again, we use the function f2(x) = 1/(1+ (5x)2) from
Example 2.5, for which we have observed that high-degree polynomial inter-
polation is problematic. The following Python code computes the piecewise
linear interpolation on 9 equidistant nodes in the interval [−1, 1]:

import numpy as np
import matplotlib.pyplot as plt

f = lambda x: 1.0 / (1 + (5 * x) ** 2)
n = 8
x = np.linspace(-1, 1, n + 1) # interpolation nodes
y = f(x)
# measures
xfine = np.linspace(-1, 1, 201) # fine grid
p1h = np.interp(xfine, x, y) # evaluation of p1h on fine grid
plt.plot(xfine, p1h, "b")
plt.plot(xfine, f(xfine), "k--")
plt.legend(["p1h, n=8", "f(x)", "data"])

Figure 2.9 shows the obtained result. We notice that p1,h does not exhibit
oscillations and gives a decent (although not quite excellent) approximation
of f2.

Error analysis

The error analysis of piecewise linear interpolation is a direct consequence
of Theorem 2.2. In fact, in every interval Ii, we are computing a linear
interpolation of the data (xi, yi) and (xi+1, yi+1). This means we can apply
the result of Theorem 2.2 with n = 1 and b− a = xi+1 − xi = h:

max
x∈Ii
|f(x)− p1,h(x)| ≤

h2

8
max
x∈Ii
|f (2)(x)|.
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Figure 2.9: Piecewise linear interpolation of the function f(x) = 1/(1 + (5x)2) on
9 equidistant nodes in the interval [−1, 1].

Therefore,

max
x∈[a,b]

|f(x)− p1,h(x)| = max
i=1,...,n

max
x∈Ii
|f(x)− p1,h(x)| ≤

h2

8
max
x∈[a,b]

|f (2)(x)|.

The following theorem summarizes this result.

Theorem 2.3. Consider a function f : [a, b]→ R of class C2 and equidistant
nodes a = x1 < x2 < . . . < xn+1 = b. Then the piecewise linear polynomial
p1,h interpolating the data (xi, f(xi)) satisfies the error bound

max
x∈[a,b]

|f(x)− p1,h(x)| ≤ Ch2 max
x∈[a,b]

|f (2)(x)|, (2.10)

with h = (b− a)/n and C = 1/8.

For an error bound of the form (2.10), we say that convergence (with
respect to h) is quadratic or of second order. More generally, a convergence
of order q ∈ N requires that the approximation error of a piecewise defined
approximation is bounded by a constant (independent of h) times hq.

To verify numerically that piecewise linear approximation has second
order, one needs to check that the error is asymptotically proportional to
h2. In other words, if we double the number of points (and therefore half
the length of every sub-interval), the error will be roughly divided by 4.
The following Python snippet implements this idea for the function f2(x) =
1/(1+(5x)2) from Example 2.5 by using n = 16, 32, 64, 128, 256 sub-intervals
and estimating the error by computing the error on a fine grid.

import numpy as np

f = lambda x: 1.0 / (1 + (5 * x) ** 2)
xfine = np.linspace(-1, 1, 201) # fine grid
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err = np.array([])
h = np.array([])
for n in 2 ** np.arange(4, 9):

h = np.append(h, 2.0 / n)
x = np.linspace(-1, 1, n + 1) # interpolation nodes
y = f(x) # measures
p1h = np.interp(xfine, x, y) # evaluation of p1h on fine grid
err = np.append(err, max(abs(f(xfine) - p1h)))

print("h: ", h)
print("err: ", err)

# OUTPUT
# h: [0.125 0.0625 0.03125 0.015625 0.0078125]
# err: [0.05353602 0.02069974 0.00535163 0.00138879 0.00035451]

Indeed, the output indicates that the error is divided by 4 (approximately)
when the number of sub-intervals is doubled. To observe this behavior more
clearly, we first note that the error can be written as

errh = max
x∈[a,b]

|f(x)− p1,h(x)| ∼ Ch2

with C = maxx∈[a,b] |f (2)(x)|/8. Applying the logarithm in base 10 (or any
other base) to both sides, we obtain that

log10(errh) ∼ log10(Ch2) = log10(C) + 2 log10(h).

Therefore log10(errh) is a linear function of log10(h) with slope 2, which
corresponds to the convergence order. This means the order can be observed
from the graph of log10(errh) with respect to log10(h). In Python, there
is no need to take logarithms explicitly – the command loglog(x,y) from
matplotlib.pyplot, applies logarithmic scaling to both axes.

import matplotlib.pyplot as plt

plt.loglog(h, err, "b")
plt.loglog(h, h, "k--")
plt.loglog(h, h**2, "k-.")
plt.grid(True)
plt.legend(["err_h", "slope 1", "slope 2"])

Figure 2.10 shows the obtained result. On the same graph we also plotted
the curves y = h and y = h2. In loglog scaling, these two curves match two
lines of slope 1 and 2 respectively.

Stability of piecewise linear interpolation

Let us consider again the effect of input errors (such as measurement errors)
on the interpolation. The perturbed data is ỹi = f(xi) + εi, with a (small)
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Figure 2.10: Graph in logarithmic scale of the piecewise linear interpolation error
for f(x) = 1/(1 + (5x)2) on [−1, 1] versus h = 2/n (length of each
sub-interval).

error εi satisfying |εi| ≤ ε for i = 1, . . . , n + 1. Let p1,h and p̃1,h denote the
piecewise linear polynomials interpolating the non-perturbed data (xi, yi)
and the perturbed data (xi, ỹi), respectively. On each sub-interval Ii =
[xi, xi+1] we then have

p1,h(x) = yi
x− xi+1

xi − xi+1
+ yi+1

x− xi
xi+1 − xi

and
p̃1,h(x) = (yi + εi)

x− xi+1

xi − xi+1
+ (yi+1 + εi+1)

x− xi
xi+1 − xi

.

Taking the difference and applying the triangle inequality, it holds for every
x ∈ Ii that

|p̃1,h(x)− p1,h(x)| ≤ |εi|
∣∣∣∣ x− xi+1

xi − xi+1

∣∣∣∣+ |εi+1|
∣∣∣∣ x− xi
xi+1 − xi

∣∣∣∣ ≤ ε.

For the last inequality, we used the relation∣∣∣∣ x− xi+1

xi − xi+1

∣∣∣∣+ ∣∣∣∣ x− xi
xi+1 − xi

∣∣∣∣ = xi+1 − x

xi+1 − xi
+

x− xi
xi+1 − xi

= 1 ∀x ∈ Ii.

Finally, taking the maximum in every sub-interval, we get

max
x∈[a,b]

|p̃1,h(x)− p1,h(x)| = max
i=1,...,n

max
x∈Ii
|p̃1,h(x)− p1,h(x)| ≤ ε. (2.11)

We can conclude that piecewise linear interpolation is perfectly stable! Small
measurement errors induce equally small perturbations in the piecewise lin-
ear interpolation.
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Example 2.8. As in Examples 2.5 and 2.6, we consider f(x) = sin(5x).
Let {xi}n+1

i=1 denote equidistant nodes in the interval [−1, 1], yi = f(xi), and

ỹi = f(xi) + εi,

where εi ∈ [−10−2, 10−2] are randomly generated errors of magnitude |ηi| ≤
10−2. Using Python, we compute the piecewise linear polynomials p1,h, p̃1,h
interpolating (xi, yi), (xi, ỹi). The obtained results are plotted in Figure 2.11.
The distance between p1,h and p̃1,h is very small; in fact, it is visually
indistinguishable.
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Figure 2.11: Example 2.8: Piecewise linear polynomials p1,h and p̃1,h interpolating
exact data(xi, yi) and perturbed data (xi, ỹi) with |εi| ≤ 10−2.

2.3 Spline interpolation

Although piecewise linear interpolation is convergent when n→∞ and has
favorable stability properties, it has two major drawbacks: (1) The conver-
gence is only of second order. (2) The piecewise linear polynomial is contin-
uous but not even differentiable (at the nodes). The second drawback is of
particular relevance in graphical applications such as CAD (Computer Aided
Design), where “smoother” curves are needed to, e.g., represent curved edges
or surfaces. In these cases, one often aims at ensuring a continuous second
derivative. Splines are the standard tool for constructing piecewise func-
tions with favorable smoothness properties. In the following, we will focus
on cubic splines.

Definition 2.6. Consider data (xi, yi), i = 1, . . . , n+1 with a = x1 < x2 <
. . . < xn+1 = b, and let let Ii = [xi, xi+1] for i = 1, . . . , n. An interpolating
cubic spline is a function s3,h such as

• s3,h ∈ C2([a, b]),
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• s3,h is a cubic polynomial on every interval Ii,

• s3,h interpolates the data: s3,h(xi) = yi for i = 1, . . . , n+ 1.

Definition 2.6 makes sense for arbitrary (mutually distinct) nodes; but we
will only consider equidistant nodes in the following, in which case h =
(b− a)/n denotes the length of each sub-interval.

The fact that s3,h is of class C2 implies that not only the function s3,h
but also its first and second derivatives are continuous functions. Because
s3,h is a polynomial on each interval Ii, it is infinitely often differentiable in
the interior ]xi, xi+1[. In turn, the condition s3,h ∈ C2([a, b]) amounts to
checking smoothness at the nodes xi for i = 2, . . . , n:

s3,h(x
−
i ) = s3,h(x

+
i ), i = 2, . . . , n, (2.12)

s′3,h(x
−
i ) = s′3,h(x

+
i ), i = 2, . . . , n, (2.13)

s′′3,h(x
−
i ) = s′′3,h(x

+
i ), i = 2, . . . , n. (2.14)

Here, g(x−) and g(x+) are used to denote the left-sided and right-sided
limits of a function at g at x.

On every sub-interval Ii, the spline is a cubic polynomial, which can be
written as

s3,h
∣∣
Ii
= ai + bix+ cix

2 + dix
3, i = 1, . . . , n,

with the coefficients (ai, bi, ci, di) to be determined. Consequently, there
are 4n unknown coefficients (4 in each sub-interval). We also have 3(n− 1)
continuity conditions in the internal nodes and n+1 interpolating conditions
s3,h(xi) = yi.

unknowns 4n

continuity conditions 3(n− 1)
interpolating conditions n+ 1

degrees of freedom 4n− 3(n− 1)− (n+ 1) = 2

Thus, the number of degrees of freedom nearly match the number of un-
knowns. The two additional degrees of freedom can be chosen to impose
two additional conditions on the spline. Four popular choices are:

• natural spline: s′′3,h(x1) = 0, s′′3,h(xn+1) = 0,

• prescribed slope at endpoints: s′3,h(x1) = α1, s′3,h(xn+1) = α2 for given
α1, α2 ∈ R,

• not-a-knot condition (default in Python): continuity of the third deriva-
tive in x2 and xn

s′′′3,h(x
−
2 ) = s′′′3,h(x

+
2 ), s′′′3,h(x

−
n ) = s′′′3,h(x

+
n ),
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• periodic spline: s′3,h(x
−
1 ) = s′3,h(x

+
n+1), s′′3,h(x

−
1 ) = s′′3,h(x

+
n+1), usually

assuming y1 = yn+1.

Example 2.9. Let us consider the following data: (x1, y1) = (−1,−1),
(x2, y2) = (0, 1), (x3, y3) = (1, 1). We look for the natural spline interpolating
the data.
The general expression of the spline is

s3,h(x) = a1 + b1x+ c1x
2 + d1x

3 for x ∈ [−1, 0]
s3,h(x) = a2 + b2x+ c2x

2 + d2x
3 for x ∈ [0, 1].

Continuity conditions:

s3,h(x
−
2 ) = s3,h(x

+
2 ), =⇒ a1 = a2

s′3,h(x
−
2 ) = s′3,h(x

+
2 ), =⇒ b1 = b2

s′′3,h(x
−
2 ) = s′′3,h(x

+
2 ), =⇒ c1 = c2.

Natural spline condition

s′′3,h(x1) = 0, =⇒ 2c1 − 6d1 = 0

s′′3,h(x3) = 0, =⇒ 2c2 + 6d2 = 0.

We can then simplify the general expression as follows:

s3,h(x) = a+ bx+ cx2 +
1

3
cx3 for x ∈ [−1, 0]

s3,h(x) = a+ bx+ cx2 − 1

3
cx3 for x ∈ [0, 1].

Finally, let us impose the 3 interpolating conditions

s3,h(−1) = −1, =⇒ a− b+
2

3
c = −1,

s3,h(0) = 1, =⇒ a = 1,

s3,h(1) = 1, =⇒ a+ b+
2

3
c = 1,

and we find a = 1, b = 1 and c = −3
2 . Finally, the cubic interpolating spline

is

s3,h
∣∣
[−1,0]

= 1 + x− 3

2
x2 − 1

2
x3, s3,h

∣∣
[0,1]

= 1 + x− 3

2
x2 +

1

2
x3.

The general construction of a cubic spline is quite similar to what has
been done in Example 2.9. In the general case, the determination of the
coefficients requires the solution of a (tridiagonal) linear system, which can
be solved efficiently using the techniques discussed in Section 4.5.
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2.3.1 Error analysis

The error of cubic spline interpolation satisfies the following bounds.

Theorem 2.4. Consider a function f : [a, b] → R of class C4 and equidis-
tant nodes a = x1 < x2 < . . . < xn+1 = b. Then any cubic spline s3,h
interpolating the data (xi, f(xi)) satisfies

max
x∈[a,b]

|f(x)− s3,h(x)| ≤ C0h
4 max
x∈[a,b]

|f (4)(x)|, (2.15)

max
x∈[a,b]

|f ′(x)− s′3,h(x)| ≤ C1h
3 max
x∈[a,b]

|f (4)(x)|, (2.16)

max
x∈[a,b]

|f ′′(x)− s′′3,h(x)| ≤ C2h
2 max
x∈[a,b]

|f (4)(x)|, (2.17)

where h = (b− a)/n and C0, C1 and C2 are constants not depending on h.

Theorem 2.4 tells us that cubic spline interpolation results in conver-
gence order 4 for the interpolation error. Additionally, the first and second
derivatives of the function f are approximated as well, with convergence
order 3 and 2, respectively.
Example 2.10. We apply cubic spline interpolation to the function f2(x) =
1/(1 + (5x)2) from Example 2.5 for an increasing number of sub-intervals:
n = 16, 32, 64, 128, 256.
import numpy as np
from scipy.interpolate import CubicSpline

f = lambda x: 1.0 / (1 + (5 * x) ** 2)
xfine = np.linspace(-1, 1, 201) # fine grid
err = np.array([])
h = np.array([])
for n in 2 ** np.arange(4, 9):

h = np.append(h, 2.0 / n)
x = np.linspace(-1, 1, n + 1) # interpolation nodes
y = f(x) # measurements
s3h = CubicSpline(x, y) # defines cubic spline s3h
err = np.append(err, max(abs(f(xfine) - s3h(xfine))))

print("h: ", h)
print("err: ", err)

# OUTPUT
# h: [0.125 0.0625 0.03125 0.015625 0.0078125]
# err: [3.71093415e-03 6.37335632e-04 3.60663244e-05
# 2.05343200e-06 1.24035520e-07]

We observe that doubling the number of sub-intervals (i.e., h is halved),
decreases the error decreases roughly by a factor 16. Visualizing the error
with respect to h on a loglog plot clearly reveals order 4 because the error
curve is nearly parallel to a line with slope 4; see Figure 2.12.
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import matplotlib.pyplot as plt

plt.loglog(h, err, "b")
plt.loglog(h, h**4, "k--")
plt.grid(True)
plt.legend(["err_h", "slope 4"])
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Figure 2.12: Loglog plot of spline interpolation error for f(x) = 1/(1+(5x)2) versus
sub-interval length h = 2/n.

2.4 Least-squares approximation

When the data is perturbed anyway, it may not be meaningful to exactly
interpolate it. Rather, it would be sufficient to approximate the data, with
an approximation error preferably on the level of the measurement error. In
this section, we will consider the specific case of polynomial least-squares
approximation for this purpose, which includes the wildly popular1 linear
regression as a special case.

Suppose we have n+ 1 data (xi, yi), with i = 1, . . . , n+ 1, and that the
values yi come from the evaluation of an unknown f(x) function. Then our
model for the perturbed data takes the form

yi = f(xi) + εi, (2.18)

and we are aiming at approximating the unknown function f(x) from this
(perturbed) data. In the following, Pm denotes the vector space of polyno-
mials of degree at most m.

1See https://xkcd.com/1725/.

https://xkcd.com/1725/
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Definition 2.7. The degree m least-squares polynomial approximating
given data (xi, yi), with i = 1, . . . , n+ 1, is the polynomial satisfying

pLSm = argmin
q∈Pm

n+1∑
i=1

(yi − q(xi))
2.

In other words, pLSm is such that

n+1∑
i=1

(yi − pLSm (xi))
2 ≤

n+1∑
i=1

(yi − q(xi))
2, ∀q ∈ Pm.

The use of the (squared) Euclidean norm for measuring the error in
Definition 2.7 has a strong statistical motivation. Suppose that the errors
εi are random variables, independent and identically distributed (iid) with
expected value E[εi] = 0 and variance Var[εi] = σ2. For example, this is the
case if εi are normally distributed, εi ∼ N(0, σ2). Then pLSm represents the
maximum likelihood estimate (MLE), that is, pLSm is the most likely choice
of polynomial given the observations y1, . . . , yn+1.

Figure 2.13 shows a set of 21 measures and the linear least-squares fit
(regression line) to the data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

donnees

droite regression

y
i
 − p

1

MC
(x

i
)

Figure 2.13: Regression line (in red) of the 21 measures (in blue).

Computation of least-squares polynomial for m = 1

In the case of linear regression (m = 1) one can work out a simple formula
for the coefficients of the least-squares fit. For a linear functions of the form

q(x) = a0 + a1x, a0, a1 ∈ R,
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we are trying to solve

min
q∈P1

n+1∑
i=1

(yi − q(xi))
2 = min

(a0,a1)∈R2

n+1∑
i=1

(yi − (a0 + a1xi))
2.

In other words, we are looking for the minimum of the function

φ(a0, a1) =

n+1∑
i=1

(yi − (a0 + a1xi))
2.

