Class notes

Numerical Analysis

Fabio Nobile

(with modifications by Daniel Kressner)

Fall 2024
Last update: September 18, 2024

=PrL

Table of contents

1 Nonlinear Equations

1.1
1.2
1.3

14
1.5

Example: electrical circuit
Bisection
Fixed-point iterations
1.3.1 Introduction using the electrical circuit example . . .
1.3.2 Fixed-point method
1.3.3 Higher-order methods
Newton Method o L.
Systems of nonlinear equations
1.5.1 Newton method for systems of equations

2 Curve fitting

2.1
2.2
2.3

24

Polynomial interpolation of data
Piecewise linear interpolation
Spline interpolation Lo
2.3.1 Erroranalysis.
Least-squares approximation

3 Differentiation and integration

3.1

3.2

Finite differences o L.
3.1.1 Higher-order derivatives
3.1.2 Effects of round-offerrors
Numerical integration
3.21 Erroranalysis.
3.2.2 Richardson extrapolation
3.2.3 A posteriori error estimation

4 Linear systems — direct methods

4.1
4.2
4.3
4.4
4.5

Triangular systems
Gaussian elimination and LU decomposition
Gaussian elimination with pivoting
Memory usage and fill-in
Computational cost of LU decompositions

3

29
31
40
45
48
49

55
95
99
99
61
64
69
71

TABLE OF CONTENTS

4.6 Effects of round-off errors

Linear systems — iterative methods

5.1 Richardson methods
5.1.1 Computational cost

5.2 Jacobi and Gauss-Seidel methods

5.3 Convergence analysis L.

5.4 Error control and stopping criterion

5.5 Gradient methods
5.5.1 Gradient method (or steepest descent)
5.5.2 Generalizations

Ordinary differential equations
6.1 Existence and uniqueness of solutions
6.2 One-step methods
6.3 Erroranalysis L o o
6.4 Absolute stability oL
6.4.1 Scalar model problem
6.4.2 Vector model problem
6.5 An adaptive algorithm
6.6 Runge-Kutta methods

Boundary value problems

7.1 Example: Heat equation

7.2 Finite differences approximation
7.2.1 Stability and error analysis
7.2.2 Neumann boundary conditions

89
89
90
91
92
93
94
96
97

101
103
103
108
111
112
113
114
115

Chapter 1

Nonlinear Equations

In this chapter, we are interested in finding numerically the roots of a con-
tinuous function f(x) : [a,b] — R, also known as the values « € [a, b] such
as

f(a) =0. (1.1)

For this purpose, we will study several numerical methods which allow us
to find an approximate solution of (1.1)

1.1 Example: electrical circuit
Let us consider the electrical circuit shown in Figure 1.1 (left)

i

i
DL
~ pente ig/vy

viQ

G

Figure 1.1: Left: FElectrical circuit including a voltage generator, a resistance R
and a standard diode.
Right: Current—voltage relationship of a standard diode.

i

which includes:
e A voltage generator that generates a constant voltage V.

e An electrical resistance R with a linear relationship v = Ri between
the current ¢ and the voltage vg.

)

6 CHAPTER 1. NONLINEAR EQUATIONS

o A standard diode. The current—voltage (I-V) relationship is given by
the Shockley diode equation

i=ig (/™ =1,
where vy and ig are two constants that define the diode’s behavior.
This relationship is shown in Figure 1.1 (right).
To find the voltage across the diode, we combine the following expressions:
vp+uvp =V
vp = Ri — Ri (e”D/”O - 1) Yop =V,
i =g (e0/? —1)

The voltage vp across the diode is therefore the root of the nonlinear equa-
tion

f(x) =0, where f(x) = Rig (ez/”(’ - 1) +x-—V. (1.2)

1.2 Bisection
Bisection (also called method of dichotomy) is based on the following obser-
vation:

Remark 1.1. Consider a continuous function f : [a,b] — R such that
f(a)f(b) < 0. Then f has at least one root in [a,b].

Let us now consider the midpoint of the interval [a,b]: z,, = 252, We
then have the following three possibilities:

o If f(zy)f(a) <0 = then a root exists in the interval [a, z,,];
o If f(xm)f(b) <0 = then a root exists in the interval [z, b];

o If f(z) =0 = we found a root of f.

In the first two cases, we can repeat this process for the sub-interval that is
known to contain a root.

Algorithm 1.1: Bisection method (without stopping criterion)

We set a® = a, b® = p and 20 = M ;
for k=0,1,...do

if f(x®)f(a®) < 0 then // new interval [a(F), 2(F)]
‘ ab D) = k) pk+1) — o (k),

else // new interval [z(¥) p(F)]
‘ ab) = () k1) — p(k),

end

2+ a("'+1>—2&-b<"‘+1>;

end

1.2. BISECTION 7

The algorithm shown above is still incomplete because we have to setup
a stopping criterion for the iterations, which we will do below.

Error check

At the kth iteration, the root is inside the interval I*) = [a®) p(¥)] of length

| 10)| = (b;—ka). The root is approximated by the midpoint z*) = M. If
a represents the actual root of f, the error at the kth step of the algorithm

is bounded by

1 1 k+1
la — 2| < 21| = <) (b—a). (1.3)
2 2

If we want to find an approximation of the root with a prescribed toler-
ance tol, the bound (1.3) tells us that we can stop the iterations of Algorithm
1.1 when | (k')\ < 2 -tol. Therefore, we shall perform ki, iterations of the
algorithm so that

kmin""1 —
<1> (b—a) < tol = kmin > logy (b a) -1

2 tol

We note that the bound (1.3) is guaranteed, which means that if we
perform ki, iterations, bisection is guaranteed to return an approximation
with an error smaller than tol. Here is the complete algorithm that includes
the stopping criterion:

Algorithm 1.2: Bisection method (with stopping criterion)
Data: f(x), [a,b], tol
Result: « (approximate root), niter (number of iterations)
a® = g, b© = p, 20 = <OHO .
kmin = [log, (%51) — 11;
for k=0,1,...,knn — 1 do

if f(z®)f(a®) < 0 then // new interval [a(F), 2(F)]
‘ ab+1) = (k) pk+1) — (k).
else // new interval [z(¥) b(K)]
‘ ab 1) = g(®) k1) — p(k).
end
2R+ — a(k+1)-2i-b(k+1);
end

ks .
a =z mm), niter=~kp;n.

Advantages and disadvantages

+ Once we find an interval where the (continuous) function changes sign,
the algorithm is guaranteed to converge to a root.

8 CHAPTER 1. NONLINEAR EQUATIONS

+ We have a precise control on the error.

- If the function does not change sign around a root (f(z) = z?), it is
not possible to use this algorithm.

- The convergence of the algorithm is relatively slow; the error is divided
only by two at every iteration.

Example 1.1 (Electrical circuit). Let us come back to the example of the
electrical circuit from Section 1.1. Using Python, we visualize the function
f(z) forip=1,v9=01, R=1,V =1.

import numpy as np
import matplotlib.pyplot as plt

i0 =1

vO = 0.1

R=1

V=1

f = lambda x: R * i0 * (np.exp(x / vO) - 1) + x - V

np.linspace(-0.2, 0.2, 40)
plt.plot(x, f(x), color="b", linewidth=2)
plt.plot(x, 0 * x, "--k", linewidth=2)
plt.grid(True)

Figure 1.2 shows the function f(x). There is obviously a root in the interval
[—0.2,0.2].

3 I I I I I I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 1.2: Plot of the function f(x) from Eqn (1.2)

We apply the bisection method using the function bisection from the
Moodle page (call help(bisection) for details about the inputs and outputs
of the function).

import numpy as np
from functions import bisection

i0 = 1

1.3. FIXED-POINT ITERATIONS 9

vO = 0.1
R=1
V=1

f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x -V

zero, res, niter, inc, err = bisection(f, -0.2, 0.2, 1e-8, 10000)
print("zero " + str(zero))

print("res " + str(res))

print("iterations " + str(niter))

OUTPUT

zero 0.06596105694770812
res 7.085173225895858e-08
diterations 25

1.3 Fixed-point iterations

1.3.1 Introduction using the electrical circuit example

Let us consider again the electrical circuit from Section 1.1. To find an
approximation of the root, we could follow the process below:

15t method

e Let us suppose that we have a good general idea about the voltage
across the diode, which we name Ug)). For example, if the diode is
open, we would expect the voltage across the diode to be zero and we
can set ’U(DO) =0.

e Given the voltage vg]) across the diode, we can find the voltage across

the resistance vg) =V - v([()]) and thus the current (0 = vgg) /R =
(V —o)/R.

e As the currents passing through the resistance and the diode are the
same, we can find a new estimation of the voltage across the diode by
reversing the characteristic curve of the diode:

;(0)
vg) = g log (zzo + 1))

We expect the new estimation vg) to be better than the previous one.

(2)

We can repeat this process and find the second estimation v;,” and so on.

We expect the sequence vg),vg),vg), ... to converge towards the “true”

voltage of the diode. Formally, the method we just described takes the

10 CHAPTER 1. NONLINEAR EQUATIONS

following form: Given an approximation vg) at the k' iteration, we find

the new estimation vggﬂ) using
vV — o)
U§§+1):: vg log <,UL)%—1 . (1.4)
fﬁo

Let us try (1.4) in Python:

import numpy as np

i0 = 1

vO = 0.1

R=1

V=1

vD = 0

for i in range(10):
vD = vO * np.log((V - vD) / (R * i0) + 1)
formats to 15 decimal places
formatted_string = "{:.15f}".format (vD)
vD = float(formatted_string)

print("vD = " + str(vD))

OUTPUT

vD = 0.069314718055995
vD = 0.065787500825971
vD = 0.065970026647302
vD = 0.065960589502512
vD = 0.065961077453676
vD = 0.065961052224034
vD = 0.065961053528539
vD = 0.065961053461089
vD = 0.065961063464577
vD = 0.065961063464397

It can be seen that the sequence (1.4) converges to the same value we
previously found using the bisection method. Moreover, after 10 iterations,
12 significant decimal figures appear to be “stable” and we expect the error
to be smaller than 10712, This method seems to converge more quickly than
bisection.

The sequence (1.4) is not the only way to set up a recursion. In fact, we
could have defined another process:
2"d method

¢ Given an initial value of the voltage vg) across the diode, we can find

the current i(9) going through the diode: (9 = 4 (e”g)/”o — 1).

e We then find the voltage across the resistance vg) = R,

1.3. FIXED-POINT ITERATIONS 11

e Finally, we can compute a new approximation of the voltage across
the diode by v\)) =V — (),

and so on. The complete procedure takes the following form: Given an

estimation vg) at the k' iteration, we compute the new approximation
(h+1)

vp y

o =V = Rig (e —1). (1.5)

Let us also try (1.5) in Python:

import numpy as np

i0 = 1
vO = 0.1
R=1
V=1

vD = 0

for i in range(10):
vD =V - R * i0 * (np.exp(vD / v0) - 1)
formats to 15 decimal places
formatted_string = "{:.15f}".format (vD)
vD = float(formatted_string)

print("vD = " + str(vD))

OUTPUT

#vD = 1.0

vD = -22024.465794806718
vD = 2.0

vD = -485165193.4097903
vD = 2.0

vD = -485165193. 4097903
vD = 2.0

vD = -485165193.4097903
vD = 2.0

uD = -485165193. 4097903

Even though the motivation for the recursion (1.5) is as reasonable as
the one for (1.4), it does not seem to converge at all. This means that we
obviously cannot use it to find the voltage across the diode.

Let us now try to recapitulate and formalize everything that we did up
to now. We had to solve the following equation:

f(x) = Rio (ex/”o - 1) Yz —V=0.

12 CHAPTER 1. NONLINEAR EQUATIONS

For the first method, we rewrote this equation under its equivalent form

Current through the diode: 10 (ex/vo - 1) = V}; x

vV —
Voltage across the diode: x = vg log (i ° + 1) .
20

Then we performed the iteration z*t1) =y, log (V;z?ék) + 1)_

For the second method, we rewrote the equation simply under the form:

x:V—Rm@W%—Q

and we performed the iterations z(**1) =V — Ri (e‘”(k)/vo — 1) .