This function is differentiable and, hence, any minimum has to satisfy the
conditions

∂φ

∂a0
= 0,

∂φ

∂a1
= 0,

which match
∂φ

∂a0
= −2

n+1∑
i=1

(yi − a0 − a1xi) = 0

∂φ

∂a1
= −2

n+1∑
i=1

xi(yi − a0 − a1xi) = 0

=⇒

(n+ 1)a0 +
(∑n+1

i=1 xi

)
a1 =

∑n+1
i=1 yi(∑n+1

i=1 xi

)
a0 +

(∑n+1
i=1 x2i

)
a1 =

∑n+1
i=1 xiyi.

The latter is a linear system of two equations in the two unknowns (a0, a1):[∑n+1
i=1 1

∑n+1
i=1 xi∑n+1

i=1 xi
∑n+1

i=1 x2i

]
︸ ︷︷ ︸

A

[
a0
a1

]
︸︷︷︸

a

=

[ ∑n+1
i=1 yi∑n+1

i=1 xiyi

]
︸ ︷︷ ︸

b

. (2.19)

Unless all xi are identical, the matrix A is invertible and the solution of this
linear system is unique. This solution necessarily minimizes φ(a0, a1) and
thus yields the coefficients of the regression line.

There is another way to arrive at the linear system (2.19). Let us intro-
duce the Vandermonde matrix V ∈ R(n+1)×2 corresponding to the monomi-
als 1 and x estimated at the points xi, i = 1, . . . , n+ 1:

V =


1 x1
1 x2
...

...

1 xn+1


Defining the vector y = (y1, y2, . . . , yn+1)

>, we have

A = V >V, b = V >y.
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Hence, the system (2.19) can be written in the more compact form

V >V a = V >y.

Computation of least-squares polynomial (general case)

In the general case of a degree m polynomial, we define the Vandermonde
matrix V ∈ R(n+1)×(m+1) corresponding to the monomials 1, x, . . . , xm esti-
mated at the points xi, i = 1, . . . , n+ 1:

V =


1 x1 x21 . . . xm1
1 x2 x22 . . . xm2
...

...
...

1 xn+1 x2n+1 . . . xmn+1

 .

Given a polynomial q(x) = a0 + a1x+ . . .+ amxm, this allows us to write
q(x1)
q(x2)
...

q(xn+1)

 =


1 x1 x21 . . . xm1
1 x2 x22 . . . xm2
...

...
...

1 xn+1 x2n+1 . . . xmn+1



a0
a1
...
am

 = V a

and
n+1∑
i=1

(yi − q(xi))
2 = ‖y − V a‖2. (2.20)

Performing a least-squares fit of the the data (xi, yi) with a degree m poly-
nomial is the same as finding the vector of coefficients a = (a0, a1, . . . , am)>

that minimizes the quantity (2.20):

min
q∈Pm

n+1∑
i=1

(yi − q(xi))
2 ⇔ min

a∈Rm+1
‖y − V a‖2.

We have the following result, which generalizes the one we obtained for
m = 1.

Proposition 2.5. The polynomial pLSm (x) = a0 + a1x + . . . + amxm is the
least-squares polynomial approaching the data (xi, yi), i = 1, . . . , n + 1, if
and only if a = (a0, a1, . . . , am)> is solves the linear system

V >V a = V >y. (2.21)

The linear system (2.21) is usually called normal equations. It has a
unique solution if and only if V has rank at least m. This is the case, for
example, when m ≤ n and the points xi are mutually distinct.
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Remark 2.1. For m = n, the Vandermonde matrix becomes a square ma-
trix, which is invertible when the points xi are mutually distinct. Therefore,

V >V a = V >y ⇔ V a = y.

It follows that the coefficients vector corresponds to one of the polynomial
interpolating the data (xi, yi), i = 1, . . . n+ 1.

In Python, the degree m least-squares polynomial is computed using the
command pcoef=np.polyfit(x,y,m). For m = n, we obtain the interpolating
polynomial.

Error analysis

Let us assume that x1 < x2 < · · · < xm+1. The analysis of the approxima-
tion error Em = maxx∈[x1,xn+1] |f(x)− pLSm (x)| is quite complicated. We will
therefore limit ourselves to a few considerations.

Suppose that the “true” function f(x) is a polynomial of degree m� n,
that is, f(x) = qm(x) ∈ Pm. If there are no measurement errors then
yi = qm(xi) for i = 1, . . . , n + 1 and the degree m least-squares polynomial
approximation recovers the function qm: pLSm (x) = qm(x). In fact, the poly-
nomial pLSm = qm(x) is the only degree m polynomial for which the sum of
the squared differences is zero

n+1∑
i=1

(yi − pLSm (xi))
2 =

n+1∑
i=1

(qm(xi)− pLSm (xi))
2 = 0.

In the presence measurement errors εi, it is usually not possible to achieve
zero error. If the errors εi are iid random variables with expected value zero
and variance σ2 > 0, one can prove that Em = maxx∈[x1,xn+1] |qm(x)−pLSm (x)|
is of the order of σ

√
m+1
n+1 . Thus, for m� n (many observations) one recovers

the “ground truth” qm quite accurately with the least-squares polynomial.
The variance of the variables εi is usually not known, but it can be estimated
by

σ̂2 =
1

n−m

n+1∑
i=1

(yi − pLSm (xi))
2.

In the the general case, when the function f is not necessarily a polyno-
mial (but sufficiently smooth), we expect the least-squares approximation
to be more and more accurate as the polynomial degree increases. However:

• There will always be an error of the order of σ
√

m+1
n+1 , due to measure-

ment error.

• If m becomes too large, the least-squares polynomial suffers from the
same instabilities we saw gets for interpolating polynomials.
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stress strain stress strain
1.7850 0.0292 19.6350 0.4454
3.5700 0.0609 21.4200 0.5043
5.3550 0.0950 23.2050 0.5122
7.1400 0.1327 24.9900 0.6111
8.9250 0.1449 26.7750 0.7277
10.7100 0.2062 28.5600 0.7392
12.4950 0.2692 30.3450 0.8010
14.2800 0.2823 32.1300 0.8329
16.0650 0.3613 33.9150 0.9302
17.8500 0.4014 35.7000 1.0116

Table 2.2: Data of stress and strain from the tensile test of Example 2.2.
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Figure 2.14: Approximation polynomials of the data from Table 2.2 to the least-
squares of degree m = 1, 5, 15.

Example 2.11. The Table 2.2 shows measurements for the tensile test
from Example 2.2. Using Python, we compute the least-square polynomial
approximation of degree m = 1, 5, 15 for the stress–strain relation. Assuming
that the data is contained in the variables x and y, this is the code for m = 15:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 35.7, 21)
y = [0, 0.0292, 0.0609, 0.0950, 0.1327, 0.1449, 0.2062, 0.2692,

0.2823, 0.3613, 0.4014, 0.4454, 0.5043, 0.5122, 0.6111,
0.7277, 0.7392, 0.8010, 0.8329, 0.9302, 1.0116]

xfine = np.arange(0, 35.8, 0.1)
pcoef = np.polyfit(x, y, 15)
p = np.polyval(pcoef, xfine)
plt.plot(xfine, p, "b-")
plt.plot(x, y, "r.", linewidth=2, markersize=15)
plt.legend(["pol. least squares m=15", "data"])

Figure 2.14 shows the obtained approximations. The degree 5 polynomial
seems to capture the behavior of the data better compared to the linear poly-
nomial. The degree m = 15 polynomial shows very clear oscillations due to
the fact that m is relatively large and close to n.



Chapter 3

Numerical differentiation
and integration

In this chapter, we aim at developing numerical methods to compute (ap-
proximately) the derivative of a function f(x) at a point x = x̄,

f ′(x̄),

as well as the integral of f over an interval [a, b],∫ b

a
f(x) dx.

These methods are very useful when f has a complicated expression and the
exact (symbolic) computation of the derivative or the integral is complicated
or even impossible.

3.1 Finite differences
Given a differentiable function f : [a, b] → R, we want to approximate
numerically its derivative f ′ at a point x̄ in the interval [a, b], using only the
evaluations of f at a few points in the interval. An immediate idea is to go
back to the definition of derivatives from Analysis I and approximate the
exact derivative f ′(x̄) by the growth rate (slope):

f ′(x̄) ≈ f(x̄+ h)− f(x̄)

h
(3.1)

for some h > 0 such that x̄ + h ∈ [a, b]. We expect the approximation to
become increasingly accurate as h becomes smaller.

To analyze (3.1), we define the forward finite differences formula

δ+h f(x̄) =
f(x̄+ h)− f(x̄)

h
. (3.2)

55
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Using the Taylor series of f around x̄ gives

f(x̄+ h) = f(x̄) + f ′(x̄)h+
f ′′(ξ)

2
h2, for some ξ ∈ (x̄, x̄+ h).

This implies

δ+h f(x̄) =
1

h

[
f(x̄) + f ′(x̄)h+

f ′′(ξ)

2
h2 − f(x̄)

]
= f ′(x̄) +

f ′′(ξ)

2
h,

and therefore
|f ′(x̄)− δ+h f(x̄)| ≤

1

2
max
x∈[a,b]

|f ′′(x)|h,

which gives the following result:

Lemma 3.1. Consider a function f : [a, b] → R of class C2. Then the
forward finite differences formula δ+h satisfies the error bound

|f ′(x̄)− δ+h f(x̄)| ≤ Ch, ∀x̄ ∈ [a, b− h],

with C = 1
2 maxx∈[a,b] |f ′′(x)|.

As the error is is proportional to h = h1, we say that the forward finite
differences formula is of first order. Dividing h by 2, one expects the ap-
proximation error to be roughly divided by 2 as well.

The formula δ+h uses only two function evaluations, f(x̄) and f(x̄+h), to
obtain an approximation of f ′(x̄). It is possible to construct finite differences
formulas that use more function evaluations of f . In general, one considers
the point x̄ and n points on the right: x̄ + h, x̄ + 2h, . . ., x̄ + nh, and m
points on the left: x̄− h, x̄− 2h, . . ., x̄−mh:

xx−mh x−h x+h x+nh

We then make the following general definitions.

Definition 3.1. A finite differences formula that uses n+m+1 points x̄+ih,
i = −m, . . . , n, to approximate the derivative of f at x̄ is an expression of
the form

Dhf(x̄) =
1

h

n∑
i=−m

αif(x̄+ ih),

for some coefficients αi ∈ R not depending on h.

Definition 3.2. A finite differences formula Dh is consistent if

lim
h→0

Dhf(x̄) = f ′(x̄)

for sufficiently smooth f .
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Definition 3.3. A finite differences formula Dh is of order p if there is a
constant C, which depends on f but not on h, such that

|f ′(x̄)−Dhf(x̄)| ≤ Chp,

for sufficiently smooth function f .

The forward finite differences formula (3.2) uses only two function eval-
uations, at x̄ and x̄ + h, and is of first order. The following two popular
formulas also use only function evaluations:

backward finite differences: δ−h f(x̄) =
f(x̄)− f(x̄− h)

h
, (3.3)

central finite differences: δchf(x̄) =
f(x̄+ h)− f(x̄− h)

2h
. (3.4)

It is easily shown that the backward finite differences formula is also of
first order. For central finite differences, however, we have that

δchf(x̄) =
f(x̄+ h)− f(x̄− h)

2h
=

1

2h

[
f(x̄) + f ′(x̄)h+

f ′′(x̄)

2
h2 +

f ′′′(ξ1)

6
h3

−f(x̄) + f ′(x̄)h− f ′′(x̄)

2
h2 +

f ′′′(ξ2)

6
h3
]
= f ′(x̄) +

h2

12

[
f ′′′(ξ1) + f ′′′(ξ2)

]
(3.5)

for some ξ1 ∈ (x̄, x̄ + h) and ξ2 ∈ (x̄ − h, x̄). Therefore, this formula is of
second order.

Lemma 3.2. Consider a function f : [a, b] → R of class C3. Then the
central finite differences formula δch satisfies the error bound

|f ′(x̄)− δchf(x̄)| ≤ Ch2, ∀x̄ ∈ [a+ h, b− h],

with C = 1
6 maxx∈[a,b] |f ′′′(x)|.

Construction using interpolating polynomials

We start with an alternative way of deriving the forward finite differences
formula: To approximate the derivative f ′(x̄) we first compute the line in-
terpolating the points (x̄, f(x̄)) and (x̄+ h, f(x̄+ h)),

p1(x) = f(x̄)
x̄+ h− x

h
+ f(x̄+ h)

x− x̄

h
.

Then we use the slope of this line as an approximation to the derivative,

p′1(x̄) = −
1

h
f(x̄) +

1

h
f(x̄+ h) = δ+h f(x̄),
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which is seen to coincide with forward finite differences.
The procedure above can be generalized: Given the m + n + 1 points

x̄+ ih, i = −m. . . , n, we first compute the degree m+ n polynomial pn+m

interpolating the function values (x̄+ih, f(x̄+ih)), i = −m, . . . , n. Then the
finite differences formula is obtained by computing the derivative of pn+m:

Dhf(x̄) = p′n+m(x̄).

Example 3.1. We apply the procedure using the three points x̄− h, x̄ and
x̄ + h. The quadratic polynomial p2 interpolating (x̄ + ih, f(x̄ + ih)), i =
−1, 0, 1 is given by

p2(x) = f(x̄− h)
(x− x̄)(x− x̄− h)

2h2
+ f(x̄)

(x− x̄+ h)(x− x̄− h)

−h2

+ f(x̄+ h)
(x− x̄+ h)(x− x̄)

2h2
. (3.6)

Its derivative is

p′2(x) = f(x̄− h)
2x− 2x̄− h

2h2
+ f(x̄)

2x− 2x̄

−h2
+ f(x̄+ h)

2x− 2x̄+ h

2h2

and the corresponding finite differences formula is

Dhf(x̄) = p′2(x̄) = −
f(x̄− h)

2h
+

f(x̄+ h)

2h
,

which coincides with the central finite differences.

Construction using the indeterminate coefficients method

Another way to build finite differences is to start from a general expression

Dhf(x̄) =
1

h

n∑
i=−m

αif(x̄+ ih)

and then look for coefficients αi that lead to high order.

Example 3.2. We consider again the three points x̄− h, x̄, x̄+ h and the
general formula

Dhf(x̄) =
1

h
[α−1f(x̄− h) + α0f(x̄) + α1f(x̄+ h)] .

By the Taylor series, we have

Dhf(x̄) =
α−1

h

[
f(x̄)− f ′(x̄)h+

f ′′(x̄)

2
h2 +O(h3)

]
+

α0

h
f(x̄)+

α1

h

[
f(x̄) + f ′(x̄)h+

f ′′(x̄)

2
h2 +O(h3)

]
.
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Therefore,

Dhf(x̄) =
1

h
(α−1 + α0 + α1)︸ ︷︷ ︸

=0

f(x̄)+(α1 − α−1)︸ ︷︷ ︸
=1

f ′(x̄)+
h

2
(α−1 + α1)︸ ︷︷ ︸

=0

f ′′(x̄)+O(h2).

For the formula to yield a second order approximation of the first derivative,
we have to impose the relations

α−1 + α0 + α1 = 0

α1 − α−1 = 1

α1 + α−1 = 0

.

The unique solution is α−1 = −1
2 , α0 = 0, α1 =

1
2 , which again corresponds

to central finite differences.

3.1.1 Higher-order derivatives

The two methods presented in the previous sections also allow us to con-
struct finite differences formulas for approximating higher-order derivatives.
Following up on Example 3.1, we can use the interpolating polynomial p2 to
obtain a finite differences formula that approximates the second derivative
of f in x̄:

D2
hf(x̄) = p′′2(x̄) =

f(x̄− h)− 2f(x̄) + f(x̄+ h)

h2
.

Using Taylor series, one verifies that this formula is of second order.

3.1.2 Effects of round-off errors
When working on a computer (in finite-precision arithmetic), roundoff error
will always put a limit on the accuracy we can possibly achieve. This effect
is particularly visible when using finite difference formulas. To observe this,
let us compute the derivative of the function f(x) = log(x) at x̄ = 1 with
Python using forward finite differences. We use increasingly small values of
h: h = 10−1, 10−2, . . . , 10−14.

import numpy as np

f = lambda x: np.log(x)
for i in range(1, 16):

h = 10 ** (-i)
dhf = (f(1 + h) - f(1)) / h
print("h=%1.0e" % h, " dhf=", dhf)

# OUTPUT
# h=1e-01 dhf= 0.9531017980432493
# h=1e-02 dhf= 0.9950330853168092
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# h=1e-03 dhf= 0.9995003330834232
# h=1e-04 dhf= 0.9999500033329731
# h=1e-05 dhf= 0.9999950000398841
# h=1e-06 dhf= 0.9999994999180668
# h=1e-07 dhf= 0.9999999505838705
# h=1e-08 dhf= 0.9999999889225291
# h=1e-09 dhf= 1.000000082240371
# h=1e-10 dhf= 1.000000082690371
# h=1e-11 dhf= 1.000000082735371
# h=1e-12 dhf= 1.000088900581841
# h=1e-13 dhf= 0.9992007221625909
# h=1e-14 dhf= 0.9992007221626359
# h=1e-15 dhf= 1.1102230246251559

The exact derivative is f ′(1) = 1. One notices that the approximation error
is as expected up to h = 10−8. As we decrease h further, the approximation
error first stagnates and then deteriorates. This is due to round-off error,
which corrupts the computation of the difference f(1 + h) − f(1). In the
following, we will try to better understand this effect.