In both cases, we rewrote the nonlinear equation f(x) = 0 under an
equivalent form

z = ¢(x), (1.6)

leading to the iterative method
25D = (™), k=0,1,.... (1.7)

An equation of the form (1.6) is called fized-point equation because the
value a that satisfies the equation: o = ¢(«) has the property that ¢ applied
to a does not change the value of «. This value is therefore called a fixzed
point of the function ¢.

The iterative process (1.7) is called fized-point method or fixed-point it-
eration.

1.3.2 Fixed-point method

Given a nonlinear equation f(x) = 0, the fixed-point method consists in
rewriting, under an equivalent form, the equation f(z) =0 as a fixed-point
equation x = ¢(z), so that if « is the root of f

f@)=0 = a=¢().

Algorithm 1.3: Fixed-point method (without stopping criterion)

Choose a starting point z(9) sufficiently close to a fixed point «. for
k=0,1,...do
| 24D = o(a9)

end

1.3. FIXED-POINT ITERATIONS 13

Graphical interpretation

The fixed-point method admits a graphical interpretation. The solution
of the fixed-point equation x = ¢(z) can be viewed as the solution of the

system

y=o(x),

Y=z
Graphically, this means that the fixed points of ¢ are given by the intersec-
tion between the function y = ¢(z) and the line y = z.

In the same manner, the fixed-point method starts from a value 2(*) and

first computes y*t1) = ¢(z*) and then 2(+1) = y(*k+1) Therefore, the
value z(**1) on the abscissa has the same distance from the origin as the

value y**t1) on the ordinate axis. Let us now consider the equation

fl)y=z+1log(x+1)—2=0

and the 4 equivalent fixed-point equations

v =ga(x) = 2 — 3 (log(a + 1) +o—2),

z = 6a(x) = 2 — log(z + 1),

x = ¢3(x) = 2% 1, (18)
v = ga(x) = gallog(e +1) +2),

We can notice from Figure 1.3 that the fixed-point methods for ¢; and ¢o
converge whereas the fixed-point methods for ¢3 and ¢4 do not converge.

Convergence analysis

A detailed study of the results in Figure 1.3 reveals that the fixed-point
method converges when the slope of the function ¢ at the fixed point, ¢'(«),
is in the interval (—1, 1) whereas it diverges when |¢'(«)| > 1. This conclu-
sion holds at least for all initial points z(°) in the interval [0, 5]. For initial
points further from the fixed point, this conclusion can be false.

Let us establish more rigorously this result. We are interested in studying
the behavior of the error e®) = |z(*) — o at the k' iteration, at least when
2®) is not too far away from «. For this purpose, we recall the Taylor series
of 1% order of ¢ around the fixed point a:

¢(z) = ¢p(a) +¢'(a)(z — @) + R(z).
—~—

=

The remainder term satisfies

R(z)=o(lr —a]) <= lim

CHAPTER 1. NONLINEAR EQUATIONS

0(x)=x-0.5*(log(x+1)+x-2)

— y=phi(x)
y=X

XA
c

o — = -

0(x)=2-log(x+1)

— y=phi(x)
y=x

— y=phi(x) /
y=x |

Figure 1.3: First 5 iterations of the fixed-point method using one of the four differ-

ent fixed-point equations (1.8). The dashed line is the line with slope

—1 through the fixed-point.

1.3. FIXED-POINT ITERATIONS 15

that is, the function R(z) approaches zero more quickly than the function
| — al, as * — «a. This allows us to approximate the error at the first
iteration as follows:

7~ a = ¢(@0) = 6(a) = ¢'(0)@ ~ a) + o(2® ~ al)
small term

and, hence,
et =1¢/()]e? 4+ o(e®) .
N——

small term

The term o(e(?)) is negligible compared to the term |¢/()|e(®) when 2(©) is

sufficiently close to a. We can now iterate the previous reasoning
e®) = |¢/ (o)]e* V) + small term

= |¢'(@)2e*~? 4 small term

= |¢'(@)[Fe® + small term.

We conclude that the error e®) approaches zero if |¢/(a)| < 1 as we al-
ready guessed graphically. The result we just showed is summarized in the
following theorem:

Theorem 1.1. Consider a function ¢ : [a,b] — R of class C' (continuously
differentiable) and a fized point o € (a,b) of ¢.
If

¢/ ()| < 1
then there exists § > 0 such that the fized-point iteration D = ¢(z(*))
converges to o for every (% € [a — §,a 4 8]. Moreover,

Error control

Algorithm 1.3 is not complete as we need to add a stopping criterion (oth-
erwise, we end up with infinite loops!).

Ideally, one would like to finish the iterations when the error e®) =
|£L'(k) —a/| is smaller than a given tolerance. Sadly, we cannot use this criterion
as we do not know the exact solution. Therefore, we will have to proceed
differently.

Suppose that we computed the iteration z(¥). If 2(*) was a fixed point
of ¢, we would have z(®) = ¢(x(*®). Tt is likely that this is not true and
z®) — ¢(2*)) £ 0. This mismatch is measured by the residual

rB) = |z — (M)

16 CHAPTER 1. NONLINEAR EQUATIONS

We expect the residual to be small if () is close to a fixed point o and it
can be used as an error indicator. This motivates the

stopping criterion : [z®) — ¢(z*))| < tol.

Here is the complete version of the fixed-point method that includes a stop-
ping criterion:

Algorithm 1.4: Fixed-point method with stopping criterion

Data: ¢, 2(?, tol
Result: a, res, niter
r(0) = tol + 1; k=0;
while 7*) > tol do
264D = gz 0);
rk) = |+ _ (k)
k=k+1;
end

k)

a = z®) | res=r®) niter=Fk :

Algorithm 1.4 stops at the k"™ iteration for which (%) < tol is satisfied
for the first time. Usually, 7*) < tol does not guarantee that the true
error |z®) — al is also smaller than tol but often it is of the same order of
magnitude. This is a consequence of the following result:

2™ — o =2® — g(z®)) + ¢(a®) — o
= 2® — 5(a®) + 9(a®) - §(a)
=a2® — ¢(z¥) + ¢/ (™) (@®) - a),

where £ is a suitable point of the interval [a, z(*)] (implied by the mean
value theorem). It follows that
OSSN

L= ¢(EW))

When the residual is smaller than tol, this implies for the error that

W< 1y

<
T 1= (E®)]

If ¢'(€%) is not close to 1 then e®) < tol, whereas if ¢'(€*)) ~ 1 then

the true error can be a lot larger than the residual, thus making our error

control unreliable. Note that ¢'(£(F)) LmiN ¢'(«) if the method converges.

This once again shows the importance of the value of the slope ¢ at the fixed
point.

1.3. FIXED-POINT ITERATIONS 17

1.3.3 Higher-order methods

Theorem 1.1 predicts fast convergence close to the fized point when |¢' ()|
is small. Note that ¢'(a) = 0 does not imply that the method converges
immediately; it just implies that the method converges very quickly as z(*)
approaches «. The following definition of order provides a qualitative char-
acterization of the speed of convergence close to a.

Definition 1.1. Let a be a fized point of ¢. The fized-point method z(++1) =
¢($(k)) 1s said to be of order p if the following holds: Whenever the sequence
{z®)} converges to a, there exists C > 0 such that

‘axk+1)__a’

lim =
koo [20) — afp

For the method to be of order 1, then it is required that C' < 1.

The methods we studied for the functions ¢; and ¢2 in Equation (1.8)
are first-order methods. We can check this by using Python. As we do not
know the exact solution, we use the result

1
k) = — = (k)

T al = r

e T)
and then

(k+1) 1— /(¢ (k+1) (k+1) _ 1
koo (k)P koo [1—@/(ERNP |2 —alp |1 —¢/(a) P!

So we check if the limit limy_, o % approaches a constant (nonzero) for
p = 1. For this purpose, we use the function fixed point available on
Moodle:

import numpy as np
from functions import fixed_point

phi = lambda x: x - 0.5 * (np.log(x + 1) + x - 2)

x0 = 4
tol = 1e-3
nmax = 1000

X, res, niter = fixed_point(phi, x0, tol, nmax)
print("x ")

print (x)

print("res")

print(res)

print ("Number of iterations")

print(niter)

Prints ratio of res:

print ("Ratio of RES")

18 CHAPTER 1. NONLINEAR EQUATIONS

print(res[1:] / (res[:-1] *x 2))

OUTPUT

x

[4. 2.19528104 1.516803 1.29690678 1.23267172 1.21473639
1.2098015 1.2084494 1

res

[1.80471896e+00 6.78478046e-01 2.19896221e-01 6.42350574e-02

1.79353340e-02 4.93488414e-03 1.35209708e-03 3.70023111e-04]

Number of iterations

7

Ratio of RES

[0.20831313 0.47769002 1.3284236 4.34675574 15.34115371
55.52057452 202.40120959]

We can see that the value of r(++1) /r(k) approaches a constant for p = 1,
whereas it diverges for p = 2.
According to Definition 1.1, for a method of order p, we have

) — o = Cl2®) — afp

when z(® is sufficiently close to o. Let us illustrate the benefit of having
a method of order higher than 1 with a simple example: Given an initial
error |2(9) — a| = 1071, consider two fixed-point methods: the first of order
1 with C = 0.5 and the second of order 2 with C' = 1. Then the errors are
approzimately determined by the values in the table below:

First order method | Second order method
(C =0.5) (Cc=1)

e =200 —q| 01 0.1

e = |z —al | 0.05 102

e® =12 —al | 0.025 1074

e® =123 —al | 0.0125 10-8

From the table, it is clear that the error of the second order method decreases
a lot faster than the error of the first order method!

We now aim at understanding under which conditions a method has an
order greater than 1. This will help us develop new high order methods. For
this purpose, let us come back to the approximation error of a fixed-point
method:

25 0 = 6(a) — 6(0) = ¢'(0)(x®) —) + o2 — al).
small term

What happens if ¢/(a) = 0?7 To gain more insight into this case, we use a
Taylor series of second order:

24— = g(a¥)-g(a) = ¢(@)() —) 56" (@) P —aP+oljs) — af?).
—_— 2 | —

=0 small term

1.4. NEWTON METHOD 19

If we neglect the “small” term, we can say that

2B o~ %qﬁ”(a)(x(k) —a)?

when z(®) is close to . Hence, the method has order 2.

More generally, if ¢'(a) = ¢"(a) = ... = ¢?"1(a) = 0 and ¢P(a) # 0,
the method has order p. The following theorem collects our considerations.

Theorem 1.2. Consider a function ¢ : [a,b] — R of class CP (p times
continuously differentiable) and a fizved point o € (a,b) of ¢. If

#(a)=¢"(@)=...=¢" () =0 and ¢P(a) #0, p>2,

then there exists § > 0 such that the iterations x*+1) = ¢(z*)) converge to
a for every xo € [— 0, + d]. Moreover,

’x(k+1) —af 1
lim ——— = —
k—o0 ‘x(k) — a’P p!

9" (a)],

that is, the fized-point method is of order p.

In the next section, we will study a second-order method, the Newton
method.

Error control

Let us recall the previously established link between the error and the resid-

ual:
k) 1 (k)

—al=———+7
11— ¢/ (£8))]
For an order p method with p > 1 we have ¢'(«) = 0 and in this case

lz®) — | ~).

Hence, for a method of order 2 or larger, the residual is an excellent approx-
imation of the error when z(® is close to a.

1.4 Newton Method

The Newton method is one of the most popular methods for solving a non-
linear equation f(x) = 0. Suppose that « is the desired root of f and we
start from an initial value z(©) (sufficiently close to o). Then the first-order
Taylor expansion of f around a gives

fl@) = f(@) + (@) (a — 2©) + “small term”.

20 CHAPTER 1. NONLINEAR EQUATIONS

If we neglect the “small term” and take into account the fact that f(a) =0,
we arrive at

F@0) + f @) — 20) = 0.

A new (and hopefully better) approximation of « is provided by taking the
root of this linear equation:

0) _ f(fﬁ(o))
/(@)

2 _

By repeating this process, we find £ and so on.

Algorithm 1.5: Newton method (without stopping criterion)
Given f, f' and z(©);
for k=0,1,... do
(k)
Lo f@)
f'(@®)

L(k+)

end

Figure 1.4 provides a graphical interpretation of the method. From the
initial value z(9), we approach the curve f (z) by the tangent line in) and
we find the root of the tangent line.