When evaluating the function f(x), the computer usually makes some
tiny round-off error. So, instead of f(x), we actually compute a slightly
corrupted function value

f̂(x) = f(x)(1 + η2)

for some η2 of tiny magnitude. When working in double precision arithmetic
(the default in Python), and f is well implemented, we expect |η2| to be of
the order 10−16. For simplicity, we assume |η2| ≤ 10−16. Analogously,
instead of f(x̄+ h) the computer actually returns f(x̄+ h)(1+ η1) for some
tiny η1. These corruptions affect the finite difference formula as follows:

δ̂+h f(x̄) =
f̂(x̄+ h)− f̂(x̄)

h
=

f(x̄+ h)(1 + η1)− f(x̄)(1 + η2)

h

=
f(x̄+ h)− f(x̄)

h
+

η1
h
f(x̄+ h)− η2

h
f(x̄)

= f ′(x̄) +
f ′′(ξ)

2
h+

η1
h
f(x̄+ h)− η2

h
f(x̄)

where |η1|, |η2| ≤ 10−16 and ξ ∈ (x̄, x̄+ h). Finally, we have

|f ′(x̄)− δ̂+h f(x̄)| ≤ max
x∈[a,b]

|f ′′(x)|h
2
+ 2 max

x∈[a,b]
|f(x)|10

−16

h
. (3.7)

We notice that the first error term decreases proportionally with h (finite
differences truncation error), while the second error term grows proportion-
ally to 1/h (round-off errors). In particular, if h is too small, the second
error term will dominate and accuracy will deteriorate.
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What is the optimal value of h? Equation (3.7) gives us the error esti-
mate

ε(h) ≈ C1h+
C210

−16

h
,

with C1 = 1
2 maxx∈[a,b] |f ′′(x)| and C2 = 2maxx∈[a,b] |f(x)|. The minimum

of ε(h) is computed by

dε

dh
= 0 =⇒ C1 −

C210
−16

h2
= 0,

which gives us (theoretically) the optimum value hopt =
√
C210−16/C1. As

C1, C2 are usually not available, a rule of thumb is to choose hopt of the
order

√
10−16 = 10−8.

More generally, when considering a finite differences formula of order p,
the error estimate takes the form

ε(h) ≈ C1h
p +

C210
−16

h
,

which suggests an optimum value hopt of order p+1
√
10−16.

3.2 Numerical integration

Given f : [a, b]→ R, we now aim at approximating numerically the integral

I =

∫ b

a
f(x) dx,

using only evaluations of the function f at some points in the interval [a, b].
All popular methods take the form of a quadrature formula, as introduced
by the following definition.

Definition 3.4. Given points a ≤ x1 < x2 < . . . < xn ≤ b (quadrature
nodes) and scalars α1, . . . , αn ∈ R (weights), the quadrature formula
Q(f) for approximating the integral I takes the form

Q(f) =
n∑

i=1

αif(xi).

Obviously, Q(f) depends on the choice of quadrature nodes and weights,
and we will now discuss several possible choices.
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x1 xn−1 x  =bn

c 1 c 2 c n

a=x0

f(x)

Figure 3.1: Graphical illustration of the composite midpoint formula.

Composite midpoint formula

One of the simplest ideas to approximate I =
∫ b
a f(x)dx is illustrated in

Figure 3.1. The interval [a, b] is divided into n sub-intervals Ii = [xi−1, xi]
of length h = (b − a)/n, that is, xi = a + ih for i = 0, . . . , n. In every
sub-interval Ii, the integral

∫ xi

xi−1
f(x) dx is approximated by the area of the

rectangle with base h and height f(xi−1+xi

2 ). Letting ci =
xi−1+xi

2 denote
the midpoint of Ii, this procedure corresponds to the quadrature formula

Qmp
h (f) =

n∑
i=1

hf(ci), (3.8)

with quadrature nodes given by the n midpoints ci, and the weights αi equal
to h. This formula is called composite midpoint formula. The term composite
indicates that the quadrature formula is composed of applying the midpoint
formula to every sub-interval Ii. If only one interval is considered (i = 1),
the formula is called the (simple) midpoint formula.

The following Python function implements the composite midpoint for-
mula:

import numpy as np

def midpoint(a, b, n, f):
# Composite midpoint formula
# - a,b: boundaries of the integration interval
# - n: number of sub-intervals
# - f: function to integrate
h = (b - a) / n
xi = np.linspace(a + h / 2, b - h / 2, n) # quadrature nodes
alphai = np.full(n, h) # weights
Qh_mp = np.dot(alphai, f(xi)) # quadrature formula
return Qh_mp
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Composite trapezoidal formula

We continue dividing the interval [a, b] in n sub-intervals Ii = [xi−1, xi] of
length h = (b − a)/n. However, instead of approximating

∫ xi

xi−1
f(x) dx by

a rectangle, we now compute the area of the trapezoid defined by the four
points (xi−1, 0), (xi, 0), (xi, f(xi)), (xi−1, f(xi−1)). This area is given by
h
2 (f(xi−1) + f(xi)), leading to the composite trapezoid formula

Qtrap
h (f) =

n∑
i=1

h

2
(f(xi−1) + f(xi))

=
h

2
f(x0) + hf(x1) + . . .+ hf(xn−1) +

h

2
f(xn). (3.9)

Figure 3.2 gives a graphical interpretation of the method. The composite

x1 xn−1 x  =bna=x

f(x)

0

Figure 3.2: Graphical illustration of the composite trapezoidal formula.

trapezoidal formula uses the n + 1 nodes xi, i = 0, . . . , n, and the weights
αi = h, i = 1, . . . , n − 1, α0 = αn = h/2. This formula might appear more
precise than the midpoint formula, but we will see that this is not necessarily
true. Here is a possible implementation in Python:

import numpy as np

def trap(a, b, n, f):
# Composite trapezoidal formula
# - a,b: boundaries of the integration interval
# - n: number of sub-intervals
# - f: function to integrate
h = (b - a) / n
xi = np.linspace(a, b, n + 1) # quadrature nodes
alphai = np.hstack((h / 2, np.full(n - 1, h), h / 2)) # weights
Qh_trap = np.dot(alphai, f(xi)) # quadrature formula
return Qh_trap

Composite Simpson formula

A third idea to build a quadrature formula is to use on every sub-interval
the points xi−1, xi as well as the midpoint ci = xi−1+xi

2 . On every sub-
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interval, we compute the quadratic polynomial p(i)2 interpolating the data
(xi−1, f(xi−1)), (xi, f(xi)), (ci, f(ci)) and then approximate the integral∫ xi

xi−1
f(x) dx by

∫ xi

xi−1
p
(i)
2 (x) dx. We leave the calculations as an exercise.

The resulting formula is known as the composite Simpson formula:

Qsimp
h (f) =

n∑
i=1

h

6
(f(xi−1) + 4f(ci) + f(xi))

=
h

6
f(x0) +

h

3

n−1∑
i=1

f(xi) +
2h

3

n∑
i=1

f(ci) +
h

6
f(xn), (3.10)

which uses the nodes xi, i = 0, . . . , n, and ci, i = 1, . . . , n (2n + 1 nodes in
total). Here is a possible Python implementation:

import numpy as np

def simpson(a, b, n, f):
# Composite Simpson formula
# - a,b: boundaries of the integration interval
# - n: number of sub-intervals
# - f: function to integrate
h = (b - a) / n
xi = np.linspace(a, b, n + 1)
# sub-interval boundaries
alphai = (h / 3) * np.hstack((0.5, np.ones(n - 1), 0.5))
# weights at x_i
ci = np.linspace(a + h / 2, b - h / 2, n)
# sub-interval mid-points
betai = (2 * h / 3) * np.ones(n)
# weights at c_i
Qh_simp = np.dot(alphai, f(xi)) + np.dot(betai, f(ci))
return Qh_simp

3.2.1 Error analysis

The degree of exactness of a quadrature formula is a qualitative measure for
its accuracy.

Definition 3.5. A quadrature formula Q(f) =
∑n

i=1 αif(xi) has a degree
of exactness r if it integrates every polynomial of degree at most r exactly,
that is,

Q(p) =

∫ b

a
p(x) dx, ∀p ∈ Pr, (3.11)

but there are polynomials of degree r + 1 for which Q is not exact.

It suffices to check (3.11) for every monomial xs, s ≤ r:

Q(xs) =

∫ b

a
xs dx, s = 0, 1, . . . , r. (3.12)
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Indeed, by the linearity of integration and quadrature formulas, this implies
for every polynomial p(x) =

∑r
k=0 akx

k that

Q(p) =
n∑

i=1

αip(xi) =
n∑

i=1

αi

r∑
k=0

akx
k
i

=

r∑
k=0

ak

n∑
i=1

αix
k
i︸ ︷︷ ︸

=
∫ b
a xkdx

=

∫ b

a

r∑
k=0

akx
kdx =

∫ b

a
p(x)dx,

and, hence, (3.11) is satisfied.
Let us emphasize that Definition 3.5 is intended for simple quadrature

formulas, that is, the composite quadrature formula is constrained to a single
sub-interval.

Example 3.3. Let us determine the degree of exactness for the Simpson
formula. We choose a sub-interval Ii = [xi−1, xi] and check whether

h

6
[p(xi−1) + 4p(ci) + p(xi)] =

∫ xi

xi−1

p(x)dx, with p(x) = xs

for s = 0, 1, . . .. To simplify the calculations, we only consider the interval
Ii = [−1, 1], which has length h = 2 (but the result carries over to any other
interval). We have

p(x) = 1,
h

6
(1 + 4 + 1) = 2 =

∫ 1

−1
1 dx

p(x) = x,
h

6
(−1 + 4 · 0 + 1) = 0 =

∫ 1

−1
x dx

p(x) = x2,
h

6
((−1)2 + 4 · (0)2 + 12) =

2

3
=

∫ 1

−1
x2 dx

p(x) = x3,
h

6
((−1)3 + 4 · (0)3 + 13) = 0 =

∫ 1

−1
x3 dx.

On the other hand.

p(x) = x4,
h

6
((−1)4 + 4 · (0)4 + 14) =

2

3
6=
∫ 1

−1
x4 dx =

2

5
.

Therefore, the Simpson formula has degree of exactness 3.

The midpoint and trapezoidal formulas turn out to have degree of ex-
actness 1, which gives the following table:

midpoint trapezoidal Simpson
exactness degree 1 1 3
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We now quantify the accuracy of a composite quadrature formula.

Definition 3.6. Consider a composite quadrature formula Qh(f) defined
on n sub-intervals of length h = (b − a)/n for approximating the integral
I =

∫ b
a f(x) dx. One says that Qh(f) is of order p if there is a constant C,

which may depend on f but not on h, such that∣∣∣∣∫ b

a
f(x) dx−Qh(f)

∣∣∣∣ ≤ Chp,

for sufficiently smooth functions f .

Theorem 3.3. Considering the setting of Definition 3.6, suppose that the
composite quadrature rule Qh(f) has degree of exactness r on a single sub-
interval. Then Qh(f) is of order r+1. More precisely, for every function f
class Cr+1, it holds that∣∣∣∣∫ b

a
f(x) dx−Qh(f)

∣∣∣∣ ≤ C max
x∈[a,b]

|f (r+1)(x)|hr+1, (3.13)

with C = (b−a)
2r(r+1)! .

Proof. We Qh(f) =
∑n

i=1Q
(i)(f), where Q(i) is the quadrature formula

applied to the ith sub-interval. Let us consider a sub-interval Ii = [xi−1, xi]
and the Taylor series of the function f around the midpoint ci = xi−1+xi

2 up
to order r + 1:

f(x) = f(ci) + f ′(ci)(x− ci) + . . .+
f (r)(ci)

r!
(x− ci)

r︸ ︷︷ ︸
T r
f (x)

+
f (r+1)(ξi)

(r + 1)!
(x− ci)

r+1︸ ︷︷ ︸
Rr

f (x)

for some ξi ∈ (ci, x). Here, T r
f denotes the degree r Taylor polynomial and

Rr
f denotes the residual.

Because of the assumed exactness property, we have that Q(i)(T r
f ) =∫ xi

xi−1
T r
f (x) dx. Therefore,∣∣∣∣∣
∫ xi

xi−1

f(x) dx−Q(i)(f)

∣∣∣∣∣ =
∣∣∣∣∣
∫ xi

xi−1

Rr
f (x) dx−Q(i)(Rr

f )

∣∣∣∣∣
≤

∣∣∣∣∣
∫ xi

xi−1

Rr
f (x) dx

∣∣∣∣∣+ ∣∣∣Q(i)(Rr
f )
∣∣∣

≤ (h/2)r+1

(r + 1)!
max

x∈[xi−1,xi]
|f (r+1)(x)|

(∣∣∣∣∣
∫ xi

xi−1

1 dx

∣∣∣∣∣+ |Q(i)(1)|

)

=
hr+1

2r+1(r + 1)!
max

x∈[xi−1,xi]
|f (r+1)(x)|2h.
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Finally,∣∣∣∣∫ b

a
f(x) dx−Qh(f)

∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

∫ xi

xi−1

f(x) dx−Q(i)(f)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣
∫ xi

xi−1

f(x) dx−Q(i)(f)

∣∣∣∣∣ ≤ hr+1

2r(r + 1)!
max
x∈[a,b]

|f (r+1)(x)|
n∑

i=1

h

=
(b− a)

2r(r + 1)!
max
x∈[a,b]

|f (r+1)(x)|hr+1

which proves the result.

Using Theorem 3.3, we can establish the following table:

comp. midpoint comp. trapezoidal comp. Simpson
order 2 2 4

Example 3.4. Let us compute the integral

I =

∫ π
2

0

sin(x) cos3(x)

4− cos2(2x)
dx. (3.14)

After some very long calculations, one finds that I = log(3)
16 . The follow-

ing Python code uses the composite trapezoidal formula, with an increasing
number of sub-intervals n = 2, 4, 8, . . . , 1024, to approximate I.

import numpy as np
from ch3_trap import trap

f = lambda x: (np.sin(x) * np.cos(x) ** 3) / (4 - np.cos(2 * x) ** 2)
a = 0
b = np.pi / 2
Iex = np.log(3) / 16
print("Iex=", Iex)
Qhtrap = np.array([])
errQhtrap = np.array([])
N = np.array([2**i for i in range(1, 11)])
h = (b - a) / N
for n in N:

Q = trap(a, b, n, f)
print("n=%4d" % n, " Qh=", Q)
Qhtrap = np.append(Qhtrap, Q)

# OUTPUT
# Iex= 0.06866326804175686
# n= 2 Qh= 0.04908738521234053
# n= 4 Qh= 0.06421229026829854
# n= 8 Qh= 0.06758370289650516
# n= 16 Qh= 0.06839501624127321
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# n= 32 Qh= 0.06859630316226781
# n= 64 Qh= 0.06864653288981529
# n= 128 Qh= 0.0686590846320792
# n= 256 Qh= 0.06866222221296711
# n= 512 Qh= 0.06866300658603605
# n=1024 Qh= 0.06866320267791895

As expected, the approximation becomes increasingly accurate as the number
of sub-intervals increases. When using n = 1024, we obtain 6 exact signifi-
cant decimal digits. As the exact value of the integral is known, we can also
compute the error committed by the composite trapezoid formula:

errQhtrap = abs(Iex - Qhtrap)
for i in range(0, len(errQhtrap)):

print("n=%4d" % N[i], " err=%2.16f" % errQhtrap[i])

# OUTPUT
# n= 2 err=0.0195758828294163
# n= 4 err=0.0044509777734583
# n= 8 err=0.0010795651452517
# n= 16 err=0.0002682518004836
# n= 32 err=0.0000669648794891
# n= 64 err=0.0000167351519416
# n= 128 err=0.0000041834096777
# n= 256 err=0.0000010458287898
# n= 512 err=0.0000002614557208
# n=1024 err=0.0000000653638379

When doubling n (which means that h is halved), the error is approximately
divided by 4, confirming that the composite trapezoid formula is of second
order. This becomes even clearer in a loglog plot of the error:

import matplotlib.pyplot as plt

plt.loglog(h, errQhtrap, "b-", linewidth=2)
plt.loglog(h, h**2, "k--", linewidth=2)
plt.loglog(h, h**4, "k-.", linewidth=2)
plt.grid(True)
plt.legend(["err. trap", "order 2", "order 4"])

Repeating the same calculations for the composite midpoint and Simpson
formulas results in Figure 3.3. The graph clearly reflects that the composite
midpoint and trapezoidal formulas are of second order, whereas Simpson is
of fourth order. Moreover, we notice that the error from the trapezoidal
formula is higher (approximately by a factor 2) than the error from the
midpoint formula.
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Figure 3.3: Error of the composite midpoint (red), trapezoidal (blue) and Simpson
(green) formulas vs. h when approximating the integral (3.14).

3.2.2 Richardson extrapolation

The Richardson extrapolation method is a general technique for increasing
the accuracy of approximation formulas. We will apply it to composite
quadrature formulas, but it can also be applied to many other situations
(such as numerical differentiation or interpolation).

To approximate I =
∫ b
a f(x) dx, let us consider a composite quadrature

formula Qh(f) based on a partition of the interval [a, b] in n sub-intervals
Ii = [xi−1, xi], i = 1, . . . , n, of length h = (b−a)/n. Let us suppose that the
formula is of order p, which allows us to write

Qh(f) = I + Chp +O(hq), q > p, (3.15)

where C is a suitable constant which depends, in general, on a high-order
derivative of f .

Example 3.5. Let us consider the composite midpoint formula: (3.8)

Qmp
h (f) =

n∑
i=1

hf(ci), ci =
xi + xi−1

2
.

We use a fourth-order Taylor expansion of f around ci to conclude that∫ xi

xi−1

f(x) dx =

∫ xi

xi−1

f(ci) dx+

∫ xi

xi−1

f ′(ci)(x− ci) dx+

∫ xi

xi−1

f ′′(ci)

2
(x− ci)

2 dx

+

∫ xi

xi−1

f ′′′(ci)

6
(x− ci)

3 dx+

∫ xi

xi−1

O((x− ci)
4) dx

= hf(ci) +
f ′′(ci)

2

h3

12
+O(h5),



70 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

where we used the fact that
∫ xi

xi−1
(x − ci)

r dx vanishes for every odd r. For
the composite midpoint formula, this implies

Qmp
h (f)− I =

n∑
i=1

(
hf(ci)−

∫ xi

xi−1

f(x) dx

)

=

n∑
i=1

(
−f ′′(ci)

2

h3

12
+O(h5)

)
= − 1

24

(
n∑

i=1

hf ′′(ci)

)
h2 +O(h4),

where we used
∑n

i=1O(h5) = nO(h5) = (b−a)
h O(h5) = O(h4). Observing

that
n∑

i=1

hf ′′(ci) = Qmp
h (f ′′) =

∫ b

a
f ′′(x) dx+O(h2),

we arrive at

Qmp
h (f) = I + Ch2 +O(h4), with C = − 1

24

∫ b

a
f ′′(x) dx,

which corresponds to expression (3.15) with p = 2 and q = 4.

For a composite quadrature formula Qh(f), let us now consider the same
quadrature formula but with half the number of sub-intervals (each of length
2h). By (3.15), we have

Q2h(f) = I + C(2h)p +O(hq).

Multiplying this equation with 2−p and subtracting (3.15), it follows that

2−pQ2h(f)−Qh(f) = (2−p − 1)I +O(hq),

and, therefore,
2pQh(f)−Q2h(f)

2p − 1
= I +O(hq). (3.16)

We can then define a new quadrature formula on n sub-intervals,

Q̃h(f) =
2pQh(f)−Q2h(f)

2p − 1
,

and (3.16) shows that this formula is of order q > p. It is quite remarkable
that two formulas Qh(f) and Q2h(f), both of order p, can be combined into
a formula of order q > p!

The described technique is known as Richardson extrapolation. It gen-
erally works pretty well, as long as one knows the order p of the reference
method. We also notice that for the formula Q̃h(f) to be of order q > p,
we need to require more smoothness from the function f . For example, the
composite midpoint formula Qmp

h (f) is of order p = 2 if the function is of
class C2 whereas its Richardson’s extrapolation will only be of order q = 4
if the function is of class C4 (see Example 3.5).
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3.2.3 A posteriori error estimation

It is natural to ask how many sub-intervals are needed for a composite
quadrature formula to approximate an integral up to a given tolerance. It
is difficult to answer this question exactly as one usually does not know
the exact value of the integral to be computed and, hence, we cannot even
compute the error exactly, let alone estimating the number of required sub-
intervals. However, in an heuristic approach, we can proceed as follows:
Compute the quadrature formula Qh(f) on n sub-intervals, compute the
quadrature formula Q2h(f) on n/2 sub-intervals, and then use the Richard-
son extrapolation Q̃h(f), which is usually more accurate, as a proxy for the
exact value I. This idea leads to the error indicator

ηh = |Q̃h(f)−Qh(f)|.

In fact, we have

|I −Qh(f)| ≤ |I − Q̃h(f)|+ |Q̃h(f)−Qh(f)| = ηh︸︷︷︸
O(hp)

+O(hq) ≈ ηh.

If the error indicator does not satisfy the given tolerance, we then double
the number of sub-intervals and continue until the estimated error is smaller
than the fixed tolerance. This procedure is summarized in the following
algorithm.

Algorithm 3.1: Adaptive quadrature based on Richardson extrap-
olation

Data: f(x), [a, b], n0, tol
Result: I, err, n
h = (b− a)/n0; // n0: initial number of sub-intervals
I0 = Qh(f); // initial estimation of I
k = 0; err = tol+ 1;
while err > tol do

k = k + 1; h = h/2;
Ik = Qh(f); // new approximation of I

Ĩk =
2pIk−Ik−1

2p−1 ; // Richardson extrapolation
err = |Ĩk − Ik|;

end
I = Ĩk, n = (b− a)/h.
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Chapter 4

Linear systems – direct
methods

In this chapter, we are interested in the numerical solution of a linear system
of n equations in n unknowns x1, . . . , xn, which takes the form:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

an1x1 + an2x2 + . . .+ annxn = bn.

(4.1)

If we define the vectors x,b ∈ Rn and the matrix A ∈ Rn×n

x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 , A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

 ,

then the system (4.1) can be written on the ore compact form

Ax = b.

4.1 Triangular systems
Some linear systems which are particularly simple to solve. Let us consider,
for example, a lower triangular linear system

a11x1 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 + a33x3 = b3

. . .

an1x1 + an2x2 + . . . + annxn = bn

(4.2)

73
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with aii 6= 0 for i = 1, . . . , n. To solve this system we can start from the
first equation

x1 =
b1
a11

,

then move to the second equation

x2 =
1

a22
(b2 − a21x1) ,

and so on, until arriving at the last equation to determine xn. This idea
results in the following algorithm, called forward substitution:

Algorithm 4.1: Forward substitution algorithm
for i = 1, . . . , n do

xi =
1
aii

(
bi −

∑i−1
j=1 aijxj

)
;

end

Likewise, if we have an upper triangular system

a11x1+ a12x2+ . . .+ a1,n−1xn−1+ a1nxn = b1

a22x2+ . . .+ a2,n−1xn−1+ a2nxn = b2

. . .

an−1,n−1xn−1+ an−1,nxn = bn−1

annxn = bn

(4.3)

with aii 6= 0 for i = 1, . . . , n, we can start by solving the last equation
xn = bn/ann and work upwards until we reach the first equation. This
results in an algorithm called backward substitution:

Algorithm 4.2: Backward substitution algorithm
for i = n, n− 1, . . . , 1 do

xi =
1
aii

(
bi −

∑n
j=i+1 aijxj

)
;

end

4.2 Gaussian elimination and LU decomposition

Given any linear system of equations, Gaussian elimination allows us to
transform it into an upper triangular system using elementary operations
that effect linear combinations of the rows of the matrix. As we saw in
the previous section, once we obtain an upper triangular system, it can be
easily solved using backward substitution. We will now explain Gaussian
elimination algorithm with an example.
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Example 4.1. Let us consider the linear system Ax = b with

A =

 2 1 0
−4 3 −1
4 −3 4

 , b =

 4
2
−2

 .

We let r(1)1 , r(1)2 , r(1)3 denote the initial three equations of the system:

r
(1)
1 : 2x1 +x2 =4

r
(1)
2 : −4x1 +3x2 −x3 =2

r
(1)
3 : 4x1 −3x2 +4x3 =− 2

Gaussian elimination transforms these equations, in a systematic way, to
an upper triangular system.
1st step:

r
(2)
1 ← r

(1)
1 =⇒ 2x1 +x2 =4

r
(2)
2 ← r

(1)
2 −

(−4

2

)
︸ ︷︷ ︸

l21

r
(1)
1 =⇒ 5x2 −x3 =10

r
(2)
3 ← r

(1)
3 −

(
4

2

)
︸ ︷︷ ︸
l31

r
(1)
1 =⇒ −5x2 +4x3 =− 10.

2nd step:

r
(3)
1 ← r

(2)
1 =⇒ 2x1 +x2 =4

r
(3)
2 ← r

(2)
2 =⇒ 5x2 −x3 =10

r
(3)
3 ← r

(2)
3 −

(−5

5

)
︸ ︷︷ ︸

l32

r
(2)
2 =⇒ 3x3 =0.

We have arrived at an upper triangular system. Notice that the matrix of
the system has been transformed in the following way:

A = A(1) =

 2 1 0
−4 3 −1
4 −3 4

 =⇒ A(2) =

2 1 0
0 5 −1
0 −5 4

 =⇒ A(3) =

2 1 0
0 5 −1
0 0 3

 = U.

Therefore, in the first step, the elements below the diagonal in the first
column have been annihilated, while in the second step, the elements below
the diagonal in the second column has been annihilated.
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We now store the multipliers lij used in every step of the algorithm in
the lower triangular part of a matrix L with diagonal elements equal to 1:

L(1) =

 1
−4

2 1
4
2 1

 =⇒ L(2) =

 1
−2 1
2 −5

5 1

 =⇒ L(3) =

 1
−2 1
2 −1 1

 = L

and we notice that LU = A.

From the previous example one can deduce the general principle of Gaus-
sian elimination, which uses a series of linear row combinations to build an
upper triangular matrix that we call U . Moreover, by saving every multi-
plier used by the linear combinations in a lower triangular matrix L with
main diagonal elements equal to 1, we obtain that

A = LU.

Thus, the matrix A is factored (decomposed) as the product of two triangular
matrices. This factorization is called LU decomposition. For general n,
Gaussian elimination is performed by the following algorithm. Note that In
denotes the n× n identity matrix.

Algorithm 4.3: Gaussian elimination (and LU decomposition)
Data: A = {aij} ∈ Rn×n, b = {bi} ∈ Rn

Result: L,U ∈ Rn×n, b(n) ∈ Rn

A(1) = A; L = In;
for k = 1, . . . , n− 1 do // algorithm steps

for i = k + 1, . . . , n do // loop over the rows

lik =
a
(k)
ik

a
(k)
kk

;

for j = k + 1, . . . , n do // loop over the columns
a
(k+1)
ij = a

(k)
ij − lika

(k)
kj ;

end
b
(k+1)
i = b

(k)
i − likb

(k)
k ;

end
end
U = A(n);

Algorithm 4.3 returns matrices L and U such that A = LU . Additionally
a vector b(n) is returned that contains the original vector b modified by the
same operations the rows of A are subjected to. Comparing with forward
substitution one notes that b(n) = L−1b. One still needs to solve the upper
triangular system Ux = b(n), which is done by backward substitution.

The computation of b(n) during Algorithm 4.3 is optional. If we only
compute the LU decomposition of A, we can still solve the linear system

Ax = b ⇔ LUx = b
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afterwards. Introducing the auxiliary vector y, the linear system can be
solved in two steps:{

Solve Ly = b (lower triangular system  forward substitution)
Solve Ux = y (upper triangular system  backward substitution).

Note that the vector y corresponds to the vector b(n) returned by Algo-
rithm 4.3.

4.3 Gaussian elimination with pivoting
Gaussian elimination, as prescribed by Algorithm 4.3, does not always suc-
ceed even when A is invertible. The coefficient a

(k)
kk at the kth step may

become zero, which makes it impossible to continue, as we cannot compute
the multiplier lik. The elements a

(k)
kk are called pivots.

In order to avoid zero pivots and continue the algorithm, one can swap
rows of the matrix, a technique known as pivoting. Let us explain this idea
for an example.

Example 4.2. Let us perform Gaussian elimination for the matrix

A =

1 2 3
2 4 5
7 8 9

 .

After the first step of the algorithm, we obtain the following matrices

A(2) =

1 2 3

0 0 −1
0 −6 −12

 , L(1) =

12 1
7 1

 .

As the pivot a(2)22 is zero, Gaussian elimination cannot continue.
However, this situation is resolved when swapping the first and second

rows in the matrix A(2). Correspondingly, we also need to swap the multi-
pliers contained in in the matrix L(2). This gives

Ã(2) =

1 2 3
0 −6 −12
0 0 −1

 , L̃(1) =

17 1
2 1

 .

The new pivot ã
(2)
22 is not zero and the algorithm can continue. By coinci-

dence, the matrix Ã(2) is already upper triangular and nothing remains to
be done. We have reached the final step of the factorization:

U = A(3) = Ã(2) =

1 2 3
0 −6 −12
0 0 −1

 , L = L(3) =

17 1
2 0 1

 .
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If we now compute the matrix multiplication

LU =

1 0 0
7 1 0
2 0 1


︸ ︷︷ ︸

L

1 2 3
0 −6 −12
0 0 −1


︸ ︷︷ ︸

U

=

1 2 3
7 8 9
2 4 5

 ,

we recover the initial matrix A, but with the second and third rows swapped.
This can be addressed by applying the same row permutations to A that we
performed during the algorithm.

Let us introduce the permutation matrix

P =

1 0 0
0 0 1
0 1 0

 .

This matrix is obtained using the identity matrix and performing a permu-
tation of the second and third rows. Then one easily verifies that

PA = LU.

The previous example indicates that performing a suitable permutation
every time a pivot is zero, then Gaussian elimination terminates successfully
for an invertible matrix and we obtain two triangular matrices L and U .
Their multiplication is equal to PA, where the permutation matrix P reflects
every permutation performed during the algorithm.

In general, if a pivot a
(k)
kk is zero, we can decide to swap row k with any

row i > k that satisfies a
(k)
ik 6= 0. However, from a numerical perspective,

a tiny value of |a(k)ik | will blow up the size of the entries in the transformed
matrix and lead to massive problems with roundoff error. To make the
algorithm numerically robust, one chooses the row r that gives the pivot
of maximal magnitude: |a(k)rk | ≥ |a

(k)
ik | for every i = k, . . . , n. In turn, one

always performs a swap of rows k and r, even when the pivot a(k)kk is not zero.
A rigorous formulation of the resulting algorithm is given in Algorithm 4.4.
The success of the algorithm is guaranteed (in exact arithmetic).

Theorem 4.1. Algorithm 4.4 returns for every invertible matrix A ∈ Rn×n

a lower triangular matrix L (with diagonal entries 1), an upper triangular
matrix U , and a permutation matrix P , such that

PA = LU. (4.4)

Given the decomposition (4.4), we we now want to solve the linear system
Ax = b. We notice that

Ax = b ⇔ PAx = Pb ⇔ LUx = Pb.
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Algorithm 4.4: Gaussian elimination with pivoting
Data: A = {aij} ∈ Rn×n, b = {bi} ∈ Rn

Result: L,U, P ∈ Rn×n, b(n) ∈ Rn

A(1) = A; L = In; P = In;
for k = 1, . . . , n− 1 do

determine r such that |a(k)rk | = maxi=k,...,n |a
(k)
ik |;

swap rows k and r in the matrices A(k) and P , as well as in the
vector b(k) and the first k − 1 columns of L;

for i = k + 1, . . . , n do

lik =
a
(k)
ik

a
(k)
kk

;

for j = k + 1, . . . , n do
a
(k+1)
ij = a

(k)
ij − lika

(k)
kj ;

end
b
(k+1)
i = b

(k)
i − likb

(k)
k ;

end
end
U = A(n);

We can then solve the linear system using the following operations:{
Solve Ly = Pb (lower triangular system forward substitution)
Solve Ux = y (upper triangular system backward substitution).

Again, the vector y corresponds to the vector b(n) returned by Algorithm 4.4.
Gaussian elimination algorithm with pivoting is utilized by the Python

commands numpy.linalg.solve and scipy.linalg.solve, Specifically, one calls
x=scipy.linalg.solve(A,b) to solve the linear system Ax = b. One can also
explicitly calculate the LU decomposition with pivoting using the command
P,L,U = scipy.linalg.lu (A). The following code performs this for the matrix
from Example 4.2.

import numpy as np
import scipy.linalg as sc

A = np.array([[1, 2, 3], [2, 4, 5], [7, 8, 9]])
P, L, U = sc.lu(A)
print("L: ", L)
print("U: ", U)
print("P: ", P)

# OUTPUT
# L: [[1. 0. 0. ]
# [0.28571429 1. 0. ]
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# [0.14285714 0.5 1. ]]
# U: [[7. 8. 9. ]
# [0. 1.71428571 2.42857143]
# [0. 0. 0.5 ]]
# P: [[0. 0. 1.]
# [0. 1. 0.]
# [1. 0. 0.]]

Note that Python used a permutation different from the one we used in
Example 4.2. The product LU gives the original matrix A with the first
and third rows swapped.

print("L*U: ", np.dot(L, U))

# OUTPUT
# L*U: [[7. 8. 9.]
# [2. 4. 5.]
# [1. 2. 3.]]

4.4 Memory usage and fill-in
Many engineering applications lead to linear systems of enormous sizes.
However, often many of the matrix entries are actually zero. This has im-
portant consequences on how such a matrix should be stored in memory as
well as on the computational cost of solving a linear system.

Definition 4.1 (Dense matrix). We say that a matrix A ∈ Rn×n is dense
if the number of non-zero entries is of the order of n2 (which means that a
significant fraction of the entries are non-zero).

Storing a dense matrix requires O(n2) memory. When using double
precision floating point numbers, every entry consumes 64 bits of memory,
which corresponds to 8 bytes (as every byte consists of 8 bits). Laptops have
a (RAM) memory of a few Giga-bytes. To give a rough idea, let us consider
a laptop with 4GB ≈ 4 ·109 bytes of RAM, which allows us to store at most
5·108 double precision floating point numbers. Thus, the absolute maximum
on the size of a fully populated matrix that can be stored in memory is
n =
√
5 · 108 ≈ 20000. Engineering applications, such as structural analysis

of materials or fluid flow simulations, easily lead to linear systems with 105

to 107 unknowns. These linear systems can only be solved by exploiting the
sparsity of the matrices.

Definition 4.2 (Sparse matrix). We say that A ∈ Rn×n is a sparse matrix
if the number of non-zero entries is of the order of n.

In other words, a sparse matrix has – on average – a constant number
of entries per row. It suffices to store the non-zero entries along with their
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positions in the matrix. This reduces memory usage to O(n) and it is easily
possible to store a 106 × 106 matrix on a laptop if the matrix is sparse.

In Python, several formats for storing sparse matrices are available using
scipy, depending on in which order the entries and how their positions are
stored. Popular choices include:

• Compressed Sparse Row format (scipy.sparse.csr_matrix),

• Compressed Sparse Column format (scipy.sparse.csr_matrix),

• COOrdinate format (scipy.sparse.coo_matrix).

For example, the following code stores the matrix

A =


1 0 0 5
−1 0 1 0
0 0 3 0
0 1 0 −1


in the Compressed Sparse Row format.

import scipy.sparse as sp
import numpy as np

A = np.array([[1, 0, 0, 5],
[-1, 0, 1, 0],
[0, 0, 3, 0],
[0, 1, 0, -1]])

A = sp.csr_matrix(A)
print(A)

# OUTPUT
# (0, 0) 1
# (0, 3) 5
# (1, 0) -1
# (1, 2) 1
# (2, 2) 3
# (3, 1) 1
# (3, 3) -1

It can be seen that Python only stores the non-zero entries of the matrix
along with their positions.

Definition 4.3 (Banded matrix). A ∈ Rn×n is called a banded matrix
with bandwidth K if its entries aij satisfy

aij = 0, if |j − i| > K.
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Every row of a banded matrix with bandwidth K contains at most 2K+1
non-zero entries. For K = 1, such a matrix is called tridiagonal. A band
matrix is a particularly simple (but still important) case of a sparse matrix,
where the non-zero elements are concentrated around the diagonal. Storage
as a sparse matrix requires O(Kn) (instead of O(n2)) memory.

The Python command matplotlib.pyplot.spy(A) visualizes the non-zero
entries of a matrix; see Figure 4.1 for examples.

Figure 4.1: Example of a full (left), sparse (middle) and banded (right) matrices.
Visualization obtained using the command spy.