Tx@xM 5O

/// //,///

Figure 1.4: Graphical illustration of the Newton method.

Convergence analysis
We first notice that Algorithm 1.5 can be viewed as a fixed-point method:

S
7'(z)

2D — ¢(m(k)) where ¢(x) =

1.4. NEWTON METHOD 21

L ©

PO

Figure 1.5: Two cases of non-convergence of the Newton method if the initial value
is too far from the root.

To understand the order of this method, we need to determine the derivatives
of ¢ at . Computing the first and second derivatives gives

f(@)f" (@)

Y= e
() = f'(@)?f" () + f(a) f' (@) f" (2) — 2f (2) f" (x)?
(f'(x))? ’
and thus
¢'(a) =0 if f'(a) # 0,
¢//(a) _ f//<Oé) # 0 if f”(Oé) ?é 0.
f'(e@)

In the exceptional situation f’(«) = 0, the Newton method is of first order
at best. On the other hand, if f'(«) # 0, the Newton method has (at least)
second order.

Theorem 1.3. Consider a function f of class C? and a root o of f. if
f(a) #0 and f"(a) # 0, the Newton method converges with order two for
every 0 sufficiently close to o.. Moreover

e —a] 1)
lim = — .
k—oo |zk) — a2 2 |f'(a)]

It is important to notice that the convergence established by Theorem 1.3
is only local, that is, the convergence is guaranteed only if the initial value
2 is sufficiently close to the root a. Figure 1.5 shows two cases of non-
convergence of the Newton method if the initial value is too far from the
root.

Error control

In Section 1.3.3 we have seen that controlling the error of a second-order
method using the increment |z(*+1) — z(F)| (residual of the corresponding

22 CHAPTER 1. NONLINEAR EQUATIONS

fixed-point equation) is very reliable if z(*) is sufficiently close to .. Thus,
we can use the following stopping criterion for the Newton method

2D — 28| < tol.

The complete algorithm is given below:

Algorithm 1.6: Newton method (with stopping criterion)

Data: f, [/, (9, tol, nmax

Result: «, res, niter

r©) = tol +1; k = 0;

while 7®) > tol AND k < nmaz do
2D — (k) _ S

Fra®)
pt1) — ’$(k+1) _ x(k)‘;
k=k+1;
end

a = z®) | res=r®) niter=Fk ;

Example 1.2 (Electrical circuit). Let us come back to the electrical circuit
from Section 1.1 and let us solve the Equation (1.2) using the Newton method
with the initial value) = 0.1. For this purpose, we use the function newton
available on Moodle:

import numpy as np
from functions import newton

i0 = 1
vO = 0.1
R=1
V=1

f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x -V

df = lambda x: R * i0 * np.exp(x / v0) / vO + 1

x0 =0

zero, res, niter, inc = newton(f, df, x0, 1e-8, 100000)
print ("Results")

print("zero = " + str(zero))

print("residual = " + str(res))

print ("number of iterations = " + str(niter))
OUTPUT

Results

zero = 0.06596105346440571
residual = 3.552713678800501e-15
number of iterations = 5

It is clear here that the Newton method converges much faster than the
fized-point method (1.4). The function newton also returns us the list of

1.5. SYSTEMS OF NONLINEAR EQUATIONS 23

increments |zt —2(®)| in the variable inc. This provides us the possibility
of verifying the order of convergence

import numpy as np
from functions import newton

i0 =1
vOo = 0.1
R
V=1
f = lambda x: R * i0 * (np.exp(x / v0) - 1) + x - V
df = lambda x: R * 10 * np.exp(x / v0) / vO + 1
x0 =0
zero, res, niter, inc = newton(f, d4df, x0, 1e-8, 100000)
print ("convergence")
print ("-————————— ")
for i in range(1l, 5):

print("order " + str(i))

print(inc[1:] / inc[:-1] *x* i)

]
-

OUTPUT

order 1

[2.44095936e-01 1.22648213e-01 1.31765451e-02 1.70533784e-04]
order 2

[2.68505529 5.5270496 4.8414167 4.75532045]

order 3

[2.95356082e+01 2.49072339e+02 1.77886658e+03 1.32601717e+05]
order 4

[3.24891691e+02 1.12242579e+04 6.53603376e+05 3.69758790e+09]

H oW O R R O™ W W

We observe that the ratio |z 1) — 28| /|2 — 2 (k=12 for k =1,2,3,4
is stable around 5 whereas the ratio |z *+1) — z)| /|z®) — 2 (E=D| approaches
zero, which confirms that the method is of second order.

1.5 Systems of nonlinear equations

In this section, we will generalize the Newton method to a system of non-
linear equations:

fl(l‘l,. . ,.Cl;‘n) =

fn(xla cen ,$n) =0.

For this purpose, let us introduce the compact notation

f(x)=0

24 CHAPTER 1. NONLINEAR EQUATIONS

where
x1 filzy, ... 2p)
x=1:11, fx= :
T fuz1, ..o)
We call @ = [ag,...,a,]" € R" aroot of f if it satisfies f(a) = 0.

Example 1.3. Let us consider the system of two equations in the two un-

knowns x1,Ts:

fi(z1,22) = 2% + 2125 — 10 = 0, (1.9)
f2(.’L’1,IE2) :IE2+3IE1CE% —57=0. '
The first equation implicitly defines the curve
10 — 22
fi(zy,z9) =23 + 2120 — 10 =0 = x9 =g1(z1) = o L
whereas the second equation defines the curve
57T —x
fo(z1,22) = 22 + 32125 — 57 =0 = r1 = go(x2) = 2 2
2

Figure 1.6 shows the two curves xo = g1(x2) and x1 = go(x2) plotted in
Python. Their intersection corresponds to the root of the system (1.9).

import numpy as np
import matplotlib.pyplot as plt

gl = lambda x1: (10 - x1**2) / x1

g2 = lambda x2: (57 - x2) / (3 * x2%%2)
plot de z2=g1(z1)

x1 = np.linspace(l, 3, 50)

plt.plot(xl, gi(xl), "b", linewidth=2)
plot de z1=92(z2)

x2 = np.linspace(l, 4.5, 50)
plt.plot(g2(x2), x2, "r", linewidth=2)
plt.legend([r"$f_1(x_1,x_2)$", r"$f_2(x_1,x_2)$"1)
plt.grid(True)

plt.xlim([1, 4.5])

1.5.1 Newton method for systems of equations

To derive the Newton method for a system of equations, we proceed in an
analogous way as in the case of a scalar equation. The (multivariate) first-
order Taylor series of f around an initial point x(©) (sufficiently close to c)

gives:

0 = f(a) =) + Je(x)(a — x0) 4 “small term”. (1.10)

1.5. SYSTEMS OF NONLINEAR EQUATIONS 25

fl(xl,xz):C

8 =

_fz(xl,xz) Q

7L]

sl]

51]

4l]

o

3l]

ol]

s §
0 i

1 15 2 2.5 3 35 4 4.5 5

Figure 1.6: Intersection of the two functions fi(x1,z2) = 0 (blue) and fao(x1,z2) =
0 (red) from (1.9)

Here, the Jacobian matrix Jp € R™*™ is defined by

rof Ofh .. OA7
0x1 O0xo 0xn
Of2 Of2
Jf — 8381 8.1‘2
Ofn ... Ofn
L Ox1 Oxy, -

After neglecting the “small term”, the equation (1.10) becomes a linear
system in . Solving this linear system, we find an approximation of the
root o which we will name x") and for which

Jr(x0)(x™M — x(0) = —¢(x©)).

The Newton method is obtained by repeating the process for x(). The
solution of linear systems (needed to compute x()) will be discussed in
Chapters 4 and 5. For the moment, we will simply use the Python command
numpy.linalg.solve (A,b) to solve a linear system Ax = b.

We can stop the iterations when [|[x*+1 — x(*)|| < tol where we use ||v||

to denote the Euclidean norm of a vector v € R™: |v]| := \/v] + ...+ v2.

26 CHAPTER 1. NONLINEAR EQUATIONS

Algorithm 1.7: Newton method for systems of equations

Data: f, Jg, x(©, tol, nmax

Result: a, res, niter

() = tol 4+ 1; k = 0;

while r*) > tol AND k < nmaz do
Solve linear system Jg(x*))dx = —f(x*));
xEHD) — x (k) 4 ox;
rl+l) — Hx(k-i-l) _ X(k)H?
k=k+1;

end

a =x®_ res=r® niter=F ;

The convergence analysis is done in the same way as for the scalar case.
Here, we will just quote the main result.

Theorem 1.4. Consider a function f : R* — R" of class C? and a root o
of £. If det(Jg () # O (the Jacobian matriz is invertible) then the Newton
method converges with order (at least) 2 for all x() sufficiently close to cv.

Example 1.4. Let us apply the Newton method to the system (1.9) with
the initial point x(©) = (1,0). The first iteration of the Newton method is

computed as follows:
n_ (A0 [=9
f(X(O) — |:f2(1,0):| — |:_57:| ;

. 21 + 29 T 0)y _ 2 1
Je(x) = [372 1+ 6$1(E2:| = Je(x) = ‘

Hence, we have to solve the linear system

2 1 (51‘1 . 9

0 1| [dzs| |B7T|’
which has the solution 6x = (—24,57). This gives x1) = x(0 4 §x =
(—23,57).

Example 1.5. We now solve (1.9) using the Newton method in Python,
with the help of the function newtonsys available on Moodle. We choose
x(0) = [3,4]T as initial value.

import numpy as np
from functions import newtonsys

f = lambda x: np.array([x[0] *x 2 + x[0] * x[1] - 10,
x[1] + 3 * x[0] * x[1] ** 2 - 57])
df = lambda x: np.array([[2 * x[0] + x[1], x[0]],

1.5. SYSTEMS OF NONLINEAR EQUATIONS

[3 * x[1] ** 2,1 + 6 * x[0] * x[1]]11)
x0 = [3, 4]
X, inc, niter = newtonsys(f, df, x0, 1le-8, 1000)
print("x= " + str(x[-11))
print ("number of iterations " + str(niter))
print("increments=" + str(inc))

OUTPUT

#x= [2. 3.]

number of iterations 5

increments=[1.11487660e+00 3.27957413e-01 3.58120064e-02
1.96157782e-04 1.10946122e-09]

27

We observe that the method converges to the exact solution oo = (2,3)
in only 5 iterations. We can also check the order of convergence. As in the
scalar case, the function newtonsys gives us also the list of the increments
[|x*+D — xF)|| in the variable inc. This means we can compute the ratio of

two consecutive increments
x40 — %)
||x(k) — x(k_l)Hp

for different values of p.

import numpy as np
from functions import newtonsys

f = lambda x: np.array([x[0] ** 2 + x[0] * x[1] - 10,

[11 + 3 * x[0] * x[1] *x 2 - 57])
lambda x: np.array([[2 * x[0] + x[1], x[0]],

[3 * x[1] ** 2, 1 + 6 * x[0] * x[111])

df

x0 = [3, 4]

X, inc, niter = newtonsys(f, df, x0, 1le-8, 1000)
print("x= " + str(x[-11))

print ("number of iterations " + str(uniter))
print("increments=" + str(inc))
print("ratio with p=1")

print(inc[1:] / inc[:-1])

print("ratio with p=2")

print(inc[1:] / inc[:-1] ** 2.0)
print("ratio with p=3")

print(inc[1:] / inc[:-1] ** 3.0)

OUTPUT

ratio with p=1

[2.94164765e-01 1.09197124e-01 5.47743064e-03 5.65596310e-06]
ratio with p=2

[0.2638541 0.33296129 0.15294956 0.02883374]

ratio with p=3

[0.23666664 1.01525771 4.27090173 146.99260448]

28 CHAPTER 1. NONLINEAR EQUATIONS

For p =2, the ratio appears to be constant, allowing us to conclude that
the method converges with order 2.

We conclude this section with a few words on ensuring global convergence
of the Newton method, that is, convergence also from initial points that are
not necessarily close to a root. For this purpose, let us first write the Newton
method in compact form:

<k — x (k) _ (Jf(x(k))_lf(x(k))'

Divergence of the Newton method is often caused by “overshooting”, that
is, the new approximation x(*+1) gets further away from the root than x (k)

Overshooting can be cured by considering the damped Newton method:
x(kF D) — (k)) (Jf(x(k’))*lf(x(k))’

where 0 < A\p < 1 is a damping factor. This damping factor is selected
from the set {1,1/2,1,4,...} by choosing the first value for which f(x(k+1))
becomes (significantly) smaller than f(x*)).

Chapter 2

Curve fitting

Suppose that we have at our disposal measures of a quantity y, for example
the water temperature of the Leman lake, at n different depths. Let x;, i =
1,...,n be the depths at which we collect the measures and y;, ¢ =1,...,n
the corresponding measured temperatures.

We try to find a continuous function p(z) that best describes the data
(zi,9i), namely p(z;) ~ y;.

A different way of framing this problem is the following: We make the
hypothesis that a function f exists which describes the link between y and
x, that is, y = f(z). Importantly, f is defined for all z and not only for the
values z; at which we obtained the measures y;. We say that y = f(x) is
a conceptual model. For the example above, we imagine that there exists a
function y = f(x) that gives the temperature of the water at every depth
of the lake. However, our only knowledge about this function are the values
(x4,y;) that we measured. We are aiming at building the complete function
f(z) from the available measures. This will allow us to estimate the water
temperature at every depth and not only at the measured ones z;.

Example 2.1 (Dynamic viscosity of water). The viscosity of water depends
on the temperature, as shown in Table 2.1 and Figure 2.1 (left). Suppose
that we are interested in the viscosity of water at 25°C. This temperature
s mot in the table. To find a good approximation of the viscosity at this
temperature, we can proceed as follows: First find a continuous function
p(T) that interpolates the data, that is,

find p(T") such that p(T;) = v, (2.1)

where T7 = 10,75 = 20,...,T19 = 100 are the temperature values from
the table and v1 = 1.308, 15 = 1.002,...,v19 = 0.2822 are the corresponding
viscosity values. A problem of the form (2.1) is called interpolation problem.

Once such a function p is found, we can evaluate the viscosity at a
temperature of 25 °C using v = p(25). Figure 2.1 (right) shows a pos-

29

30 CHAPTER 2. CURVE FITTING

Temperature [°C] | Viscosity [mPa - s]
10 1.308
20 1.002
30 0.7978
40 0.6531
50 0.5471
60 0.4658
70 0.4044
80 0.3550
90 0.3150
100 0.2822

Table 2.1: Viscosity of water depending on the temperature (source: Wikipedia)

16 16
e données (T‘,vi)
14 14 - - -interpolante spline
[] []
—_ 12 —_ 12
@ @
© © ~
o o \
£ 1 ° E 1 o,
) e |----%
2 = s,
2 08 ° g 08 L.
g g L
2 ° 2
> 06 > 06 | .
. I ...
° : bt N
0.4 o 0.4 N
° o ! T
® | ~-~9
02 02 L
10 20 30 40 50 60 70 80 920 100 10 20 30 40 50 60 70 80 90 100
Temperature [°C] Temperature [°C]

Figure 2.1: Left: Available date of water viscosity vs. temperature. Right: Spline
function interpolating the data. In red: Viscosity at 25°C

sible interpolating function obtained by spline interpolation, which will be
discussed in Section 2.3.

Example 2.2 (Dog bone tensile test). We want to measure the mechanical
characteristics of a material. To this end, we perform tensile testing on
a sample with the geometry shown in Figure 2.2 (dog bone). The sample
is submitted to a stress o (force by area). The corresponding strain e is
measured by a device called strain gauge. We apply multiple stresses o;, 1 =
1,...,n uniformly distributed (also called equidistant) between 0 and omax
and we measure the corresponding strains €;. We then want to characterize

— o

strain gage

Figure 2.2: Sample of a material for tensile testing

2.1. POLYNOMIAL INTERPOLATION OF DATA 31

the stress-strain law of this material. However, the values measured for e;
are affected by non-negligible measurement error. Figure 2.8 (left) shows
possible data obtained in such an experiment. Let us imagine that there
exists a true function f that links the strain to the stress: € = f(o) and that
the measurements €; are given by

gi = f(oi) +mi,

where n; contains measurement errors.

We aim at obtaining a good approximation p(o) for the true function
f(o) from the data (04,e;). In this case, it is not a good idea to find
an interpolating function, as such a function would also interpolate the
measurement error. It would be better to aim at finding a function p(c) that
approzimates the data well (but not perfectly) and at the same time filters
the measurement error. For this purpose, one often searches for p in a class
of functions W (for example fized-degree polynomials) that minimizes the
sum of the squared data distances:

n
p = argmin ¥ _|g; — q(0)|*.
€Wy

This is called least-squares approximation. Figure 2.3 (middle) shows a
reconstruction of the stress-strain law by spline interpolation of the data,
while Figure 2.3 (right) shows the reconstruction obtained using least-squares
polynomial approximation of third degree. Intuitively, the least-squares ap-
prorimation appears to more sensible.

données de contrainte/déformation interpolation spline approximation aux moindres carrés
1 1

c c o

Figure 2.3: Left: Strain measures obtained with a strain gauge. Middle: Spline
interpolation of data. Right: Least-squares approximation with poly-
nomial of degree three.

2.1 Polynomial interpolation of data

We first consider the case where measures are not affected by measurement
errors and the goal is to interpolate data. Suppose we have n + 1 data
(4,v:), with ¢ = 1,...,n + 1, and that there is a function f (unknown to

32 CHAPTER 2. CURVE FITTING

us) that links the variables y and x. Therefore, our model is
yi = f(x;), i=1,...,n+1.

A common approach is to find a polynomial of degree (at most) n that
interpolates the data.

Definition 2.1. Consider given data (x;,y;), i =1,...,n+ 1. A polyno-
mial interpolating this data is a polynomial p, of degree at most n, such
that

yi = pn(xi), 1=1,...,n+ 1

We will see below, in Section 2.1, that the polynomial from Definition 2.1
always exists and is unique, provided that the values of x; are mutually
distinct. Indeed, for n = 1, it is simple to see that there is exactly one line
(first degree polynomial) that passes through the two points (z1,y;) and
(z2,y2). Likewise, there is exactly one parabola (second degree polynomial)
that interpolates three points (x1,y1), (2,y2), and (z3,ys3).

Construction using Vandermonde matrix

The most common representation of a polynomial of degree at most n is in

terms of the monomial basis (1,z,...,z"):
pn(:v):ag+a1x+a2x2+...+anm”, ap,...,an € R.
Now, the task is to find the n + 1 unknown coefficients ag, ..., a, from the

data (x;,v;), ¢ = 1,...,n + 1, by using the n + 1 interpolation conditions
Yi = pn(xi):

po(r1) = ap + a1y + agx? + ..+ apal =y,
Pu(r2) = ao + a1z2 + a2a3 + ... + anah = yo,

(2.2)
pn(anrl) =ap+ a1Tp4+1 + a2$%+1 +...+ anxz_ﬂ = Yn+1.
This is a linear system of n + 1 equations in the n + 1 unknowns ayg, ..., an.
It can be written in matrix form as follows:
1 o 22 - 2] Jao Y1
1 x9 x% e Ty al Y2
= (2.3)
1 zpp xi“ o Zpya] Lan Yn+1
e e
\%4 a y

The V matrix is called a Vandermonde matriz. Using the fact that the
coefficients ay, ..., a, are uniquely determined (because p,, is uniquely de-
termined), it follows that the linear system (2.3) has a unique solution and,

2.1. POLYNOMIAL INTERPOLATION OF DATA 33

hence, the matrix V' is invertible (provided that the values of x; are mutually
distinct).

However, the matrix V is infamous for becoming a very ill-conditioned
matrix as n increases; we will discuss this notion in more detail in Chapter 4.
This makes the numerical solution of (2.3) difficult because small errors on
the right-hand side (e.g., rounding errors due to the floating point number
representation) are amplified in the solution and can lead to numerical so-
lutions of very poor quality. We have to be careful when using this method
for larger n (already n = 15 can be problematic).

Example 2.3 (Dynamic viscosity of water). Let us consider again the exam-
ple of water viscosity. We want to find the polynomial of degree 9 that inter-
polates the 10 measures from Table 2.1. The Vandermonde method explained
above is utilized by the Python command p__coef=numpy.polyfit(x,y,n), where
x 1s the wvector containing the temperatures, y is the wector containing
the measures (water wviscosity) and p_coef is the wvector containing the
coefficients of the degree n interpolating polynomial in decreasing order:
p_coef=(ap, an_1,...,a0).

import numpy as np

T = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

nu = [1.308, 1.002, 0.7978, 0.6531, 0.5471, 0.4658, 0.4044,
0.3550, 0.3150, 0.2822]

p_coef = np.polyfit(T, nu, 9)

print("p_coef:", p_coef)

OUTPUT

p_coef: [-3.76432981e-16 1.86061508e-13 -3.93806217e-11
4.66770833e-09 —-3.40309606e-07 1.58054062e-05
—4.71143269e-04 9.11859623e-03 -1.30803159e-01
2.04700000e+00]

p_coef: [-3.76432981e-16 1.86061508e-13 -3.93806217e-11

To plot the obtained polynomial, we can use the command np.polyval .

import matplotlib.pyplot as plt

T_fine = np.arange(10, 100.1, 0.1) # fine grid for visualization

p = np.polyval(p_coef, T_fine) # evaluation of polynomial in T_fine
plt.plot(T_fine, p, "b")

plt.plot(T, nu, "rx")

Figure 2.4 shows the graph of the interpolating polynomial. For this ap-
plication, the polynomial appears to describe the behavior of the data very
well.

34 CHAPTER 2. CURVE FITTING

Pol. intery
14l * données |

%

.
"0 20 30 40 50 60 70 80 920 100
T

Figure 2.4: Data of water viscosity depending on temperature (Table 2.1) and de-
gree 9 interpolating polynomial.

Construction using Lagrange basis

The Lagrange basis of polynomials offers an attractive alternative to the
Vandermonde method for constructing interpolating polynomials. This al-
ternative does not require the solution of any linear system and also tends
to be numerically more reliable for larger values of n. We start by defining
the Lagrange basis.

Definition 2.2. Given mutually distinct nodes xi,z2,...xn+1 € R the
corresponding basis of Lagrange polynomials are the n+1 polynomials

(x—z1)(x—22) ... (r —mi1) (@ — Tig1) ... (T — Tpg1)

¢Z($) - (.%'z — 1‘1)(1‘1 — l'Q) e (wz — I‘l‘_l)(l‘i — xi+1) e (-Tz — -rn—i-l)
T (@)
B JHl (i — ;)
J#u

fori=1,...,n+1.

It can be verified that (¢4, ..., ¢,+1) represents a basis of the vector space
of polynomials of degree at most n. By their definition, these polynomials
have the following important property:

oi(xg) =0 if k # ¢ and ¢;(z;) = 1. (2.4)

In other words, the polynomial ¢;(z) equals 0 at every node xj except for
the node x; where it equals 1. Figure 2.5 shows the polynomials ¢1, ¢3 and
¢5 associated with the nodes x1 = 0,29 =0.2,23 =04,...,26 = 1.

Thanks to (2.4), the construction of an interpolating polynomial becomes
very simple in the basis of Lagrange polynomials.

2.1. POLYNOMIAL INTERPOLATION OF DATA 35

Figure 2.5: Lagrange polynomials ¢1, ¢3, ¢5 associated with the nodes 1 = 0,22 =
0.2,.133 = 0.4,...,.136 =1.

Proposition 2.1. The polynomial py, interpolating the data (z;,y;), with
1=1,...,n+1, is given by

n+1

Pa(®) =D yidhi(®). (2.5)
i=1

Because each ¢; has degree n, it follows that p, has degree at most n.
Moreover, the interpolating property follows from (2.4):

(k) = y1 d1(2k) +yo P2(xr) + .-+ Yk Pr(Tk) + o + Ynt1 Pnt1(Th) = Yk
=0 =0 =1 =0
Proposition 2.1 also shows that the polynomial interpolation problem

from Definition 2.1 always admits a solution. Moreover, the basis property
of ¢1,...,¢ny1 implies that this is the only solution.

Example 2.4. We want to build an interpolating polynomial for the data
(xr1 = 0,1 = 1) and (z2 = 1,y2 = 2). Let us first start by building the
Lagrange’s basis

(x—x9) x—1

¢1($): ($1—$2) = 1 :1—3',',
_(x—a:l)_x—o_x
¢2($) - (xg _ :1:1) - 1 e

Finally, the interpolating polynomial is
pi(x) = 1101(x) + y2g2(x) = 1(1 —2) + 2z =x +1

which can be easily verified.