The memory needed to store the factors L, U of an LU decomposition for
a sparse matrix is difficult to predict. Obviously, the factors for a full matrix
can be expected to be full (below and above the diagonal, respectively). On
the other hand, the factors for a sparse matrix are not necessarily sparse, due
to a phenomenon called fill-in. For example, Figure 4.2 (middle) shows that
the factors lose a lot of the sparsity of the original matrix from Figure 4.1
(middle). For a banded matrix A, it can be shown that the factors L and U
are zero below and above the bands of A, respectively. At the same time,
additional zero structure within the bands is not necessarily preserved by
the LU decomposition; see Figure 4.2 (right). In many practically relevant

Figure 4.2: Non-zero entries of the LU decompositions of the matrices from Figure
4.1. L corresponds to the lower triangular part and U to the upper
triangular part of the visualized matrices. Left: full matrix; middle:
sparse matrix; right: banded matrix.

situations, fill-in can be reduced (sometimes dramatically) , to a certain ex-
tent by reordering the rows and columns of the matrix A prior to performing
an LU decomposition. The Python command scipy.sparse.linalg.spsolve
effects such a reordering, using UMFPACK by default. Other popular soft-
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ware packages for effecting such sparse direct LU decompositions include
MUMPS, Pardiso, and SuperLU.

4.5 Computational cost of LU decompositions
Processors on laptops nowadays work with a frequency of a few Giga-Hertz,
allowing one to perform a O(109) operations per second. In the following,
we will perform rough estimates of the computational cost for some typical
linear algebra operations.

• Scalar product: Given two vectors x,y ∈ Rn, the scalar product

〈x,y〉 = y>x =

n∑
i=1

xiyi

requires n multiplications and n − 1 additions. Hence, the number
of elementary operations is of the order of n (more precisely, 2n − 1)
and we say that the computational cost is O(n). For n = 1000, this
translates into approximately 10−6 seconds computational time, as the
computer can perform O(109) operations per second.

• Product of a dense matrix with a vector: Given x ∈ Rn and
A ∈ Rn×n, we want to compute

y = Ax, =⇒ yi =
n∑

j=1

Aijxj , i = 1, . . . , n.

Computing each entry yi requires n multiplications and (n − 1) ad-
ditions. As there are n entries in y, the computational cost of this
operation is O(n2). For n = 1000, this translates into approximately
10−3 seconds computational time.

We now consider the LU decomposition of a dense matrix, using Algo-
rithm 4.3 (or Algorithm 4.4). The cost is dominated by the operation

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj ,

which contains a multiplication and a subtraction, that is, two elementary
operations. This instruction is inside 3 nested loops (k, i, and j); we there-
fore arrive at

n−1∑
k=1

n∑
i=k+1

n∑
j=k+1

2 = O(n3)

operations. For n = 1000, this translates into a computational time in the
order of 1 second. Due to the cubic dependence, this number increases



84 CHAPTER 4. LINEAR SYSTEMS – DIRECT METHODS

quickly with n. For example, for n = 104, the computational time becomes
∼ 103 seconds, that is, in the order of 15 minutes. For a banded matrix
with bandwidth K, we can limit the two internal loops in Algorithm 4.3 to
K entries and, in turn, the computational cost reduces to O(nK2).

The following table summarizes the computational cost and memory
requirements of an LU decomposition for an n× n matrix:

compt cost memory
dense matrix O(n3) O(n2)
banded matrix (bandwidth K) O(nK2) O(nK)

4.6 Effects of round-off errors
Gaussian elimination (with pivoting) yields the exact solution of a linear
system in a finite number of operations. A computer, however, executes all
operations inexactly and uses floating point representation for real numbers,
which introduces small round-off errors of the order of 10−16 (in double
precision).

In this section, we aim at giving some insights on the effect of these
round-off errors on the solution obtained by the computer. We formalize
this question as follows. Assume we wish to solve

Ax = b ,

which will be called the “exact system”. Already the storage of the vector
b and the matrix A is usually not exact because their entries need to be
rounded in order to fit the floating point format. Hence, the computer
solves a slightly modified system

Âx̂ = b̂, (4.5)

which will be called the “perturbed system”. Apart from rounding the in-
put, Gaussian elimination introduces additional roundoff error in every op-
erations. Backward error analysis allows one to push this error back to the
original system, allowing one to view the computed solution as the exact so-
lution of the perturbed (4.5). For a good (backward stable) algorithm, like
Gaussian elimination with pivoting, we expect that this perturbed system
remains very close to the exact system. More specifically, we may assume
that

b̂i = bi(1 + εi), where εi is of order of 10−16.

Likewise, the entries of Â satisfy

âij = aij(1 + ηij), with ηij of order of 10−16.

One may conclude that the solution x̂ of the slightly perturbed sys-
tem (4.5) is close to the exact solution x. This is indeed often but not
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always the case, depending on the matrix A. The following example shows
that things may go wrong.

Example 4.3. Let us consider the exact linear system

Ax = b ⇐⇒
[
1 10−16

1 0

] [
x1
x2

]
=

[
1
1

]
,

with the solution (x1, x2) = (1, 0), and the perturbed system

Âx̂ = b̂ ⇐⇒
[
1 10−16

1 0

] [
x̂1
x̂2

]
=

[
1 + 10−16

1

]
.

Note that we only perturbed the first entry of b. The solution of the per-
turbed system is (x̂1, x̂2) = (1, 1), that is, the second entry of the solution
is completely wrong! In other words, the small perturbation 10−16 of the
right-hand side term has been amplified tremendously!

To better understand the phenomenon observed in Example 4.3 and
analyze the error x− x̂, we first introduce some notation. Let us recall that
the Euclidean norm of a vector x is ‖x‖ =

√∑n
i=1 x

2
i . We aim at estimating

the relative error ‖x̂− x‖/‖x‖. For this purpose, we need to generalize the
notion of norm to matrices.

Definition 4.4 (Norm of a matrix). Given a matrix A ∈ Rm×n (not
necessarily square), we define the (spectral) norm of A as

‖A‖ = sup
x∈Rn
x 6=0

‖Ax‖
‖x‖

.

This definition of norm implies, in particular, that

‖Ax‖ ≤ ‖A‖‖x‖, ∀x ∈ Rn.

Given square symmetric matrix B ∈ Rn×n, let λi(B) ∈ R, i = 1, . . . , n,
denote the eigenvalues of B. We set λmax(B) = maxi=1,...n λi(B) and
λmin(B) = mini=1,...n λi(B), the maximum and minimum eigenvalues, re-
spectively. We have the following characterization of the norm of a matrix.

Lemma 4.2. For any matrix A ∈ Rm×n, it holds that ‖A‖ =
√
λmax(A>A).

If A is square and invertible, then

‖A−1‖ =
√
λmax(A−>A−1) =

1√
λmin(A>A)

.

Definition 4.5 (Condition number). The (spectral) condition number of
a square and invertible matrix A is defined as

κ(A) = ‖A−1‖‖A‖ =
√
λmax(A>A)√
λmin(A>A)

.
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In Python, the norm and condition number of a matrix are computed using
the commands numpy.linalg.norm and numpy.linalg.cond, respectively.

If A is a symmetric matrix, that is, A> = A, then

λi(A
>A) = λi(A

2) = λi(A)2, i = 1, . . . , n.

A symmetric matrix A is positive definite if and only if all its eigenvalues
are positive. In this case, it follows that

κ(A) = λmax(A)/λmin(A).

We now aim at analyzing the relative error ‖x̂−x‖/‖x‖. For simplicity,
we will analyze the case when only perturbations in the right-hand side
b are allowed (that is, ηij = 0). The findings are nearly identical when
perturbations in A are allowed as well. We have

Ax = b

Ax̂ = b̂
=⇒ A(x̂− x) = b̂− b ,

and therefore

x̂− x = A−1(b̂− b) =⇒ ‖x̂− x‖ ≤ ‖A−1‖‖b̂− b‖,

where

‖b̂− b‖ =
( n∑
i=1

b2i ε
2
i

)1/2 ≤ max
i=1,...,n

|εi|‖b‖.

On the other side,

‖b‖ ≤ ‖A‖‖x‖ =⇒ 1

‖x‖
≤ ‖A‖
‖b‖

.

If we multiply the two inequalities, we get

‖x̂− x‖
‖x‖

≤ ‖A‖‖A−1‖‖b̂− b‖
‖b‖

≤ κ(A) max
i=1,...,n

|εi|. (4.6)

In summary, we have proved the following result.

Lemma 4.3. For an invertible matrix A ∈ Rn×n, let x ∈ Rn and x̂ ∈ Rn

denote the solutions of the linear systems Ax = b and Ax̂ = b̂, respectively,
where b̂i = bi(1 + εi) for i = 1, . . . , n. Then

‖x̂− x‖
‖x‖

≤ κ(A) εmax, (4.7)

where εmax = maxi=1,...,n |εi|.
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The inequality (4.7) shows that the condition number of the matrix A
plays the role of the amplification factor of how round-off errors impact the
accuracy of the solution.

Example 4.4. Coming back to Example 4.3, let us compute the condition
number of A. We have

A>A =

(
1 1

10−16 0

)(
1 10−16

1 0

)
=

(
2 10−16

10−16 10−32

)
and

det(A>A− λI) = λ2 − (2 + 10−32)λ+ 10−32.

Hence, the two eigenvalues of A>A are

λ1,2(A
>A) =

1

2
(2 + 10−32 ±

√
4 + 10−64)

and therefore

λmax(A
>A) ≈ 2, λmin(A

>A) ≈ 1

2
10−32.

We conclude that the condition number of A is

κ(A) =

√
λmax(A>A)

λmin(A>A)
≈ 2 · 1016

which explains the bad results reported in Example 4.3.
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Chapter 5

Linear systems – iterative
methods

In the previous chapter we studied Gaussian elimination for solving a linear
system Ax = b. However, we also saw that the computational cost and
the memory requirements of this method can be excessive as the size of
A increases. Even for sparse matrices, fill-in may severely challenge the
feasibility of LU decompositions.

In this chapter, we will study iterative methods for (approximately) solv-
ing linear systems, which constitute an alternative to Gaussian elimination
for large-scale problems. The general idea is to build a sequence of vectors
x(k) that converges to the solution x of the system Ax = b:

lim
k→∞

x(k) = x.

5.1 Richardson methods

A general procedure to build iterative methods is to choose an invertible
matrix P (for which linear systems are very easy to solve) and incorporate
this matrix into Ax = b by re-writing the system in the equivalent form

Px = (P −A)x+ b.

Given an arbitrary initial vector x(0), we perform the iteration

Px(k+1) = (P −A)x(k) + b, k = 0, 1, . . . , (5.1)

which requires to solve a linear system with P in every iteration. If the
sequence {x(k)}k≥0 converges to a vector x∞, limk→∞ x(k) = x∞, then it
necessarily follows that

Px∞ = (P −A)x∞ + b ⇐⇒ Ax∞ = b.

89
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In other words, x∞ = x is the solution of the original linear system.
The iteration (5.1) can be rearranged as

Solve Pz(k) = r(k), r(k) = b−Ax(k),

Set x(k+1) = x(k) + z(k),
(5.2)

leading to the following algorithm:
Algorithm 5.1: Richardson method (without stopping criterion)

Given x(0) and P ∈ Rn×n invertible;
for k = 0, 1, . . . do

compute r(k) = b−Ax(k);
solve the linear system Pz(k) = r(k);
compute x(k+1) = x(k) + z(k);

end

Methods of the form (5.2) are called Richardson methods. The matrix
P is called preconditioner and the vector r(k) is called the residual of x(k).
Note that r(k) = 0 if and only if x(k) is the exact solution of the system.
Normally, r(k) 6= 0, and the norm of r(k) can be viewed as a measure of how
far the vector x(k) is from the exact solution. This will be used for stopping
Algorithm 5.1 in Section 5.4.

Note that the Richardson method can be viewed as a fixed-point method
(as the ones studied in Chapter 1 for n = 1): After rewriting the equation
f(x) = Ax− b = 0 in the equivalent form

x = φ(x) = P−1[(P −A)x+ b],

the Richardson method amounts to performing the fixed-point iteration
x(k+1) = φ(x(k)).

5.1.1 Computational cost

Let us discuss the cost of Algorithm 5.1, first for the case of a dense matrix
A. The most costly operations in every iteration are:

• The matrix-vector product Ax(k), requiring O(n2) operations.

• The solution of the linear system Pz(k) = r(k). Its cost entirely de-
pends on the choice of the preconditioner P . For example, for a diag-
onal matrix P , the computational cost is O(n), while for a triangular
matrix, the cost is O(n2).

Unless P is unfortunately chosen, we expect that the cost of one iteration
is O(n2). Thus, if we obtain a sufficiently accurate approximation to the
solution in much less than n iterations, then the total cost will be smaller
than the O(n3) needed by Gaussian elimination.
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When A is sparse then the cost of a matrix-vector product reduces to
O(n). In this case, the most common choices for P (see below) also lead
to a cost of O(n) when solving a linear system with P . Hence, the cost of
one step of the iteration reduces to O(n). If the Richardson method does
not converge too slowly, it offers a cheap alternative to direct methods. The
convergence speed will be analyzed in Section 5.3.

5.2 Jacobi and Gauss-Seidel methods

The Jacobi and Gauss-Seidel methods are particular instances of the Richard-
son method.

In the Jacobi method the preconditioner P is a diagonal matrix con-
taining the diagonal of A (in Python P=numpy.diag(numpy.diag(A))):

P =


a11

a22
. . .

ann

 .

The (k + 1)th iteration of the Jacobi method amounts to solving
a11

a22
. . .

ann



x
(k+1)
1

x
(k+1)
2
...

x
(k+1)
n

 = −


0 a12 · · · a1n

a21 0
...

...
. . .

· · · an,n−1 0



x
(k)
1

x
(k)
2
...

x
(k)
n

+

b1
b2
...

bn

 .

The ith component of the vector x(k+1) can be computed using

x
(k+1)
i =

1

aii

(
bi −

n∑
j=1
j 6=i

aijx
(k)
j

)
, i = 1, . . . , n , (5.3)

provided that aii 6= 0 holds for i = 1, . . . , n.

The Gauss-Seidel method uses the preconditioner P containing the
lower triangular part of A, including its diagonal (in Python P=numpy.tril(A)):

P =


a11
a21 a22
...

. . .

an1 · · · · · · ann

 .



92 CHAPTER 5. LINEAR SYSTEMS – ITERATIVE METHODS

The (k + 1)th iteration of the Gauss-Seidel method amounts to solving
a11
a21 a22
...

. . .

an1 · · · · · · ann



x
(k+1)
1

x
(k+1)
2
...

x
(k+1)
n

 = −


0 a12 · · · a1n

0
. . .

...
. . . an−1,n

0



x
(k)
1

x
(k)
2
...

x
(k)
n

+

b1
b2
...

bn

 .

This lower triangular linear system can be solved by forward substitution.
In turn, the ith component of the vector x(k+1) is given by

x
(k+1)
i =

1

aii

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, . . . , n, (5.4)

again assuming that aii 6= 0 for i = 1, . . . , n.
The Gauss-Seidel method is very similar to the Jacobi method, with the

major difference that that while computing a new component x
(k+1)
i we use

the updated components x
(k+1)
j , for j < i, instead of the old components

x
(k)
j .

5.3 Convergence analysis

The Jacobi and Gauss-Seidel methods are not guaranteed converge for every
invertible matrix A. To gain more insight in this matter, we will now analyze
the general class of Richardson methods

Px(k+1) = (P −A)x(k) + b (5.5)

with an invertible preconditioned P . We let

e(k) = x− x(k)

denote the error after k iterations. We want to understand under which
conditions e(k) converges to zero as k →∞, which means that all its entries
converge to zero. Equivalently, the norm of e(k) converges to zero.

We use that the exact solution satisfies the system

Px = (P −A)x+ b , (5.6)

which is equivalent to the initial system Ax = b. Subtracting (5.5) from (5.6)
gives Pe(k+1) = (P −A)e(k) or, equivalently,

e(k+1) = P−1(P −A)e(k) = (I − P−1A)︸ ︷︷ ︸
B

e(k).
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Definition 5.1. The matrix B = (I−P−1A) is the iteration matrix of (5.5).

Recalling Definition 4.4 of a matrix norm, we have

‖e(k+1)‖ ≤ ‖B‖‖e(k)‖ ≤ ‖B‖2‖e(k−1)‖
≤ · · · ≤ ‖B‖k+1‖e(0)‖.

Hence, the error converges to zero if ‖B‖ < 1. We proved the following
result.

Theorem 5.1. The Richardson method (5.5) with the iteration matrix B =
(I − P−1A) converges for any initial vector x(0) if ‖B‖ < 1. Moreover,

‖x− x(k)‖ ≤ ‖B‖k‖x− x(0)‖. (5.7)

Notice the similarity between the convergence condition ‖B‖ < 1 for the
Richardson method and the condition |φ′(α)| < 1 for the local convergence
of a fixed-point method (see Chapter 1). However, in contrast fixed-point
methods for a nonlinear equation, the method (5.5) converges for any initial
vector x(0) if ‖B‖ < 1.

The quantity ‖B‖ gives an indication of the convergence speed because,
according to (5.7), a small value of ‖B‖ leads to fast convergence.

Let us emphasize that ‖B‖ < 1 is sufficient but not necessary for con-
vergence. A necessary and sufficient condition can be formulated in terms
of the spectral radius.

Definition 5.2 (Spectral radius). Let λi(B), i = 1, . . . , n, denote the
eigenvalues of a square matrix B ∈ Rn×n. Then

ρ(B) = max
i=1,...,n

|λi(B)| (5.8)

is called the spectral radius of B.

Theorem 5.2. The Richardson method (5.5) converges for every initial
vector if and only if the iteration matrix B = (I−P−1A) satisfies ρ(B) < 1.

Based on the theory developed, it can be shown that the Jacobi and
Gauss-Seidel methods are guaranteed to converge if A is symmetric positive
definite or strictly diagonal dominant (that is, |aii| >

∑
j 6=i |aij |).

5.4 Error control and stopping criterion
We now supplement Algorithm 5.1 with a stopping criterion. Ideally, one
would like to stop the iterations when the norm of the error ‖e(k)‖ =
‖x − x(k)‖ is smaller than a given tolerance. Unfortunately, this requires
knowledge of the exact solution. Instead, we can use the residual

r(k) = b−Ax(k)
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to control convergence. Because of ‖r(k)‖ = ‖Ax−Ax(k)‖ ≤ ‖A‖ ‖x−x(k)‖,
the norm of r(k) is small when x(k) is close to the exact solution. Specifically,
we verify that the residual is small relative to the right-hand-side:

stopping criterion: ‖r(k)‖
‖b‖

≤ tol. (5.9)

This leads to the following algorithm:
Algorithm 5.2: Richardson method (with stopping criterion)

Data: A, b, x(0), P , tol
Result: x, res, niter
r(0) = b−Ax(0); k = 0;
while ‖r(k)‖ > tol‖b‖ do

Pz(k) = r(k);
x(k+1) = x(k) + z(k);
r(k+1) = b−Ax(k+1);
k = k + 1;

end
x = x(k), res= ‖r(k)‖, niter= k;

Algorithm 5.2 ensures that (5.9) is satisfied, but what can we say about
the true error ‖e(k)‖ = ‖x− x(k)‖?

Note that the exact solution satisfies Ax = b, and the approximate
solution x(k) satisfies

Ax(k) = b− r(k),

that is, the right-hand side is modified by r(k). This matches the situation
covered in Section 4.6 and from (4.6) we obtain that

‖x− x(k)‖
‖x‖

≤ κ(A)
‖b− b̂‖
‖b‖

= κ(A)
‖r(k)‖
‖b‖

≤ κ(A) · tol,

where we recall that κ(A) denotes the condition number of A. Hence, for
moderate condition numbers, the error is reliably estimated by the residual.
For high condition numbers, the residual may not provide a good estimate
of the true error ‖x− x(k)‖.

5.5 Gradient methods
An important class of matrices which appears often in physics and engineer-
ing applications are symmetric positive definite (spd) matrices For example,
such matrices arise when we are looking for an equilibrium configuration of a
physical system that minimize its energy. We recall that a matrix A ∈ Rn×n

is positive definite if

v>Av > 0 ∀v ∈ Rn, v 6= 0.
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As mentioned before, a symmetric matrix is positive definite if and only if
all its eigenvalues are positive.

A linear system Ax = b with spd A can be associated with an energy
function φ defined as

φ : Rn → R, φ(v) =
1

2
v>Av − v>b, v ∈ Rn. (5.10)

We have the following important characterization of the solution:

Proposition 5.3. The solution x of Ax = b for an spd matrix A is the
unique minimum of the function φ, that is,

x = argmin
v∈Rn

φ(v).

We now discuss the case n = 2 in more detail.

Example 5.1. Consider the linear system[
a11 a12
a12 a22

]
︸ ︷︷ ︸

A

[
x
y

]
︸︷︷︸
x

=

[
b1
b2

]
︸︷︷︸
b

.

Then the energy function is

φ(x, y) =
1

2

[
x y

] [a11 a12
a12 a22

] [
x
y

]
−
[
x y

] [b1
b2

]
=

1

2
a11x

2 + a12xy +
1

2
a22y

2 − b1x− b2y.

Its gradient is given by

∇φ(x, y) =

[
∂φ
∂x
∂φ
∂y

]
=

[
a11x+ a12y − b1
a12x+ a22y − b2

]
= Ax− b ,

and the Hessian matrix is

Hφ(x, y) =

[
∂2φ
∂x2

∂2φ
∂x∂y

∂2φ
∂x∂y

∂2φ
∂y2

]
=

[
a11 a12
a12 a22

]
= A.

The stationary points of φ satisfy the condition

φ(x, y) = Ax− b = 0.

As the system Ax = b has only one solution, we conclude that there is
exactly one stationary point, which coincides with the solution of the linear
system. Moreover, as the Hessian matrix Hφ = A is spd, this stationary
point is the unique minimum of the function φ.
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The calculations of Example 5.1 for n = 2 are valid for general n. In
particular, we have that

Gradient : ∇φ(x) = Ax− b, ∀x ∈ Rn , (5.11)
Hessian : Hφ(x) = A, ∀x ∈ Rn . (5.12)

Thanks to this interpretation of the solution of a linear system as the min-
imum of an energy function, we can build iterative methods by trying to
approximate the minimum of φ.

5.5.1 Gradient method (or steepest descent)

Gradient methods are widely used in optimization and relatively simple to
implement. Here, we will only discuss the special case of a gradient method
applied to to the energy function φ defined above.

The idea of the gradient method is relatively simple. Suppose we have
an approximation x(k) of the solution to Ax = b, which is also an approx-
imation of the minimum of φ. We aim at building a better approximation
x(k+1) for which φ(x(k+1)) < φ(x(k)). To this end, we are following the
direction of the steepest slope of the function φ, trying to arrive as fast as
possible at the minimum of φ. From (5.11), we know that the gradient of φ
at x(k) is

∇φ(x(k)) = Ax(k) − b = −r(k).

Therefore, the residual r(k) gives the direction of steepest descent. We then
define

x(k+1) = x(k) + αkr
(k) (5.13)

for some steplength αk > 0 that will be determined below. Note that αk = 1
corresponds to the Richardson method with P = In.

To choose the steplength αk, we use a technique called “exact line search”,
that is, we choose αk such that φ(x(k+1)) is as small as possible. Thanks to
the simple form of φ, it is possible to determine an explicit expression for
such αk. For this purpose, we use the chain rule to compute

∂

∂α
φ(x(k) + αr(k)) = ∇φ

(
x(k) + αr(k)

)>( ∂

∂α
(x(k) + αr(k))

)
=
(
A(x(k) + αr(k))− b

)>
r(k)

= −
(
r(k)
)>

r(k) + α
(
r(k)
)>

Ar(k).

For a minimum αk, this derivative needs to zero and, hence, it follows that
which gives us the optimum value

αk =
(r(k))>r(k)

(r(k))>Ar(k)
.
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Once the new approximation x(k+1) is computed according to (5.13), we can
update the residual using the formula

r(k+1) = b−Ax(k+1) = b−A(x(k) + αkr
(k)) = r(k) − αkAr(k).

The following algorithm implements the described gradient method, again
using the stopping criterion based on the normalized residual.

Algorithm 5.3: Gradient method
Data: A, b, x(0), tol
Result: x, res, niter
r(0) = b−Ax(0); k = 0;
while ‖r(k)‖ > tol · ‖b‖ do

w(k) = Ar(k);
αk = (r(k))>r(k)

(r(k))>w(k) ;
x(k+1) = x(k) + αkr

(k);
r(k+1) = r(k) − αkw

(k);
k = k + 1;

end
x = x(k), res= ‖r(k)‖, niter= k;

For the convergence of the gradient method, we have the following result.

Theorem 5.4. The gradient method applied to Ax = b with spd A always
converges to the exact solution for any initial vector x(0). Moreover, the
error bound

‖x− x(k)‖ ≤ C

(
κ(A)− 1

κ(A) + 1

)k

‖x− x(0)‖ , (5.14)

holds for some constant C.

5.5.2 Generalizations

In this section, we will briefly discuss some generalizations of the gradient
method.

Preconditioned gradient method

According to Theorem 5.4, the convergence speed of the gradient method is
linked to the factor (κ(A)−1)/(κ(A)+1). For large κ(A), this factor is very
close to 1 and the convergence can be expected to be very slow. To speed
up convergence, we can use preconditioning.

As for the Richardson method, we assume the availability of a precon-
ditioner P ∈ Rn×n for which it is easy to solve linear systems. We assume
that P is spd and multiply its inverse to both sides to Ax = b:

P−1Ax = P−1b. (5.15)
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The preconditioned gradient method is the gradient method applied to (5.15).
The convergence of this method is controlled by the condition number of
P−1A. While all eigenvalues of P−1A are still real and positive, this matrix
is generally not symmetric. We therefore have to slightly adjust the notion
of condition number and set

κ̃(P−1A) = λmax(P
−1A)/λmin(P

−1A).

One can then show that the iterates x(k) of the preconditioned gradient
method satisfy

‖x− x(k)‖ ≤ C

(
κ̃(P−1A)− 1

κ̃(P−1A) + 1

)k

‖x− x(0)‖. (5.16)

Thus, we will have fast convergence when κ̃(P−1A) remains modest.
The kth iteration of the preconditioned gradient method computes the

next iterate x(k+1) as
x(k+1) = x(k) + αkz

(k),

where z(k) is the preconditioned residual (residual of the preconditioned sys-
tem (5.15)) defined as

z(k) = P−1b− P−1Ax(k) = P−1r(k),

and αk is given by αk = (z(k))>r(k)

(z(k))>Az(k)
.

Since we do not want to explicitly compute the inverse matrix P−1, the
update of the solution proceeds as follows:

SolvePz(k) = r(k) (5.17)
Setx(k+1) = x(k) + αkz

(k).

This results in the following algorithm:
Algorithm 5.4: Preconditioned gradient method

Given x(0) and spd P ∈ Rn×n, set r(0) = b−Ax(0);
for k = 0, 1, . . . do

Solve Pz(k) = r(k);
w(k) = Az(k);
αk = (z(k))>r(k)

(z(k))>w(k) ;
x(k+1) = x(k) + αkz

(k);
r(k+1) = r(k) − αkw

(k);
end
The choice of the matrix P is delicate. the On one hand, it has to be

chosen such that κ̃(P−1A) � κ(A). On the other hand, the linear system
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(5.17) has to be easily solvable. If we only considered the first criterion,
the ideal choice of preconditioner would be P = A. In fact, in this case we
have κ̃(P−1A) = κ(I) = 1 and the method converges in only one iteration.
However, with this choice, the linear system (5.17) to solve in every itera-
tion is as complicated as the initial system and we do not gain anything.
Therefore, we have to find a good compromise: the matrix P must be close
to A in some sense, while keeping the solution of the linear system (5.17)
relatively simple.

One possibility already considered in the context of the Jacobi method
is to construct P from the diagonal of A.

In the case of a sparse matrix, another very common choice is to com-
pute an incomplete LU decomposition of the matrix A, that is, P = L̂Û
where L̂ and Û are approximations of the factors L and U of A. This tech-
nique is called ILU (incomplete LU ). In particular, we can perform an LU
decomposition of A and save only the “larger” entries of the matrices L and
U (ILUt: incomplete LU with threshold). An even more radical choice is
to not allow for any fill-in and only save the entries at positions where A
is nonzero (ILU0). In Python, an ILU decomposition is computed using

scipy.sparse.linalg.spilu .
ILU avoids all problems related to fill-in and (hopefully) gives a matrix

P = L̂Û that is close enough to A. Note that the system Pz(k) = r(k) is
easy to solve because the P matrix is already factored.

Conjugate gradient method

The gradient method takes the form

x(k+1) = x(k) + αkr
(k)

where r(k) = −∇φ(x(k)) is the direction of steepest descent of φ.
It is natural to ask whether there are other descent directions that allows

one to reach the minimum of φ in less iterations. A strategy that works
particularly well consists in choosing at iteration k a direction p(k), which
has the following property:

(p(k))>Ap(j) = 0, j = 0, . . . , k − 1. (5.18)

Vectors p(k) satisfying (5.18) are called A-conjugate or A-orthogonal. In this
case, the update of the solution is

x(k+1) = x(k) + αkp
(k)

where

αk =
(p(k))>r(k)

(p(k))>Ap(k)
.
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The direction p(k) can be computed with the following recurrence:

p(k+1) = r(k+1) − βkp
(k), βk =

(Ap(k))>r(k)

(p(k))>Ap(k)
and p(0) = r(0).

The described method is called conjugate gradient method, which has
the following convergence property.

Theorem 5.5. The conjugate gradient method applied to the linear system
Ax = b, with spd A, converges in at most n iterations to the exact solution
for any initial datum x(0) (in exact arithmetic). Moreover, the error at the
kth iteration satisfies the bound the following estimation

‖x− x(k)‖ ≤ C

(√
κ(A)− 1√
κ(A) + 1

)k

‖x− x(0)‖ , (5.19)

for some positive constant C.

We notice that the conjugate gradient method converges faster than the
gradient method as the reduction factor of the error is controlled by

√
κ(A)

instead of κ(A).
Again, we can combine the conjugate gradient method with precondi-

tioning, which leads to PCG (preconditioned conjugate gradient). With a
good choice of preconditioner, the PCG method is very effective for the so-
lution of linear systems. In fact, PCG is the iterative method of choice for
solving large-scale spd linear systems. In Python, PCG is implemented in
scipy.sparse.linalg.cg .



Chapter 6

Ordinary differential
equations

In this chapter we are interested in the numerical solution of an ordinary
differential equation (ODE) of the form: Find a continuously differentiable
function u : R+ → R such that

du(t)

dt
= f(t, u(t)), t > 0,

u(0) = u0,
. (6.1)

This problem is called a Cauchy problem.
In applications, we often encounter systems of ordinary differential equa-

tions. Given

u(t) =

u1(t)...
um(t)

 and f(t,u) =

 f1(t, u1, . . . , um)
...

fm(t, u1, . . . , um)

 ,

we are looking for a vector-valued function u : R+ → Rm such that
du(t)

dt
= f(t,u(t)), t > 0

u(0) = u0

. (6.2)

Example 6.1. Let us derive a model for the evolution of a rabbit population.
Let u(t) be the number of individuals at any time t and u0 = u(0) the number
of individuals at the initial time t = 0. It is reasonable to assume that the
growth rate of the population at any time t, that is, the number of individuals
being born minus the number of individuals deceased in one unit of time, is
proportional to the total number u(t) of individuals in the population:

growth rate at any given time t: τ(t) = Cu(t).

101
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Thus, we can model the population dynamics using the following ODE:
du(t)

dt
= Cu(t), t > 0,

u(0) = u0.
(6.3)

The solution of (6.3) is u(t) = u0e
Ct. This shows that the model is

realistic; it foresees that the population will increase indefinitely with time!
As the food available for the rabbits is not infinite, a more realistic model
predicts that the number of individuals cannot exceed a certain value umax.
Thus, another possible differential model is

du(t)

dt
= Cu(t)

(
1− u(t)

umax

)
, t > 0,

u(0) = u0.
. (6.4)

In this model, the growth rate τ(t) = Cu(t)
(
1− u(t)

umax

)
becomes zero when

the population reaches the maximum value umax and the population cannot
grow anymore.

Example 6.2. We now consider two populations: rabbits and foxes. Let
u1(t) be the number of rabbits and u2(t) the number of foxes at any given
time t. For each of these populations individually, we can use an equation
of the type (6.3) or (6.4). Let simplicity, we use (6.3). This time, however,
the dynamics of the two populations are linked. In fact, foxes eat rabbits and
therefore the food available for the foxes depends on the number of rabbits
u1(t). Moreover, the mortality rate of rabbits depends on the number of
foxes. We can then write the following model

du1(t)

dt
= αu1(t)− βu1(t)u2(t), t > 0,

du2(t)

dt
= −γu2(t) + δu1(t)u2(t), t > 0,

u1(0) = u1,0, u2(0) = u2,0,

where αu1(t) is the number of birth minus the natural death rate of the rabbit
population; −βu1(t)u2(t) is the mortality rate of rabbits due to the presence
of foxes; −γu2(t) is the natural death rate of foxes; δu1(t)u2(t) is the birth
rate of foxes, which is proportional to the number of rabbits alive. This
model is known as Lotka-Volterra model. It is a system composed of two
coupled ODEs, which can be written in the vector form (6.2) with

u(t) =

[
u1(t)
u2(t)

]
, f(t,u(t)) =

[
αu1(t)− βu1(t)u2(t)
−γu2(t) + δu1(t)u2(t)

]
.
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6.1 Existence and uniqueness of solutions

In this section, we briefly recall results on the existence and uniqueness of
solutions to ODEs. Both, existence and uniqueness, are nontrivial questions,
as shown by the following two examples.

Example 6.3. Let us consider the Cauchy problem

du(t)

dt
=
√
u(t), t > 0, u(0) = 0.

It is easy to check that u1(t) = 0, t > 0 and u2(t) = 1
4 t

2, t > 0 are two
possible solutions and, hence, this Cauchy problem does not have a unique
solution.

Example 6.4. Let us consider the Cauchy problem

du(t)

dt
= u2(t), t > 0, u(0) = 1.

The solution is u(t) = 1
1−t , which only exists for t < 1.

In our study of methods for the numerical solution of ODEs, we want
to exclude the situations encountered in Examples 6.3 and 6.4. For this
purpose, we recall a result on the existence and uniqueness of the solution
of (6.1) for all t > 0.

Theorem 6.1. Suppose that f : R × R+ → R is with respect to both argu-
ments and Lipschitz-continuous with respect to its second argument, that is,
there exists a constant L > 0 (the Lipschitz constant) such that

|f(t, x)− f(t, y)| ≤ L|x− y|, ∀x, y ∈ R, ∀t ∈ [0,∞).

Then the Cauchy problem (6.1) has a unique solution u(t) defined for all
t ∈ [0,∞). Moreover, the solution is continuously differentiable.

Theorem 6.1 generalizes to systems of ODEs. Throughout the rest of this
chapter, we will assume that the hypotheses of Theorem 6.1 are verified.

6.2 One-step methods

We aim at approximating the solution to the Cauchy problem (6.1) in the
interval [0, T ] for a fixed end time T > 0. For this purpose, we divide the
interval in N sub-intervals [tn, tn+1] of the same length ∆t = T

N , such that
tn = n∆t, n = 0, ..., N . The methods discussed in this chapter approximate
the solution, starting from t0, subsequently interval by interval.
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Forward Euler method (also called Explicit Euler)

A simple idea to approximate the solution on the interval [tn, tn+1] consists
in replacing the derivative du

dt at time tn with the forward finite differences
formula:

du(tn)

dt
≈ δ+∆tu(tn) =

u(tn+1)− u(tn)

∆t
.

Letting un ≈ u(tn) denote the approximation of u(tn), we obtain an approx-
imation un+1 ≈ u(tn+1) by performing one-step of the so called forward
Euler method:

un+1 − un

∆t
= f(tn, u

n), n = 0, 1, . . . , N − 1

u0 = u0 (known)
. (6.5)

For n = 0, this means that u1 is computed from u0 (which is known) as

u1 = u0 +∆t f(t0, u
0).