36 CHAPTER 2. CURVE FITTING

For large n, the evaluation of p, at a value z using directly the for-
mula (2.5) becomes somewhat expensive because the number of operations
needed grows quadratically with n. Let us mention barycentric interpolation
formulas as a common approach to reduce this cost.

Error analysis

When discussing the quality and error of polynomial interpolation, it is
important to pose the right questions. For example, one could ask whether
the interpolating polynomial p,, is a good approximation of the “true” (but
unknown) function f that generated the measurements y;. However, this
question is not very fruitful because there are infinitely many functions f
that take the same values y; at the nodes x; and which could be arbitrarily
far from p,, at points x outside the interpolation nodes. It is more meaningful
to ask anther question: if we interpolate more and more measurements of f,
will we obtain an increasingly accurate approximation p, to f? In particular,
if the number of measurements n approaches infinity, will the interpolating
polynomial p,, converge to the “true” function f?

These questions appear theoretical but they are of high practical rele-
vance. If p,, does not approach f as n — oo, then our reconstruction method
is not correct in the limit. For larger (but finite) n one can then expect to
see strange behavior, that p,, is not a good match to f. This will not happen
when p,, — f when n — oo, but it is also important to know at which speed
ppn, converges to f. The faster p, converges to f, the less measurements are
needed to reconstruct f accurately.

The following example shows that the interpolating polynomials p, do
not always converge to the true function f.

Example 2.5. Let us consider two functions

1

fila) =sin(30), i) = T

defined in the interval [—1,1]. We use the measurements

yi:fl(xi)v Zi:fQ(mi)a izlv"‘7n+1)

{z:}14]! equidistant nodes in the interval [—1,1].
Figure 2.6 shows the polynomials pﬁf) and pg) interpolating f1(x;) and fo(x;),
respectively, for n = 4,8,16. For fi(x) = sin(5x), the degree 16 interpolat-
ing polynomial is almost superimposed on the exact function and, hence,
p,(ql) appears to converge to the exact function when increasing the number of
measurements. On the other hand, for fao(x) = 1/(1 + (5z)?), the degree 16
interpolating polynomial provides a decent approximation of the true function
close to interval center only, and a very poor approximation close to the in-

terval endpoints (actually worse than the degree 8 interpolating polynomial).

2.1. POLYNOMIAL INTERPOLATION OF DATA 37

0.5 OR C1
-05
0
-1

-05 -15
- - —f(x) ---f(x)

— interpolant p=4 -2 —— interpolant p=4
——interpolant p=8 —— interpolant p=8
—— nterpolant p=16 —— interpolant p=16

15 -3
1 08 -06 -04 02 0 02 04 06 08 1 1 08 -06 04 02 0 02 04 06 08 1

-1

Figure 2.6: Interpolating polynomials pg) (left) and pg,?) (right) for n = 4, 8,16.

Increasing the polynomial degree further, this effect becomes even stronger
and the interpolating polynomial diverges from the function fo when |z| is
higher than approximately 0.6. This is known as Runge’s phenomenon.

The following result provides an upper bound on the interpolation error
in terms of the higher-order derivatives of f.

Theorem 2.2. Consider a function f : [a,b] — R of class C" ' and equidis-
tant nodes a = w1 < 9 < ... < Tpy1 = b in[a,b]. Then the polynomial p, of
degree at most n that interpolates the data (x;, f(x;)), withi=1,...,n+1,
satisfies the error bound

1 b—a n+1
o [0) —po)] < gt (50) e 7@ (26)
Theorem 2.2 is difficult to prove; see, e.g., [Quarteroni, Sacco, Saleri,

“Numerical Mathematics”, Springer]. The result implies convergence if

| £+ ()| grows more slowly on the interval [a, b] than % asn — oo.

This is the case for the function fi(x) = sin(5z) from Example 2.5, for which
the derivatives satisfy

max |/ ()] < 5"+

z€[—1,1]
and, hence,
2n+1 (n+1) On+1 n—o00
—_ > 0.
mae [F()=pn(@)] € gy max |00 <

On the other hand, for the function fo from Example 2.5, the derivatives
grow much more quickly (one can show that max,c[_y]fQ(n) (z)| ~ nl5™)
and convergence is not guaranteed by Theorem 2.2 and, in fact, convergence
does not happen.

It is important to emphasize that the divergence of polynomial interpo-
lation, even for very nice functions, is linked to the use of equidistant nodes

38 CHAPTER 2. CURVE FITTING

in the interval [a,b]. There are other choices, which are typically denser
around the endpoints of the interval, that yield convergent interpolations if
f is at least differentiable. This is the case when Clenshaw-Curtis nodes are
used.

Definition 2.3. The n Clenshaw-Curtis nodes on the interval [a,b] are
defined by

b b— —1
xi:a+ — acos m(i) , 1=1,...,n+1.
2 2 n

The Clenshaw-Curtis nodes are obtained through projecting uniformly
distributed nodes on the semi-circle of center (a + b)/2 and radius (b—a)/2
on the horizontal axis; see Figure 2.7. Another good choice are Chebyshev

X1 Xy X3 An+l

Figure 2.7: Clenshaw-Curtis nodes.

nodes. Yet, in the context of data interpolation, we usually do not have
the luxury of choosing the position of the nodes z; by ourselves. In most
practical situations, the nodes are determined by the measurements; well
before any interpolation is performed.

Stability of polynomial interpolation

In this section, we study the effects of data error on the quality of polynomial
interpolation.

Suppose we want to determine the polynomial p,(x) that interpolates
the data (x;,v:;),i=1,...,n+ 1, witha =21 <22 < ... < zpy1 = b and
y; = f(x;) for some function f.

Because of, e.g., measurement error, roundoff error, etc. the data is in-
evitably affected by error. Instead of y;, we are actually collecting perturbed
data g; = f(zi) + € with an error ¢; that is assumed to be small: |¢;| < €
fori=1,...,n+ 1.

Letting p, denote the interpolating polynomial for the perturbed data
(x4, 7i), we now want to estimate the distance between the “true” interpolat-
ing polynomial p,, and p,. For this purpose, we represent both polynomials

2.1. POLYNOMIAL INTERPOLATION OF DATA 39

in the Lagrange basis with respect to z1,...,Zn41:
n+1 n+1
po(@) =Y widi(x), Palx) =Y (yi +€)gi(2).
i=1 i=1

Taking the difference and using the triangle inequality, we obtain that

n+1 n+1
<3 1i@)leil < (Z qz-(w)r) :
=1

=1

n+1

> dil)e
i=1

‘ﬁn(x) - pn(x)| =

for every x € [a, b].

Definition 2.4. The Lebesgue constant associated with nodes x1,...,xp41 €
[a,b] is defined as
n+1
L= sup Y |¢i(x)|-
x€lab] ;5

In summary, we have the following stability result:

Jnas p(@) =p@)| < Ln-e €= max el (2.7)
that is, the input error € is potentially magnified by L,. In particular,
when the Lebesgue constant L,, is small, small input errors |¢;| < € lead to
small perturbations in the interpolating polynomial. In this case, we say
that the polynomial interpolation on the nodes 1, ..., xy+1 is stable or well
conditioned. If, on the contrary, the Lebesgue constant is very large then
the polynomial interpolation on the nodes z1,...,Zx4+1 is badly conditioned,;
it has bad stability properties.

For polynomial interpolation on equidistant or Clenshaw-Curtis nodes,
one has the following results:

2n+l
equidistant nodes L, ~———— n— o, (2.8)
enlogn
2
Clenshaw-Curtis nodes Ly, ~ —logn, n— oc. (2.9)
™

This tells us that polynomial interpolation on Clenshaw-Curtis nodes is rel-
atively well conditioned (stable) as the Lebesgue constant grows only very
slowly with n. On the other hand, polynomial interpolation on equidistant
nodes is very badly conditioned as the Lebesgue constant grows exponen-
tially with n, which means that small perturbations on data are potentially
highly amplified.

Example 2.6. Let us consider the function f(x) = sin(bz) from Ezample
2.5, for which we have already seen that polynomial interpolation provides
good results.

40 CHAPTER 2. CURVE FITTING

Given distinct nodes {x;}1 on the interval [~1,1] and the exact eval-
uations y; = f(x;), we consider perturbed evaluations

Ui = f(z) + €,

where €; € [~1072,1072] are randomly generated errors of magnitude |e;| <
10~2. The polynomials p, and p, interpolating (x;,y;) and (z;,7;), respec-
tively, are computed using Python .

Figure 2.8 shows the two interpolating polynomials for equidistant nodes
and Clenshaw-Curtis nodes. In the first case, it is clear that the maximum
distance between the two polynomials is of order 1, about 100 times larger
than the perturbations ¢;. On the other hand, in the second case, the distance
between the polynomials is very small and, in fact, we cannot even distinguish
the two polynomials in the figure.

- %) - 1%
P
— ptilden

n

— ptilden

-1 -05 0 0.5 1 -1 -05 0 0.5 1

Figure 2.8: Example 2.6: Polynomials p,,p, interpolating (x;,v;), (z;,y;) per-
turbed by the random errors |e;| < 1072. Left: Equidistant nodes;
right: Clenshaw-Curtis nodes.

2.2 Piecewise linear interpolation

We have seen in the previous section that enlarging the degree n of the in-
terpolating polynomial can be an excellent idea, especially when the nodes
can be freely chosen, but can also lead to disastrous results. Instead of in-
creasing the degree, another idea is to subdivide the interval [a, b] and apply
polynomial interpolation to each sub-interval. When degree 1 polynomials
are used, this idea leads to piecewise linear interpolation.

To formalize this idea, let us consider equidistant nodes a = x1 < z3 <
... < Tp41 = b nodes in the interval [a,b] and y; = f(x;) the corresponding
measurements, which come from the evaluation of an unknown function f.
We set I; = [x;,x;41], which is an interval of length h = (b — a)/n.

Definition 2.5. A piecewise linear polynomial interpolating the data
(i,yi), withi=1,...,n+1, is a function p p, such that

2.2. PIECEWISE LINEAR INTERPOLATION 41

e p1,p 15 degree 1 polynomial in every interval I;, i =1,...,n,
e mp(mi)=yi,i=1,...,n+1.

Definition 2.5 requires py 5, to be a degree 1 polynomial on an interval I;.
Taking into account that p; j, interpolates the data (x;,y;) and (211, Yit+1),
the Lagrange basis approach allows us to express p; j restricted to I; in the
form

T — Tit1 T — x;
pia(z) = yii’b-‘r + yi+177’ , Vx el
Ti — Tit1 Titl — T4

The Python command plh=numpy.interp(x,y,x_fine) performs piece-
wise linear interpolation, where the vector x contains the nodes, the vector
y contains the measurements vector, x_ fine is a point or a vector of points

where we want to evaluate p; 5, and the output plh contains the evaluations
p1,p(x_fine).

Example 2.7. Once again, we use the function fo(x) = 1/(1+ (5x)?) from
Ezample 2.5, for which we have observed that high-degree polynomial inter-
polation is problematic. The following Python code computes the piecewise
linear interpolation on 9 equidistant nodes in the interval [—1,1]:

import numpy as np
import matplotlib.pyplot as plt

f = lambda x: 1.0 / (1 + (5 * x) ** 2)

n =28

x = np.linspace(-1, 1, n + 1) # interpolation nodes
y = £(x)

measures

xfine = np.linspace(-1, 1, 201) # fine grid

plh = np.interp(xfine, x, y) # evaluation of plh on fine grid
plt.plot(xfine, plh, "b")

plt.plot(xfine, f(xfine), "k--")

plt.legend(["pih, n=8", "f(x)", "data"l)

Figure 2.9 shows the obtained result. We notice that pyj does not exhibit
oscillations and gives a decent (although not quite excellent) approximation

of fa.