Once u1 is computed, by substituting n = 1 in (6.5) we can find the
value of u2 and so on. The explicit Euler method produces a sequence
(u0, u1, u2, . . . , uN ) which we expect to be a good approximation of the exact
solution at the corresponding time steps (u0 = u(t0), u(t1), u(t2), . . . , u(tN ) =
u(T )). The term explicit refers to the fact that we can compute the solution
un+1 explicitly from the solution un.

A Python implementation of the forward Euler method:

import numpy as np

def euler(f, I, u0, N):
# Solves the Cauchy problem
# u'=f(t,u), t in (t0,T], u(t0)=u0
# using the forward Euler method with a time step dt=(T-t0)/N
# Input:
# f: function f(t, u)
# I: the integration interval [t0,T]
# u0: initiale condition
# N: number of subintervals
# Output:
# t: vector of time instants tn
# u: approximate solution un
# dt: time step
dt = (I[1] - I[0]) / N
t = np.linspace(I[0], I[1], N + 1)
u = np.zeros(N + 1)
u[0] = u0
for n in range(N):

u[n + 1] = u[n] + dt * f(t[n], u[n])
return t, u, dt
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Example 6.5. We apply the forward Euler method to the Cauchy problem{
du(t)
dt = −(12u+ 3te−t), t ∈ (0, 20],

u(0) = 1.
(6.6)

The exact solution is given by uex = −11e−
1
2
t+12(1+ 1

2 t)e
−t. The following

code computes the approximate solution using the Euler method with N = 20
(∆t = 1) and compares it with the exact solution:

import numpy as np
import matplotlib.pyplot as plt
from ch6_euler import euler

a = 0.5
b = 3
f = lambda t, u: -(a * u + b * t * np.exp(-t))
u0 = 1
Tf = 20
I = [0, Tf]
uex = (

lambda t: (u0 - b / (1 - a) ** 2) * np.exp(-a * t)
+ b * (1 + (1 - a) * t) * np.exp(-t) / (1 - a) ** 2

)
t = np.linspace(0, Tf, 2001)
plt.plot(t, uex(t), "r")
N = 20
tn, un, dt = euler(f, I, u0, N)
plt.plot(tn, un, "g*-")

Figure 6.1 shows the obtained result as well as the approximations ob-
tained for N = 40 (∆t = 0.5) and N = 80 (∆t = 0.25). The forward Euler

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

 

 

sol. exact

Euler: N=20

Euler: N=40

Euler: N=80

Figure 6.1: Exact solution of Cauchy problem (6.6) and approximations obtained
with forward Euler with N = 20, 40, 80.
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method is seen to yield approximated solutions that become increasingly ac-
curate when the number N of sub-intervals increases or, equivalently, when
the time step ∆t decreases.

Backward Euler method (also called Implicit Euler)

Instead of the forward finite difference for approximating du(tn)
dt , one can

consider other choices, such as the backward finite difference:

du(tn)

dt
≈ δ−∆tu(tn) =

u(tn)− u(tn−1)

∆t
.

This choice results in the backward Euler method
un+1 − un

∆t
= f(tn+1, u

n+1), n = 0, 1, . . . , N − 1

u0 = u0 (known).
(6.7)

Given un, we now need to solve the equation

un+1 −∆t f(tn+1, u
n+1) = un

to determine the next approximation un+1. This is a non-linear equation in
the unknown un+1. Setting x = un+1, we thus have to find the root of the
function

gn(x) = x−∆t f(tn+1, x)− un = 0. (6.8)

This implicit definition of un+1 explains the name implicit of the method.
For solving (6.8), we can use one of the methods introduced in Chapter 1.
For example, one could use the following fixed-point method:

x(k+1) = ∆t f(tn+1, x
(k)) + un.

Since we expect the solution un+1 to be close to un, we can use x(0) = un as
initial value for the fixed-point method. The Newton method

x(k+1) = x(k) − x(k) −∆t f(tn+1, x
(k))− un

1−∆t∂f∂x (tn+1, x(k))
, k = 0, 1, . . . , x(0) = un,

can be expected to converge faster. However, there is no need compute the
solution more accurately than the approximation error introduced by the
finite difference approximation. In fact, one-step of the Newton method is
usually sufficient.

At first glance, the backward Euler method seems to offer little benefit
and in view of the additional complications implied by need for solving a
nonlinear equation in every time step. However, we will see in Section 6.4
that this method has better stability properties compared to the forward
Euler method.
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Crank-Nicolson method

Another way to approximate the solution of (6.1) is obtained via quadrature.
For this purpose, we integrate (6.1) between tn and tn+1,

u(tn+1)− u(tn) =

∫ tn+1

tn

du(s)

ds
ds =

∫ tn+1

tn

f(s, u(s)) ds,

and then apply the trapezoidal formula to approximate the integral:∫ tn+1

tn

f(s, u(s)) ds ≈ ∆t

2
[f(tn, u(tn)) + f(tn+1, u(tn+1))] .

This gives us the Crank-Nicolson method:
un+1 − un

∆t
=

1

2
f(tn, u

n) +
1

2
f(tn+1, u

n+1), n = 0, 1, . . . , N − 1,

u0 = u0 (known).
(6.9)

Once again this an implicit method, which requires the solution of a non-
linear equation in every time step. We will see that this scheme is usually
more accurate than Euler’s method (forward and backward)

Heun method

To avoid the need for solving a nonlinear equation in the Crank-Nicolson
method, one can first compute an approximation of un+1 using forward
Euler:

ũn+1 = un +∆t f(tn, u
n).

Using ũn+1 instead of un+1 in the right-hand side of (6.9) gives

un+1 − un

∆t
=

1

2
f(tn, u

n) +
1

2
f(tn+1, ũ

n+1).

Combining both equations results in the Heun method
un+1 − un

∆t
=

1

2
f(tn, u

n) +
1

2
f(tn+1, u

n +∆t f(tn, u
n)),

u0 = u0 (known),
(6.10)

with n = 0, 1, . . . , N − 1. Note that this method is explicit and as we can
compute the new solution un+1 in an explicit way from un using

un+1 = un +
∆t

2
f(tn, u

n) +
∆t

2
f(tn+1, u

n +∆t f(tn, u
n)).

Up to now, every method we studied computes un+1 using the last step
un only. To reflect this property, we call them one step methods.
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Definition 6.1. A one-step method to approximate solution to the Cauchy
problem (6.1) is a method of the form

un+1 − un

∆t
= φf (u

n, un+1, tn,∆t). (6.11)

If the function φf does not depend on un+1, the method is called explicit,
and otherwise implicit.

The following table collects the functions φf for the methods studied above:

Method φf (u
n, un+1, tn,∆t) =

Forward Euler f(tn, u
n)

Backward Euler f(tn +∆t, un+1)

Crank Nicolson 1
2f(tn, u

n) + 1
2f(tn +∆t, un+1)

Heun 1
2f(tn, u

n) + 1
2f(tn +∆t, un +∆t f(tn, u

n))

Multistep methods construct solution un+1 by not only using un but also
un−1, un−2, etc. Such methods will not be discussed in this lecture.

6.3 Error analysis
Given a one-step method of the form (6.11), we now aim at studying the
behavior of the approximation error. Specifically, we consider the error at
the final step T :

εN = |u(T )− uN |, where N = T/∆t.

We have already seen for the forward Euler method that the error decreases
as the time step size ∆t decreases. The following definitions captures the
quality of this decrease.

Definition 6.2. A numerical method that performs N time steps of size
∆t to approximate the Cauchy problem (6.1) is said to be convergent of
order p if there is a constant C > 0 such that

|u(T )− uN | ≤ C∆tp,

provided that the exact solution is sufficiently smooth.

To study the convergence order of a numerical method, we have to in-
troduce some additional concepts.

Definition 6.3 (Local truncation error). Let u(tn) be the exact solution
of the Cauchy problem (6.1) at time tn = n∆t for n = 0, 1, . . . , N . The local
truncation error of a one-step method (6.11) at instant tn+1 is defined as

τn =
u(tn+1)− u(tn)

∆t
− φf (u(tn), u(tn+1), tn,∆t). (6.12)
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The overall truncation error is defined as

τ = max
n=0,1,...,N−1

|τn|.

Let us emphasize that the truncation error is the error committed by the
one-step method at tn+1 when the previous approximation un is replaced by
the exact value u(tn). Of course, this exact value is not known unless n = 0,
so the actual error of the one-step method at tn+1 is a combination of the
truncation error τn and the errors resulting from the first n time steps of
the method.

Example 6.6 (Truncation error of the forward Euler method). For the
forward Euler method we have

τn =
u(tn+1)− u(tn)

∆t
− f(tn, u(tn)).

We recall that the approximation error of forward finite differences (see
Chapter 3) satisfies∣∣∣∣u′(tn)− u(tn+1)− u(tn)

∆t

∣∣∣∣ ≤ ∆t

2
max

t∈[tn,tn+1]
|u′′(t)|.

As u(t) is the exact solution of the Cauchy problem (6.1), it satisfies u′(tn) =
f(tn, u(tn)) and thus

|τn| =
∣∣∣∣u(tn+1)− u(tn)

∆t
− u′(tn)

∣∣∣∣ ≤ ∆t

2
max

t∈[tn,tn+1]
|u′′(t)|.

Therefore,
τ ≤ C∆t with C =

1

2
max
t∈[0,T ]

|u′′(t)|.

Example 6.7 (Truncation error of the Crank-Nicolson method). For the
Crank-Nicolson method, we have

τn =
u(tn+1)− u(tn)

∆t
− 1

2
f(tn, u(tn))−

1

2
f(tn+1, u(tn+1)).

We recall that the error of the trapezoidal quadrature formula on a single
interval (see Chapter 3) satisfies∣∣∣∣∫ tn+1

tn

g(s)ds− ∆t

2
(g(tn) + g(tn+1))

∣∣∣∣ ≤ C max
t∈[tn,tn+1]

|g′′(t)|∆t3.

Inserting g(t) = u′(t) = f(t, u(t)) allows us to write

|τn| =
1

∆t

∣∣∣∣∫ tn+1

tn

u′(s)ds− ∆t

2
[f(tn, u(tn)) + f(tn+1, u(tn+1))]

∣∣∣∣ ≤ C max
t∈[tn,tn+1]

|u′′′(t)|∆t2,

and thus
τ ≤ C max

t∈[0,T ]
|u′′′(t)|∆t2.
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In general, one has the following result for one-step methods: If the
truncation error is of order p, that is, τ ≤ C∆tp, then the numerical method
is convergent of order p.

We will prove this result for the forward Euler method only.

Proof for forward Euler method. Let us set

ũn+1 = u(tn) + ∆tf(tn, u(tn)), n = 0, . . . , N − 1,

which allows us to express the local truncation error as

τn =
u(tn+1)− ũn+1

∆t
.

In order to bound the total error u(tn+1)− un+1, we split it into two parts:

|u(tn+1)− un+1| ≤ |u(tn+1)− ũn+1|︸ ︷︷ ︸
=∆t|τn|

+|ũn+1 − un+1|

= ∆t|τn|+ |u(tn)− un +∆t(f(tn, u(tn))− f(tn, u
n))|

≤ ∆t|τn|+ |u(tn)− un|+∆t |f(tn, u(tn))− f(tn, u
n)|︸ ︷︷ ︸

≤L|u(tn)−un| as f is Lipschitz.

≤ ∆tτ + (1 + L∆t)|u(tn)− un|.

Defining εn = |u(tn) − un|, the error at time tn, applying the previous
relation repeatedly allows us to link εn+1 to εn, then to εn−1, and so on,
until arriving at ε0 = |u(t0)− u0| = 0:

εn+1 ≤ ∆tτ + (1 + L∆t)εn

≤ ∆tτ + (1 + L∆t)∆tτ + (1 + L∆t)2εn−1

...

≤
n∑

i=0

(1 + L∆t)i∆tτ + (1 + L∆t)n+1ε0

=
(1 + L∆t)n+1 − 1

L
τ,

where the last step uses the identity
n∑

i=0

rk =
1− rn+1

1− r

for r = 1 + L∆t > 1. We now use the inequality (1 + x) ≤ ex, x ≥ 0, to
conclude

|u(T )− uN | = εN ≤
eL∆tN − 1

L
τ =

eLT − 1

L
τ,

which proves that the error at the final step is of the same order as the
truncation error.
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The order of the one-step methods discussed so far is summarized in the
following table:

Method order
Forward Euler 1
Backward Euler 1
Crank Nicolson 2
Heun 2

6.4 Absolute stability
An autonomous system of differential equations takes the form

du(t)

dt
= f(u(t)), t > 0,

u(0) = u0,
(6.13)

that is, the function f does not depend explicitly on time. The system of
Example 6.2 is an instance of an autonomous system.

The values ū (if they exist) for which f(ū) = 0 are called equilibrium
points. If we set u0 = ū, the solution of (6.13) is u(t) = ū for all t; the
system remains in equilibrium.

An equilibrium point is called a global attractor if, for all u0, the solution
of (6.13) satisfies limt→∞ u(t) = ū. In other words, any solution of (6.13)
approaches the equilibrium after some (long) time. For many reasons, this
is an important property and, ideally, the approximation produced by a
numerical method should preserve it. This gives rise to the following stability
question: Given an autonomous system (6.13) with a global attractor ū such
that

∀u0, lim
t→∞

u(t) = ū,

is it true that the approximation un computed by a numerical method also
satisfies

∀u0, lim
n→∞

un = ū ?

In other words, if the exact solution approaches the equilibrium value, is
the numerical solution also approaching this equilibrium value? As we will
see, this is not always the case.

The answer to the stability question raised above is difficult to answer
in the general nonlinear case. However, we can give precise answers for a
linear system:

du(t)

dt
= Au(t) + b, t > 0, u(0) = u0, (6.14)

where u(t) = (u1(t), . . . , um(t))>, A ∈ Rm×m and b ∈ Rm.
We have the following result regarding equilibrium points for (6.14).
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Theorem 6.2. Given a linear system (6.14), suppose that <(λi(A)) < 0 for
every eigenvalue λi(A) ∈ C of A. Then (6.14) has exactly one equilibrium
point ū = −A−1b, which is a global attractor:

∀u0, lim
t→∞

u(t) = ū = −A−1b.

We now investigate when the property of Theorem 6.2 is preserved by a
numerical method.

Definition 6.4. Under the hypothesis of Theorem 6.2:

• A numerical method that computes approximations un ≈ u(tn) at uni-
form time steps is called absolutely stable for a fixed time step size
∆t if

∀u0 lim
n→∞

un = ū = −A−1b.

• A numerical method is called unconditionally absolutely stable
(or A-stable) if it is stable for all ∆t > 0. Otherwise, if the method
is stable only for some ∆t > 0, it is called conditionally absolutely
stable.

To verify whether a numerical method is absolutely stable, it suffices to
consider the case b = 0. Indeed, after performing the substitution v(t) =
u(t)− ū for u(t) satisfying (6.14), we see that v(t) satisfies the homogeneous
system dv(t)

dt = Av(t) with the initial value v(0) = u0 − ū.

6.4.1 Scalar model problem

We will first study the scalar case as a warmup:

du(t)

dt
= λu(t), t > 0, u(0) = u0. (6.15)

We assume λ < 0, which implies u(t) = u0e
λt → 0 for t→∞.

Lemma 6.3. The forward Euler method applied to (6.15) is absolutely stable
if

∆t <
2

|λ|
. (6.16)

The backward Euler method applied to (6.15) is unconditionally absolutely
stable.

Proof. The forward Euler method applied to (6.15) takes the form

un = un−1 +∆tλun−1 = (1 +∆tλ)un−1 = . . . = (1 +∆tλ)nu0.
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Therefore un
n→∞−−−→ 0 if and only if |1+∆tλ| < 1, which gives the condition

(6.16).
The backward Euler method applied to (6.15) takes the form

un = un−1 +∆tλun =⇒ un =
un−1

1−∆tλ
= . . . =

1

(1−∆tλ)n
u0.

As λ < 0, we have | 1
1−∆tλ | < 1 and un

n→∞−−−→ 0 for all ∆t > 0, which proves
the second part.

6.4.2 Vector model problem

We now consider the homogeneous case of the linear system (6.14):

du(t)

dt
= Au(t), t > 0, u(0) = u0, (6.17)

and assume that <(λi(A)) < 0 for i = 1, . . . ,m.
The following lemma generalizes the result of Lemma 6.3.

Lemma 6.4. The forward Euler method applied to (6.17) is absolutely stable
if |1 + ∆tλi| < 1 holds for every eigenvalue λi of A or, equivalently,

∆t < min
i=1,...,m

2|<λi|
|λi|2

. (6.18)

The backward Euler method applied to (6.17) is unconditionally absolutely
stable.

Proof. To simplify the proof, we assume that A is diagonalizable (the result
also holds for non-diagonalizable A). Hence, there is an invertible matrix V
(containing the eigenvectors of A) such that

A = V DV −1, D = diag(λ1, . . . , λn).

The forward Euler method takes the form

un+1 − un

∆t
= Aun = V DV −1un.

If we multiply both sides of this equation with V −1 and perform the change
of variable wn = V −1un, we obtain that

wn+1 −wn

∆t
= V −1V DV −1un = Dwn.

Because D is diagonal, the ith entry of this equation reads as

wn+1
i − wn

i

∆t
= λiw

n
i =⇒ wn+1

i = (1 + λi∆t)wn
i , i = 1, . . . ,m.
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Hence, it follows that every entry of the vector wn, and thus also the vector
un = Vwn, converges to zero as n→∞ if and only if

|1 + λi∆t| < 1 ∀i = 1, . . . ,m.

which corresponds to

(1 + ∆t<(λi))
2 +∆t2=(λi)

2 < 1

⇐⇒ 2<(λi) + ∆t|λi|2 < 0,

giving the condition (6.18) using that <(λi) < 0 and ∆t > 0.
On the other hand, the backward Euler method takes the form

un+1 − un

∆t
= Aun+1 = V DV −1un+1.

After again performing the change of variable wn = V −1un, we get

wn+1 −wn

∆t
= Dwn+1,

which entrywise reads as

wn+1
i − wn

i

∆t
= λiw

n+1
i =⇒ wn+1

i =
1

1− λi∆t
wn
i , i = 1, . . . ,m.

Since <(λi) < 0 for every i = 1, . . . ,m, it follows that

|wn+1
i | = |wn

i |
|1− λi∆t|

=
|wn

i |√
(1−<(λi)∆t)2 + =(λi)2∆t2

< |wn
i |.

Thus, wn = V −1un → 0 for n → ∞ for all ∆t > 0, which proves that the
method is A-stable.

Lemma 6.4 shows that forward Euler is only stable for sufficiently small
step sizes. It can be shown that every explicit method requires such a step
size restriction.

6.5 Error control: An adaptive algorithm

So far, we have assumed that the time step size is constant and chosen a
priori. In this section, we will develop an approach that chooses the time
step size ∆tn adaptively (and differently) in every time step.

A good choice of ∆tn has to strike a compromise between not being
too large (to ensure good accuracy) and being too small (to avoid excessive
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cost). We will control accuracy through the local truncation error, ignoring
contributions to the error from previous time steps:

|u(tn+1)− un+1|
∆t

.

The obvious problem with this formula is that we do not know the exact so-
lution u(tn+1). To address, we will replace it by a proxy – an approximation
computed with a more accurate method, that is, a method of higher order.
For example, suppose that the forward Euler method is used to compute
un+1. Then one could use the Heun method to compute

ûn+1 = un +
∆tn
2

f(tn, u
n) +

∆tn
2

f(tn +∆tn, u
n +∆tnf(tn, u

n))

and replace u(tn+1) by ûn+1:

τ̂n =
|ûn+1 − un+1|

∆tn
.

Given the estimate τ̂n, we accept the approximation produced by the
time step size ∆tn if τ̂n ≤ tol/T for a prescribed tolerance tol > 0. If,
however, τ̂n > tol/T , we reduce ∆tn (for example, dividing it by two) and
repeat the process until we have found an acceptable time step size.

It could also happen that τ̂n � tol/T , that is, the estimated error is a
lot smaller than the tolerance. In this case, it is wise to increment the time
step for the next time step (for example, by doubling it).

As a final twist, we expect that the Heun method will deliver better
accuracy than the forward Euler method. Hence, we return the approxima-
tion by the Heun method (even if the error is controlled for the less accurate
forward Euler method).

The described adaptive strategy is summarized in Algorithm 6.1.

6.6 Runge-Kutta methods
All the one-step methods studied in this chapter belong to the more general
family of Runge-Kutta methods, which take the following form:

Ki = f
(
tn + ci∆t, un +∆t

s∑
j=1

aijKj

)
, i = 1, . . . , s

un+1 = un +∆t
s∑

i=1

biKi, n ≥ 0.

(6.19)

Such a Runge-Kutta method first computes the so called stages K1, . . . ,Ks

and computes the next approximation un+1 using a linear combination of
these stages.
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Algorithm 6.1: ODE solver with adaptive time stepping: Combi-
nation of forward Euler with Heun.

Data: f(t, u), u0, [t0, T ], ∆tinit, tol
Result: N , [t0, t1, . . . , tN = T ], [û0 ,̂̂ u1, . . . , ûN ]
n = 0; ∆t0 = ∆tinit // initial time step;
while tn < T do

un+1 = un +∆tnf(tn, u
n) // forward Euler;

ûn+1 = un + ∆tn
2 f(tn, u

n) + ∆tn
2 f(tn +∆tn, u

n+1) // Heun;
τ̂n = |ûn+1−un+1|

∆tn
// error estimate;

if τ̂n > tol/T then // reduce time step size
∆tn = ∆tn/2;

else // accept time step
tn+1 = tn +∆tn;
if τ̂n < tol/2T then // increase time step size

∆tn+1 = min{2∆tn, T − tn+1};
else

∆tn+1 = min{∆tn, T − tn+1};
end
n = n+ 1;

end
end

A Runge-Kutta method is completely identified by the coefficients {aij},
{bi} and {ci} which are usually stored in a table (called Butcher table):

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

The method is explicit if aij = 0 for all j ≥ i, as every stage Ki can be
computed explicitly from the previous stages Kj , j < i. As mentioned
above, such methods are only conditionally stable, at best. The Butcher
tables for the methods discussed in this chapter are collected in Table 6.1
(check them as an exercise).

Python contains, within scipy.integrate, several implemented Runge-Kutta
methods. For example, scipy.integrate.RK45 implements a variation of Al-
gorithm 6.1. It uses a Runge-Kutta method of order 5 with s = 7 stages
to control the accuracy (and thus choose the time step size) for a nearly
identical Runge-Kutta method of order 5.
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0 0
1

Forward Euler

1 1
1

Backward Euler

0 0
1 1

2
1
2

1
2

1
2

Crank-Nicolson

0 0
1 1 0

1
2

1
2

Heun

Table 6.1: Butcher tables corresponding to the forward Euler, backward Euler,
Crank-Nicolson and Heun methods.
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Chapter 7

Boundary value problems in
one dimension

7.1 Example: Heat equation
Let us consider a metal bar of length L with density ρ and specific heat
capacity cp. We let T (x, t) denote the temperature of the bar at the point
x ∈ [0, L] and at time t. Moreover, we let J(x, t) denote the corresponding
heat flow. Let us consider a heat source f(x, t) generated, for example, by
a flame:

The temperature variation in time in an infinitesimally small slice [x, x+
∆x] of the bar is given by

ρcp
dT

dt
(x, t)∆x = J(x, t)− J(x+∆x, t) + f(x, t)∆x.

Dividing by dx and taking the limit for ∆x→ 0 results in

ρcp
dT

dt
(x, t) = −∂J

∂x
(x, t) + f(x, t).

Fourier’s law tells us that the heat flow is proportional to the temperature
gradient:

J(x, t) = −k∂T
∂x

(x, t), (7.1)

with k being the heat conductivity. Combining both equations finally results
in a differential model for describing the evolution of the temperature in the
bar (1D heat equation):

ρcp
dT

dt
(x, t)− k

∂2T

∂x2
(x, t) = f(x, t), x ∈ (0, L), t > 0. (7.2)

119



120 CHAPTER 7. BOUNDARY VALUE PROBLEMS

This is a partial differential equation (PDE), with the unknown being a
function, the temperature distribution T (x, t) in the bar at any given time.
To find a solution, we will have to provide the temperature distribution at
the initial instant and specify what happens at both end points of the bar.
For example, if the bar is in contact with heat tanks of constant temperature,
we can add the boundary conditions

T (0, t) = Tl, T (L, t) = Tr, t > 0.

Boundary conditions of this type are called Dirichlet boundary conditions.
Another possibility is that the bar is thermally insulated. In this case,

there is no heat flow at the end points of the bar and the boundary conditions
are

J(0, t) = −k∂T
∂x

(0, t) = 0, J(L, t) = −k∂T
∂x

(L, t) = 0, t > 0.

These conditions are called Neumann boundary conditions and they depend
on the value of the derivative of the solution at the end points, instead of
the value of the solution itself.

Of course, we can also consider a mix of both types of conditions and
consider, for example, a Dirichlet condition at the left end point and a
Neumann condition at the right end point.

If we are only interested in the temperature distribution in equilibrium
state (assuming that the heat source does not change over time), we can
solve the associated stationary problem

−k∂
2T

∂x2
(x) = f(x), x ∈ (0, L), (7.3)

either with Dirichlet boundary conditions:{
−k ∂2T

∂x2 (x) = f(x), x ∈ (0, L),

T (0) = Tl, T (L) = Tr,
(7.4)

or with Neumann boundary conditions:{
−k ∂2T

∂x2 (x) = f(x), x ∈ (0, L),

k ∂T
∂x (0) = Jl, k ∂T

∂x (L) = Jr.
(7.5)

Equation (7.3) is a second order differential equation because it features
the second derivative with respect to x. Problems of the form (7.4) and (7.5)
are called boundary value problems.
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7.2 Finite differences approximation of the station-
ary heat problem

We now consider the numerical solution of the one-dimensional stationary
heat problem with Dirichlet boundary conditions. To simplify notation, we
will denote the unknown function as u(x), set k = 1, and denote the Dirichlet
conditions by α and β:−

∂2u

∂x2
(x) = f(x), x ∈ (0, L),

u(0) = α, u(L) = β.
(7.6)

To find an approximated solution, we will proceed as follows: we divide the
interval [0, L] in n+1 sub-intervals Ij = [xj−1, xj ] of length h = L

n+1 , where
xj = jh, j = 1, . . . , n, and we seek for an approximation uj ≈ u(xj) at the
nodes xj .

At the end points x0 = 0 and xn+1 = L, the solution is known because
of the imposed Dirichlet boundary conditions. This means that as we set
u0 = α and un+1 = β, it remains to determine the values uj at the internal
nodes xj , with j = 1, . . . , n.

At every internal node, the exact solution satisfies the equation

−∂2u

∂x2
(xj) = f(xj).

The idea is now to replace the exact second derivative by the finite difference
approximation

∂2u

∂x2
(xj) ≈

u(xj−1)− 2u(xj) + u(xj+1)

h2
.

We then get the following scheme:
−uj−1 + 2uj − uj+1

h2
= f(xj), j = 1, . . . , n,

u0 = α, un+1 = β.
(7.7)

Taking into account the boundary conditions, the first and last equation can
be re-written as follows
−u0 + 2u1 − u2

h2
= f(x1) ⇐⇒ 2u1 − u2

h2
= f(x1) +

α

h2
,

−un−1 + 2un − un+1

h2
= f(xn) ⇐⇒ −un−1 + 2un

h2
= f(xn) +

β

h2
,

and, in turn, the system (7.7) becomes

2u1 − u2
h2

= f(x1) +
α

h2
for j = 1,

−uj−1 + 2uj − uj+1

h2
= f(xj), for j = 2, . . . , n− 1,

−un−1 + 2un
h2

= f(xn) +
β

h2
for j = n.

(7.8)
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If we introduce the unknowns vector u = [u1, . . . , un]
>, the linear system

(7.8) can be written in matrix form

Au = f̃ ,

with matrix A ∈ Rn×n and the right-hand side f̃ ∈ Rn given by

A =
1

h2



2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

 , f̃ =


f(x1) +

α
h2

f(x2)
...

f(xn−1)

f(xn) +
β
h2

 . (7.9)

Therefore, in order to solve Problem (7.6) approximately using finite differ-
ences, we have to solve a linear system of equations. We notice that the
matrix A is symmetric and tridiagonal. Moreover, we can prove that it is
also positive definite. This means we can use the LU factorization method
(or Cholesky factorization) in a very efficient way.

Additionally, one can prove that the condition number of the matrix A
satisfies

κ(A) = O(h−2),

that is, the matrix A becomes increasingly ill-conditioned as h becomes
smaller (when increasing the number of discretization points).

7.2.1 Stability and error analysis

For System (7.8), one can prove the following stability result:

Theorem 7.1. For all f = [f(x1), . . . , f(xn)]
> ∈ Rn and every α, β ∈ R,

the system (7.8) admits a unique solution u = [u1, . . . , un]
> ∈ Rn which

satisfies

max
j=1,...,n

|uj | ≤
1

8
max

j=1,...,n
|f(xj)|+max{|α|, |β|}. (7.10)

This result tells us that the norm of the solution u cannot become too
big; it is controlled by the norm of the vector f and the values α, β at the
boundaries.

We are now interested in studying the behavior of the error ej = u(xj)−
uj , j = 1, . . . , n, associated to the finite differences approximation (7.8) in
terms of h (or, equivalently, in terms of the number of discretization points).
For this purpose, we introduce notions analogous to the ones already used
in the study of numerical schemes for ODEs (see Chapter 6).
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Definition 7.1. A numerical scheme approximating the boundary value
problem (7.6) is convergent of order p if there exists a constant C > 0
such that

max
j=0,...,n+1

|u(xj)− uj | ≤ Chp,

provided that the solution is sufficiently smooth.

We also introduce a corresponding notion of local (in space) truncation
error.

Definition 7.2 (Local truncation error). Consider the exact solution
u(xj) of Problem (7.6) at the nodes xj = jh for j = 0, . . . , n+ 1. Then the
local truncation error at the node xj of the finite differences scheme (7.8) is
defined as

τj =
−u(xj−1) + 2u(xj)− u(xj+1)

h2
− f(xj), j = 1, . . . , n. (7.11)

As the exact solution satisfies −∂2u
∂x2 (xj) = f(xj), the local truncation

error
τj = −

u(xj−1)− 2u(xj) + u(xj+1)

h2
+

∂2u

∂x2
(xj)

represents the approximation of the second derivative of u using finite dif-
ferences. We have the following result (the proof is left as an exercise)

Result 7.1. The local truncation error (7.11) satisfies

max
j=1,...,n

|τj | ≤
h2

12
max
x∈[0,L]

|u′′′′(x)|, (7.12)

provided that the exact solution is four times continuously differentiable.

According to the definition of local truncation error, the exact solution
satisfies the discrete problem

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= f(xj) + τj , j = 1, . . . , n, (7.13)

while the approximated solution uj satisfies the problem

−uj−1 + 2uj − uj+1

h2
= f(xj), j = 1, . . . , n. (7.14)

If we subtract (7.14) from (7.13), we get the following system of equations
for the error: {−ej−1+2ej−ej+1

h2 = τj , j = 1, . . . , n,

e0 = en+1 = 0.
(7.15)
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This system has the same form of (7.7), or equivalently, of System (7.8),
with the local truncation error on the right-hand-side and with homogeneous
boundary conditions (α = β = 0). This allows us to apply the stability result
of Theorem 7.1 to conclude

max
j=1,...,n

|ej | ≤
1

8
max

i=1,...,n
|τi|,

which gives an estimation of the error of the solution in terms of the maximal
local truncation error.

The following theorem summarizes the results obtained.

Theorem 7.2. The finite differences scheme (7.8) applied to (7.6) converges
with second order. More specifically, we have

max
j=1,...,n

|u(xj)− uj | ≤ Ch2, (7.16)

where C = 1
96 maxx∈[0,L] |u′′′′(x)|, provided that the exact solution is four

times continuously differentiable.

Thanks to the stability result of Theorem 7.1, we notice that the error
maxj=1,...,n |u(xj)−uj | has the same order, in h, as the local truncation error.
This conclusion is also true for several other boundary value problems and
finite differences discretizations. Indeed, it often suffice to study the local
truncation error to predict the order of the method.

7.2.2 Neumann boundary conditions

Let us now consider a case of mixed Dirichlet–Neumann boundary condi-
tions: −

∂2u

∂x2
(x) = f(x), x ∈ (0, L),

u(0) = α, u′(L) = β.
(7.17)

As in the previous section, we divide the interval [0, L] in n+1 sub-intervals
Ij = [xj−1, xj ] of length h = L

n+1 , where xj = jh, j = 0, . . . , n + 1, and we
let uj ≈ u(xj) denote the approximate solution at node xj .

This time, the solution at the node xn+1 (right extremity) is not known,
which means that the vector of unknowns is u = [u1, . . . , un+1]

> ∈ Rn+1.
At every internal node xj , j = 1, . . . , n, we write the approximated

equation
−uj−1 + 2uj − uj+1

h2
= f(xj), j = 1, . . . , n.

We still have to determine the equation for the right end point (at the
node xn+1) and how to discretize the Neumann boundary condition u′(L) =
β. To this end, we have two possibilities which are presented below.
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First method: First order finite difference

The first idea is to discretize the Neumann condition u′(xn+1) = β using a
finite difference. As the vector of unknowns contains the values u1, . . . , un+1,
it makes sense to backward finite differences, yielding the equation

un+1 − un
h

= β. (7.18)

Note that this formula is only of first order! Using this choice, we arrive at
the following system of n+ 1 equations:

2u1 − u2
h2

= f(x1) +
α

h2
, for j = 1,

−uj−1 + 2uj − uj+1

h2
= f(xj), for j = 2, . . . , n,

−un + un+1

h
= β, for j = n+ 1,

which can be written in matrix form

Au = f̃ ,

with

A =
1

h2



2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 1

 , f̃ =


f(x1) +

α
h2

f(x2)
...

f(xn)
β
h

 . (7.19)

As mentioned, the drawback of this approach is that the approxima-
tion (7.18) is only of first order, that is, the local truncation error at the
node xn+1 satisfies

|τn+1| =
∣∣∣∣u(xn+1)− u(xn)

h
− β

∣∣∣∣ = ∣∣∣∣u′(L) + h

2
u′′(ξ)− β

∣∣∣∣ ≤ h

2
max

x∈[xn,xn+1]
|u′′(x)|.

In turn, the approximation of Problem (7.17) is also only of first order.

Second method: Ghost node

To retrieve a second order approximation, we would like to use a centered
finite difference in xn+1. For this purpose, we introduce the node xn+2 =
(n + 2)h, which is outside the interval [0, L], and the corresponding value
un+2, so that we can write the centered finite difference

un+2 − un
2h

= β, for j = n+ 1. (7.20)
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Because we added the new unknown un+2, we also have to add an equa-
tion. At node xn+1, the finite differences discretization of the equation
−u′′ = f can be written as:

−un + 2un+1 − un+2

h2
= f(xn+1). (7.21)

From Equation (7.20), we get un+2 = un + 2hβ which we insert in (7.21) to
obtain

−2un + 2un+1

h2
= f(xn+1) +

2β

h
. (7.22)

We finally arrive at the following system of n+ 1 equations:

2u1 − u2
h2

= f(x1) +
α

h2
, for j = 1,

−uj−1 + 2uj − uj+1

h2
= f(xj), for j = 2, . . . , n,

−un + un+1

h2
=

1

2
f(xn+1) +

β

h
, for j = n+ 1,

(7.23)

which can be written in matrix form as Au = f̃ with

A =
1

h2



2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 1

 , f̃ =


f(x1) +

α
h2

f(x2)
...

f(xn)
1
2f(xn+1) +

β
h

 . (7.24)

We notice that the node xn+2 and the corresponding unknown un+2 have
both been introduced only to be able to write the centered finite difference
(7.20), but they do not appear in the final system (7.23). The node xn+2 is
called ghost node.

Notice also that the only difference between System (7.24) and System
(7.19) can be found in the last component of the vector f , the matrix A
being the same in both cases. However, this small difference is sufficient to
produce a method of second order!
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