Error analysis

The error analysis of piecewise linear interpolation is a direct consequence
of Theorem 2.2. In fact, in every interval I;, we are computing a linear
interpolation of the data (z;,y;) and (x;41,¥;+1). This means we can apply
the result of Theorem 2.2 with n=1and b —a = x;41 —a; = h:

2

h
_ < —m (2) .
rggf\f(x) pa(@)] < 3 zgf|f ()]

42 CHAPTER 2. CURVE FITTING

——p1h, n=8
== =f(x)
i p e données|]

0
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 2.9: Piecewise linear interpolation of the function f(z) = 1/(1 + (5x)?) on
9 equidistant nodes in the interval [—1,1].

Therefore,
2
max |f(z) —pia(@)] = max max|f(z) —pia@)| < g max £ (@)

The following theorem summarizes this result.

Theorem 2.3. Consider a function f : [a,b] — R of class C? and equidistant
nodes a = x1 < x9 < ... < xny1 = b. Then the piecewise linear polynomial
p1,n interpolating the data (x;, f(x;)) satisfies the error bound

max_|f(x) — p1p(x)| < Ch? max \f(z)(x)\, (2.10)
z€[a,b| z€la,b]

with h = (b—a)/n and C =1/8.

For an error bound of the form (2.10), we say that convergence (with
respect to h) is quadratic or of second order. More generally, a convergence
of order ¢ € N requires that the approximation error of a piecewise defined
approximation is bounded by a constant (independent of h) times h4.

To verify numerically that piecewise linear approximation has second
order, one needs to check that the error is asymptotically proportional to
h2. In other words, if we double the number of points (and therefore half
the length of every sub-interval), the error will be roughly divided by 4.
The following Python snippet implements this idea for the function fa(z) =
1/(14(5z)?) from Example 2.5 by using n = 16, 32, 64, 128, 256 sub-intervals
and estimating the error by computing the error on a fine grid.

import numpy as np

f = lambda x: 1.0 / (1 + (5 * x) ** 2)
xfine = np.linspace(-1, 1, 201) # fine grid

2.2. PIECEWISE LINEAR INTERPOLATION 43

err = np.array([])
h = np.array([])
for n in 2 ** np.arange(4, 9):
h = np.append(h, 2.0 / n)
x = np.linspace(-1, 1, n + 1) # 4nterpolation nodes
y = £(x) # measures
plh = np.interp(xfine, x, y) # evaluation of plh on fine grid
err = np.append(err, max(abs(f(xfine) - pilh)))

print("h: ", h)

print("err: ", err)

OUTPUT

h: [0.125 0.0625 0.03125 0.015625 0.0078125]

err: [0.05353602 0.02069974 0.00535163 0.00138879 0.00035451]

Indeed, the output indicates that the error is divided by 4 (approximately)
when the number of sub-intervals is doubled. To observe this behavior more
clearly, we first note that the error can be written as

erry, = m[a)z] (@) — pra(z)| ~ Ch?
z€la,

with €' = max,¢(4) |f@)(z)|/8. Applying the logarithm in base 10 (or any
other base) to both sides, we obtain that

logyg(errp) ~ 1ogio(Ch?) = log1o(C) + 2logg(h).

Therefore log,y(erry,) is a linear function of log;,(h) with slope 2, which
corresponds to the convergence order. This means the order can be observed
from the graph of log;y(err,) with respect to log;o(h). In Python, there
is no need to take logarithms explicitly — the command loglog(x,y) from
matplotlib.pyplot, applies logarithmic scaling to both axes.

import matplotlib.pyplot as plt

plt.loglog(h, err, "b")

plt.loglog(h, h, "k--")

plt.loglog(h, h#*2, "k-.")

plt.grid(True)

plt.legend(["err_h", "slope 1", "slope 2"])

Figure 2.10 shows the obtained result. On the same graph we also plotted
the curves y = h and y = h2. In loglog scaling, these two curves match two
lines of slope 1 and 2 respectively.

Stability of piecewise linear interpolation

Let us consider again the effect of input errors (such as measurement errors)
on the interpolation. The perturbed data is g; = f(z;) + €;, with a (small)

44 CHAPTER 2. CURVE FITTING

- - -pente 1
== pente 24

Figure 2.10: Graph in logarithmic scale of the piecewise linear interpolation error
for f(z) = 1/(1 + (52)%) on [—1,1] versus h = 2/n (length of each
sub-interval).

error €; satisfying |e;| < efori=1,...,n+ 1. Let p;} and p; j, denote the
piecewise linear polynomials interpolating the non-perturbed data (z;,y;)
and the perturbed data (x;,9;), respectively. On each sub-interval I; =
[xi,x;+1] we then have

L — Ti+1 r—Z;
pl,h(ﬂﬁ) =Yi——— + Y1 ——————
Ti — Ti41 Titl — T4
and
- T — Tj41 r —x;
Pl,h(x) = (yi + 62‘)7 + (Yit1 + €i41) ——
Ti — Ti+1 Tit1l — T4

Taking the difference and applying the triangle inequality, it holds for every
z € I; that

- T — Titl T — T
Pra(@) — pra(@)| < lei] | —= + [eita] —| <e
Ti — Ti41 i+1 — Ty

For the last inequality, we used the relation

T — Ti+1 T — Iy :xi+1—x+ xr —x; —1 V.IGL'.

Tij — Ti+1 Ti+1 — T4 Titl — X Titl — T4
Finally, taking the maximum in every sub-interval, we get

max [51(x) — pua(e)| = max max[pia(e) —piae) Se (211)

z€a,b] i=1,....,n z€I;

We can conclude that piecewise linear interpolation is perfectly stable! Small
measurement errors induce equally small perturbations in the piecewise lin-
ear interpolation.

2.3. SPLINE INTERPOLATION 45

Example 2.8. As in Ezamples 2.5 and 2.6, we consider f(x) = sin(5x).
Let {z;}71! denote equidistant nodes in the interval [—1,1], y; = f(z;), and

Ui = f(z) + €,

where ¢; € [~1072,1072] are randomly generated errors of magnitude |n;| <
1072, Using Python, we compute the piecewise linear polynomials D1,hs P
interpolating (z;,vy;), (zi,¥;). The obtained results are plotted in Figure 2.11.
The distance between pyp and pyp is very small; in fact, it is visually
indistinguishable.

R)
P, it
ptilden

Figure 2.11: Example 2.8: Piecewise linear polynomials p; ;, and p; j interpolating
exact data(z;,y;) and perturbed data (x;,9;) with |e;| < 1072

2.3 Spline interpolation

Although piecewise linear interpolation is convergent when n — oo and has
favorable stability properties, it has two major drawbacks: (1) The conver-
gence is only of second order. (2) The piecewise linear polynomial is contin-
uous but not even differentiable (at the nodes). The second drawback is of
particular relevance in graphical applications such as CAD (Computer Aided
Design), where “smoother” curves are needed to, e.g., represent curved edges
or surfaces. In these cases, one often aims at ensuring a continuous second
derivative. Splines are the standard tool for constructing piecewise func-
tions with favorable smoothness properties. In the following, we will focus
on cubic splines.

Definition 2.6. Consider data (x;,y;), i =1,...,n+1 witha = x1 < x9 <
coo < Xpy1 = b, and let let I; = [z, xi41] fori=1,...,n. An interpolating
cubic spline s a function sz} such as

« s3 € C*([a,0]),

46 CHAPTER 2. CURVE FITTING

e 833 18 a cubic polynomial on every interval I;,
o s3p, interpolates the data: s3p(x;) =vy; fori=1,...,n+ 1.

Definition 2.6 makes sense for arbitrary (mutually distinct) nodes; but we
will only consider equidistant nodes in the following, in which case h =
(b — a)/n denotes the length of each sub-interval.

The fact that s3, is of class C? implies that not only the function 531
but also its first and second derivatives are continuous functions. Because
53,1, is a polynomial on each interval I;, it is infinitely often differentiable in
the dnterior |z;,x;+1[. In turn, the condition sz, € C?([a,b]) amounts to

checking smoothness at the nodes x; for i = 2,...,n:
ssp(ey) =sgp(zl), i=2,...,n, (2.12)
ssp(ay) =syp(xf), i=2,...,n, (2.13)
ssp(ey) = sgp(x), i=2,...,n (2.14)

Here, g(z~) and g(z™) are used to denote the left-sided and right-sided
limits of a function at g at x.

On every sub-interval I;, the spline is a cubic polynomial, which can be
written as

2 .
53,h|1i:ai+bi$+ci$ +d¢m3, 1=1,...,n,

with the coefficients (a4, b;, ¢;,d;) to be determined. Consequently, there
are 4n unknown coefficients (4 in each sub-interval). We also have 3(n — 1)
continuity conditions in the internal nodes and n+1 interpolating conditions

33,h(96z') = Y-

unknowns 4dn

continuity conditions 3(n—1)
interpolating conditions n+1

degrees of freedom dn—-3n—1)—(n+1)=2

Thus, the number of degrees of freedom nearly match the number of un-
knowns. The two additional degrees of freedom can be chosen to impose
two additional conditions on the spline. Four popular choices are:

o natural spline: sz, (x1) =0, 53, (Tn+1) =0,

o prescribed slope at endpoints: sy, (x1) = a1, 85, (Tnt1) = ag for given
ay, o € R,

o not-a-knot condition (default in Python): continuity of the third deriva-
tive in z9 and z,

spn(ra) = sya(@3), sgalen) = sgulan),

2.3. SPLINE INTERPOLATION 47

« periodic spline: sy, (v) = sgﬁ(m;;l), syp(ay) = sg’h(xiﬂ), usually
assuming Y1 = Yn+1.

Example 2.9. Let us consider the following data: (z1,y1) = (—1,—1),
(x2,y2) = (0,1), (x3,y3) = (1,1). We look for the natural spline interpolating
the data.

The general expression of the spline is

san(z) = a1 + bz + c12? + dy2® for x € [-1,0]
s3p(z) = az + bz + cox® + doa® for z € [0,1].

Continuity conditions:

s3n(xy) = s3h ZL‘;), = a1 = as
sy () = sy (23), = by = bo
sy p(23) = s3u(23), = c1 = ca.
Natural spline condition
Sg,h(qjl) =0, - 2c¢1 —6d; =0
Sgyh(mg) =0, — 2¢co + 6dy = 0.
We can then simplify the general expression as follows:
1
s3.p(x) :a+bx+cx2+§cx3 for x € [-1,0]
1 .
s3n(2) = a+bx + ca? — gcxs for z € [0,1].
Finally, let us impose the & interpolating conditions
2
Sg}h(—l) = —1, — a—b+§c: -1,
s3p(0) =1, = a=1,
2
s3n(l) =1, — atb+ze=1,
and we finda=1,b=1 and c = —%. Finally, the cubic interpolating spline
18
3 1 3 1
53’;1’[71’0} =1+z— 59:2 — 5333, $3,h10.1] = 1+z— 5332 + 5933.

The general construction of a cubic spline is quite similar to what has
been done in Example 2.9. In the general case, the determination of the
coefficients requires the solution of a (tridiagonal) linear system, which can
be solved efficiently using the techniques discussed in Section 4.5.

48 CHAPTER 2. CURVE FITTING

2.3.1 Error analysis
The error of cubic spline interpolation satisfies the following bounds.

Theorem 2.4. Consider a function f : [a,b] — R of class C* and equidis-

tant nodes a = x1 < 13 < ... < Tpp1 = b. Then any cubic spline s3p,
interpolating the data (z;, f(x;)) satisfies
max_ |f(x) — s34(2)] < Coh?* max |f(4)(a:)\, (2.15)
z€|a,b| z€[a,b]
max |f/(x) — s, ()] < C1h* max |f@(z)|, (2.16)
z€[a,b] ’ z€[a,b]
max | f"(z) — s ,(x)| < Coh? max |f&(z)), (2.17)
z€[a,b) ’ z€a,b]

where h = (b — a)/n and Cy, Cy and Cy are constants not depending on h.

Theorem 2.4 tells us that cubic spline interpolation results in conver-
gence order 4 for the interpolation error. Additionally, the first and second
derivatives of the function f are approximated as well, with convergence
order 3 and 2, respectively.

Example 2.10. We apply cubic spline interpolation to the function fa(x) =

1/(1 + (5z)2) from Example 2.5 for an increasing number of sub-intervals:
n = 16,32, 64, 128, 256.

import numpy as np
from scipy.interpolate import CubicSpline

f = lambda x: 1.0 / (1 + (5 % x) ** 2)

xfine = np.linspace(-1, 1, 201) # fine grid

err = np.array([])

h = np.array([])

for n in 2 ** np.arange(4, 9):
h = np.append(h, 2.0 / n)
x = np.linspace(-1, 1, n + 1) # interpolation nodes
y = £(x) # measurements
s3h = CubicSpline(x, y) # defines cubic spline s3h
err = np.append(err, max(abs(f(xfine) - s3h(xfine))))

print("h: ", h)

print("err: ", err)

OUTPUT

h: [0.125 0.0625 0.03125 0.015625 0.0078125]
err: [3.71093415e-03 6.37335632e-04 3.60663244e-05

2.056343200e-06 1.24035520e-07]

We observe that doubling the number of sub-intervals (i.e., h is halved),
decreases the error decreases roughly by a factor 16. Visualizing the error
with respect to h on a loglog plot clearly reveals order 4 because the error
curve is nearly parallel to a line with slope 4; see Figure 2.12.

2.4. LEAST-SQUARES APPROXIMATION 49

import matplotlib.pyplot as plt

plt.loglog(h, err, "b")
plt.loglog(h, h**4, "k__n)
plt.grid(True)
plt.legend(["err_h", "slope 4"])

err,

— h

- - -pente 4;

Figure 2.12: Loglog plot of spline interpolation error for f(z) = 1/(1+4(5x)?) versus
sub-interval length h = 2/n.

2.4 Least-squares approximation

When the data is perturbed anyway, it may not be meaningful to exactly
interpolate it. Rather, it would be sufficient to approximate the data, with
an approximation error preferably on the level of the measurement error. In
this section, we will consider the specific case of polynomial least-squares
approximation for this purpose, which includes the wildly popular! linear
regression as a special case.

Suppose we have n + 1 data (x;,y;), with i =1,...,n+ 1, and that the
values y; come from the evaluation of an unknown f(z) function. Then our
model for the perturbed data takes the form

Yi = f(.m) + &4, (2.18)

and we are aiming at approximating the unknown function f(x) from this
(perturbed) data. In the following, P, denotes the vector space of polyno-
mials of degree at most m.

!See https://xked.com/1725/.

https://xkcd.com/1725/

50 CHAPTER 2. CURVE FITTING

Definition 2.7. The degree m least-squares polynomial approximating
given data (z;,y;), withi=1,...,n+ 1, is the polynomial satisfying

n+1
pL> = argmin Z(yl — q(z:))?
q€Pm ;4
In other words, p-> is such that
n+1 n+1
Y Wi —p @) <> (i —q(x))?, Vg€ Pp.
=1 i=1

The use of the (squared) Euclidean norm for measuring the error in
Definition 2.7 has a strong statistical motivation. Suppose that the errors
g; are random variables, independent and identically distributed (iid) with
expected value E[g;] = 0 and variance Var|g;] = o2. For example, this is the
case if ; are normally distributed, g; ~ N(0,0%). Then p,':nS represents the
maximum likelihood estimate (MLE), that is, p-° is the most likely choice
of polynomial given the observations yi,...,ynt1-

Figure 2.13 shows a set of 21 measures and the linear least-squares fit
(regression line) to the data.

° donnees ®
091

droite regression

Figure 2.13: Regression line (in red) of the 21 measures (in blue).

Computation of least-squares polynomial for m =1

In the case of linear regression (m = 1) one can work out a simple formula
for the coefficients of the least-squares fit. For a linear functions of the form

q(x) =ag+ a1z, ag,a1 € R,

2.4. LEAST-SQUARES APPROXIMATION 51

we are trying to solve

n+1 n+1
: 2 : 2
min P — i = min i — (a ai1ax; .
Seb, £ (yz Q(z)) (apa1)ER? ;1 (yz (0 1 z))

In other words, we are looking for the minimum of the function

n+1

$lao,a1) = > (yi — (a0 + arzs))>.

=1

This function is differentiable and, hence, any minimum has to satisfy the

conditions 5 9
W _ 0
8@0 8@1
which match
a¢ n+1
87% = -2 ;(yz —apg — ala:i) =0
n?—l

0
85)1 = —2;.’&(3/1 — ap —almi) = O

(n+1)ag + (Z?jll xz) ar =Yy
(Z?:ll %) ap + (Z?:Jrll 3312) ay = Y1 @iy
The latter is a linear system of two equations in the two unknowns (ag, ai):

[Z?:Jrf 1y l’z] [ao] _ [Sy] ' (2.19)

—

n+1 n+l 92 - n+1
Dot T Yo wi| lan Dol Ty
—_—
A a b

Unless all x; are identical, the matrix A is invertible and the solution of this
linear system is unique. This solution necessarily minimizes ¢(ag,a1) and
thus yields the coefficients of the regression line.

There is another way to arrive at the linear system (2.19). Let us intro-
duce the Vandermonde matrix V € R(TD*2 corresponding to the monomi-

als 1 and x estimated at the points z;, i =1,...,n+ 1:
o]
1 i)
V=
_1 Tn+1]

Defining the vector y = (y1,%2,...,Ynt1) , We have

A=V"TV, b=V'Ty.

52 CHAPTER 2. CURVE FITTING

Hence, the system (2.19) can be written in the more compact form
Viva=VTy.

Computation of least-squares polynomial (general case)

In the general case of a degree m polynomial, we define the Vandermonde
matrix V € R(HDxm+1) ¢orresponding to the monomials 1, z, ..., 2™ esti-
mated at the points z;, i =1,...,n+ 1:

1 = o S
1z r3 ... I
V =
1 =z 22 xm
L n+1 n+l - -- n+1

Given a polynomial ¢(z) = ap + a1z + ... + a;,x™, this allows us to write

q(z1) 1 x 2 ... AP ap
q(x2) 1 a9 x% N al
= . :Va
q(Tn+1) 1 zpyr 2oy oo il Lam
and
n+1
> i — al@)? = |y — Val®. (2.20)
i=1

Performing a least-squares fit of the the data (x;,y;) with a degree m poly-
nomial is the same as finding the vector of coefficients a = (ag, ay,...,am)"
that minimizes the quantity (2.20):

n+1
. 2 . 2
min i — qlx; = min —Va||~.
min »_(yi — (i) Jin [l |
=1
We have the following result, which generalizes the one we obtained for
m = 1.

Proposition 2.5. The polynomial p>(z) = ag + a1x + ... + apaz™ is the
least-squares polynomial approaching the data (x;,y;), i = 1,...,n+ 1, if
and only if a = (ag, a1, ...,an) " is solves the linear system

Viva=vTy. (2.21)

The linear system (2.21) is usually called normal equations. It has a
unique solution if and only if V has rank at least m. This is the case, for
example, when m < n and the points x; are mutually distinct.

2.4. LEAST-SQUARES APPROXIMATION 53

Remark 2.1. For m = n, the Vandermonde matriz becomes a square ma-
triz, which is invertible when the points x; are mutually distinct. Therefore,

Viva= VTy & Va=y.

It follows that the coefficients vector corresponds to one of the polynomial
interpolating the data (z;,y;), i =1,...n+ 1.

In Python, the degree m least-squares polynomial is computed using the
command pcoef=np.polyfit(x,y,m). For m = n, we obtain the interpolating
polynomial.

Error analysis

Let us assume that z; < 9 < -+ < Z;y41. The analysis of the approxima-
tion error Ey, = maXye(z 2,1 |f(T) —pbS(x)] is quite complicated. We will
therefore limit ourselves to a few considerations.

Suppose that the “true” function f(z) is a polynomial of degree m < n,
that is, f(z) = qn(z) € P,,. If there are no measurement errors then
Yi = qm(x;) for i = 1,...,n+ 1 and the degree m least-squares polynomial
approximation recovers the function gn,: pL>(x) = gm(z). In fact, the poly-
nomial p5> = ¢, () is the only degree m polynomial for which the sum of
the squared differences is zero

n+1 n+1
S s — S = S (am (i) — pES (i) = 0.
=1 =1

In the presence measurement errors ¢;, it is usually not possible to achieve
zero error. If the errors g; are iid random variables with expected value zero
and variance o2 > 0, one can prove that Ep, = max,ey, z,.1] |gm (z) —pL> ()]

m+1
n+1"-

the “ground truth” ¢, quite accurately with the least-squares polynomial.
The variance of the variables ¢; is usually not known, but it can be estimated
by

is of the order of & Thus, for m < n (many observations) one recovers

1 n+1
6= —— z;(yz- — phy ().
1=

In the the general case, when the function f is not necessarily a polyno-
mial (but sufficiently smooth), we expect the least-squares approximation
to be more and more accurate as the polynomial degree increases. However:

o There will always be an error of the order of o4/ 775, due to measure-

ment error.

o If m becomes too large, the least-squares polynomial suffers from the
same instabilities we saw gets for interpolating polynomials.

54 CHAPTER 2. CURVE FITTING

stress strain stress strain
1.7850 | 0.0292 || 19.6350 | 0.4454
3.5700 | 0.0609 || 21.4200 | 0.5043
5.3550 | 0.0950 || 23.2050 | 0.5122
7.1400 | 0.1327 || 24.9900 | 0.6111
8.9250 | 0.1449 || 26.7750 | 0.7277
10.7100 | 0.2062 || 28.5600 | 0.7392
12.4950 | 0.2692 || 30.3450 | 0.8010
14.2800 | 0.2823 || 32.1300 | 0.8329
16.0650 | 0.3613 || 33.9150 | 0.9302
17.8500 | 0.4014 || 35.7000 | 1.0116

Table 2.2: Data of stress and strain from the tensile test of Example 2.2.

Figure 2.14: Approximation polynomials of the data from Table 2.2 to the least-
squares of degree m = 1,5, 15.

Example 2.11. The Table 2.2 shows measurements for the tensile test
from Example 2.2. Using Python, we compute the least-square polynomial
approximation of degree m = 1,5, 15 for the stress—strain relation. Assuming
that the data is contained in the variables x andy, this is the code for m = 15:

import numpy as np
import matplotlib.pyplot as plt

np.linspace(0, 35.7, 21)

y = [0, 0.0292, 0.0609, 0.0950, 0.1327, 0.1449, 0.2062, 0.2692,
0.2823, 0.3613, 0.4014, 0.4454, 0.5043, 0.5122, 0.6111,
0.7277, 0.7392, 0.8010, 0.8329, 0.9302, 1.0116]

xfine = np.arange(0, 35.8, 0.1)

pcoef = np.polyfit(x, y, 15)

p = np.polyval(pcoef, xfine)

plt.plot(xfine, p, "b-")

plt.plot(x, y, "r.", linewidth=2, markersize=15)

plt.legend(["pol. least squares m=15", "data"])

"
1

Figure 2.14 shows the obtained approrimations. The degree 5 polynomial
seems to capture the behavior of the data better compared to the linear poly-
nomial. The degree m = 15 polynomial shows very clear oscillations due to
the fact that m is relatively large and close to n.

Chapter 3

Numerical differentiation
and integration

In this chapter, we aim at developing numerical methods to compute (ap-
proximately) the derivative of a function f(z) at a point x = z,

f/(j)7

as well as the integral of f over an interval [a, b],

/ab f(x)de.

These methods are very useful when f has a complicated expression and the
exact (symbolic) computation of the derivative or the integral is complicated
or even impossible.

3.1 Finite differences

Given a differentiable function f : [a,b] — R, we want to approximate
numerically its derivative f’ at a point Z in the interval [a, b], using only the
evaluations of f at a few points in the interval. An immediate idea is to go
back to the definition of derivatives from Analysis I and approximate the
exact derivative f/(Z) by the growth rate (slope):

f(@+h) - f(7)
h

fl(@) ~ (3.1)
for some h > 0 such that z + h € [a,b]. We expect the approximation to
become increasingly accurate as h becomes smaller.

To analyze (3.1), we define the forward finite differences formula

o f() = TEEN =) (3.2)

55

56 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

Using the Taylor series of f around Z gives

f(@+h)=f(@)+ f(Z)h+ f”(g)h2 for some ¢ € (Z,Z + h).
This implies

and therefore

—_

(%) = 0y f(@)] < 5 max |f"(x)]h,

2 z€la,b]

which gives the following result:

Lemma 3.1. Consider a function f : [a,b] — R of class C%. Then the
forward finite differences formula 52‘ satisfies the error bound

|f'(z) = 6 f(z)] < Ch, Vi€ la,b—h],
with C = 1 maxxe[ab”f (x)].

As the error is is proportional to h = h', we say that the forward finite
differences formula is of first order. Dividing A by 2, one expects the ap-
proximation error to be roughly divided by 2 as well.

The formula ;" uses only two function evaluations, f(z) and f(Z+h), to
obtain an approximation of f/(Z). It is possible to construct finite differences
formulas that use more function evaluations of f. In general, one considers
the point Z and n points on the right: 4+ h, T + 2h, ..., T+ nh, and m
points on the left: & — h, £ — 2h, ..., T — mh:

X—mh x—h X X+h X+nh

We then make the following general definitions.

Definition 3.1. A finite differences formula that uses n+m-+1 points T+ih,
1= —m, ,n, to approximate the derivative of f at T is an expression of
the form

Duf@) = S aif(@+in),

i=—m

for some coefficients a;; € R not depending on h.

Definition 3.2. A finite differences formula Dy, is consistent if
lim Dy f(z) = f'(Z)
h—0

for sufficiently smooth f.

3.1. FINITE DIFFERENCES 57

Definition 3.3. A finite differences formula Dy, is of order p if there is a
constant C, which depends on f but not on h, such that

|f'(z) — Dnf(z)| < CHP,
for sufficiently smooth function f.

The forward finite differences formula (3.2) uses only two function eval-
uations, at £ and T + h, and is of first order. The following two popular
formulas also use only function evaluations:

f(@) -

fE+h

backward finite differences: 6, f(z) = (z —h)

. (33)

—f=h)
2h '

= > =

central finite differences: o f(z) = (3.4)

It is easily shown that the backward finite differences formula is also of
first order. For central finite differences, however, we have that

siste) = HEE h)2_hf(x - % [f(f) + f(@)h + fﬂéx)hz + fmé&)hi‘
"z " 2
f(:f)+f’(j)h f2()h2—|— f é€2)h3:| _ f/(ff)"‘% [f///(é-l)+f///(£2)]
(3.5)

for some & € (Z,z 4+ h) and & € (T — h,Z). Therefore, this formula is of
second order.

Lemma 3.2. Consider a function f : [a,b] — R of class C3. Then the
central finite differences formula 6} satisfies the error bound

|f'(z) — 05 ()] < Ch?%, VZ € [a+ h,b—hl,

with C = %maxze[a,b] [f7 ()]

Construction using interpolating polynomials

We start with an alternative way of deriving the forward finite differences
formula: To approximate the derivative f’(Z) we first compute the line in-
terpolating the points (Z, f(Z)) and (Z + h, f(Z + h)),

T+h—=z T—z

+ f(z+h) P

Then we use the slope of this line as an approximation to the derivative,

$h(@) =~ S(@) + 3 @+ h) = 5] (@),

58 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

which is seen to coincide with forward finite differences.

The procedure above can be generalized: Given the m + n + 1 points
T +1ih,i=—m...,n, we first compute the degree m 4+ n polynomial Py,
interpolating the function values (z+ih, f(Zz+1ih)), i = —m,...,n. Then the
finite differences formula is obtained by computing the derivative of p,im:

th(j) - p;Ler({z')'

Example 3.1. We apply the procedure using the three points T — h, & and
T+ h. The quadratic polynomial ps interpolating (T + ih, f(Z + th)), i =
—1,0,1 4s given by

j (x—Zz+h)(x—2—h)

-z +h)(z—7)
+ f(z+h) 57,2 (3.6)
Its derivative is
20— 2T — h 2r — 2T 20 — 2T + h

/ — — _
pz(x):f(éﬂ—h)T‘f'f(l’)T‘*‘f(x“‘h) 252
and the corresponding finite differences formula is

Duf(@) =) = L TEER),

which coincides with the central finite differences.

Construction using the indeterminate coefficients method

Another way to build finite differences is to start from a general expression

Duf@) =3 3 aif@+in)

i=—m
and then look for coefficients «; that lead to high order.

Example 3.2. We consider again the three points — h, T, & + h and the
general formula

Daf(z) = 3 la-17(@ =) + a0 () + anf (@ + 1)

By the Taylor series, we have

Dufi@) =222 | 1@) - o+ Ein w00 +
@)+
S s+ ram e T o0

3.1. FINITE DIFFERENCES 59

Therefore,

Dif(2) = + (01 + 00 + 1) (@) (e — o) F/(@) 0 (0t + o) /(@) HO(R2).
|\ —_——
=0 =1 =0

For the formula to yield a second order approximation of the first derivative,
we have to impose the relations

a_1+oayg+a; =0
ol —a_1=1

al—l-Oé_l:O

The unique solution is a_1 = —%, ag =0, a1 = %, which again corresponds
to central finite differences.

3.1.1 Higher-order derivatives

The two methods presented in the previous sections also allow us to con-
struct finite differences formulas for approximating higher-order derivatives.
Following up on Example 3.1, we can use the interpolating polynomial py to
obtain a finite differences formula that approximates the second derivative
of f in Z:

Dif(z) = pi(z) = LI 2O 2 T b,

Using Taylor series, one verifies that this formula is of second order.

3.1.2 Effects of round-off errors

When working on a computer (in finite-precision arithmetic), roundoff error
will always put a limit on the accuracy we can possibly achieve. This effect
is particularly visible when using finite difference formulas. To observe this,
let us compute the derivative of the function f(z) = log(x) at & = 1 with
Python using forward finite differences. We use increasingly small values of
h: h=10"1,10"2,...,107 14

import numpy as np

f = lambda x: np.log(x)

for i in range(l, 16):
h = 10 ** (-i)
dhf = (£(1 + h) - £(1)) / h
print("h=Y1.0e" % h, " dhf=", dhf)

OUTPUT
h=1e-01 dhf= 0.9531017980432493
h=1e-02 dhf= 0.9950330853168092

60 CHAPTER 3. DIFFERENTIATION AND INTEGRATION
h=1e-03 dhf= 0.9995003330834232
h=1e-04 dhf= 0.9999500033329731
h=1e-05 dhf= 0.9999950000398841
h=1e-06 dhf= 0.9999994999180668
h=1e-07 dhf= 0.9999999505838705
h=1e-08 dhf= 0.9999999889225291
h=1e-09 dhf= 1.000000082240371
h=1e-10 dhf= 1.000000082690371
h=le-11 dhf= 1.000000082735371
h=1le-12 dhf= 1.000088900581841
h=1e-13 dhf= 0.9992007221625909
h=le-14 dhf= 0.9992007221626359
h=1le-15 dhf= 1.1102230246251559

The exact derivative is f/(1) = 1. One notices that the approximation error
is as expected up to h = 1078, As we decrease h further, the approximation
error first stagnates and then deteriorates. This is due to round-off error,
which corrupts the computation of the difference f(1 + h) — f(1). In the
following, we will try to better understand this effect.

When evaluating the function f(z), the computer usually makes some
tiny round-off error. So, instead of f(z), we actually compute a slightly
corrupted function value

f(z) = f(@)(1+n2)

for some 7 of tiny magnitude. When working in double precision arithmetic
(the default in Python), and f is well implemented, we expect |n2| to be of
the order 1076, For simplicity, we assume |n2| < 10716, Analogously,
instead of f(Z + h) the computer actually returns f(z + h)(1+ ;) for some
tiny 71. These corruptions affect the finite difference formula as follows:

f@+h) —f@) _ f@+h)+m)— f(@)(1+n)

O F() = h = i
S SEENZTE) My gy g
= 7@+ D By s - B p)

where |71, [n2| < 10716 and ¢ € (z,7 + h). Finally, we have

. ~16
F(@) — 57 £@)] < mas |22 + 2 max | f2)| 22—

3.7
z€[a,b] 2 x€[a,b] h (3.7)

We notice that the first error term decreases proportionally with h (finite
differences truncation error), while the second error term grows proportion-
ally to 1/h (round-off errors). In particular, if h is too small, the second
error term will dominate and accuracy will deteriorate.

3.2. NUMERICAL INTEGRATION 61

What is the optimal value of h? Equation (3.7) gives us the error esti-
mate
Cp10~10

e(h) ~ C1h + h

with C7 = %maxme[a,b] |f"(z)| and Ca = 2max,¢(qy |f(2)]. The minimum
of e(h) is computed by

de Cy10716
@ — O — Cl - T - 0,

which gives us (theoretically) the optimum value hopt = 1/C210716/C. As
C1,Cy are usually not available, a rule of thumb is to choose hept of the

order vV10~16 = 108,

More generally, when considering a finite differences formula of order p,
the error estimate takes the form

Cy10716
€(h) ~ Clhp + 2T,

which suggests an optimum value hopt of order ” V/10-16,

3.2 Numerical integration

Given f : [a,b] — R, we now aim at approximating numerically the integral

1= [s,

using only evaluations of the function f at some points in the interval [a, b].
All popular methods take the form of a quadrature formula, as introduced
by the following definition.

Definition 3.4. Given points a < 1 < x2 < ... < z,, < b (quadrature

nodes) and scalars aq,...,a, € R (weights), the quadrature formula
Q(f) for approximating the integral I takes the form

Q) = aif ().
i=1

Obviously, Q(f) depends on the choice of quadrature nodes and weights,
and we will now discuss several possible choices.

62 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

v N

Cq %) Cn

a=Xx X Xp_1 X,=b

Figure 3.1: Graphical illustration of the composite midpoint formula.

Composite midpoint formula

One of the simplest ideas to approximate I = f; f(x)dx is illustrated in
Figure 3.1. The interval [a, b] is divided into n sub-intervals I; = [z;_1, ;]
of length h = (b — a)/n, that is, ; = a +ih for i = 0,...,n. In every
sub-interval I;, the integral f;iil f(z)dz is approximated by the area of the
rectangle with base h and height f (%ﬁ“) Letting ¢; = xl%% denote
the midpoint of I;, this procedure corresponds to the quadrature formula

WP = hf(e), (3.8)
=1

with quadrature nodes given by the n midpoints ¢;, and the weights «; equal
to h. This formula is called composite midpoint formula. The term composite
indicates that the quadrature formula is composed of applying the midpoint
formula to every sub-interval I;. If only one interval is considered (i = 1),
the formula is called the (simple) midpoint formula.

The following Python function implements the composite midpoint for-
mula:

import numpy as np

def midpoint(a, b, n, f):
Composite midpoint formula
- a,b: boundaries of the integration interval
- n: number of sub-intervals
- f: function to integrate
h=(-2a/n
xi = np.linspace(a + h / 2, b - h / 2, n) # quadrature nodes
alphai = np.full(n, h) # weights
Qh_mp = np.dot(alphai, f(xi)) # quadrature formula
return Qh_mp

3.2. NUMERICAL INTEGRATION 63

Composite trapezoidal formula

We continue dividing the interval [a,b] in n sub-intervals I; = [x;_1, ;] of
length h = (b — a)/n. However, instead of approximating f;iil f(z)dx by
a rectangle, we now compute the area of the trapezoid defined by the four
points (x;—1,0), (x4,0), (@i, f(xi)), (zi—1, f(xi—1)). This area is given by
%(f(xi_ﬂ + f(x;)), leading to the composite trapezoid formula

"\ h
QL (f) = Z 5 (f(zim1) + (=)

—)
=1

= 2 7m) +hf @)+ B) + S) (39)

Figure 3.2 gives a graphical interpretation of the method. The composite

]

f(x)

a=x(X1 Xp-1 X =b
Figure 3.2: Graphical illustration of the composite trapezoidal formula.

trapezoidal formula uses the n + 1 nodes z;, i = 0,...,n, and the weights
aj=h,i=1,...,n—1, ag = a,, = h/2. This formula might appear more
precise than the midpoint formula, but we will see that this is not necessarily
true. Here is a possible implementation in Python:

import numpy as np

def trap(a, b, n, f):
Composite trapezoidal formula

- a,b: boundaries of the integration interval
- n: number of sub-intervals
- f: function to integrate

h=(b-a /n

xi = np.linspace(a, b, n + 1) # quadrature nodes

alphai = np.hstack((h / 2, np.full(n - 1, h), h / 2)) # wetightd
Qh_trap = np.dot(alphai, f(xi)) # quadrature formula

return Qh_trap

Composite Simpson formula

A third idea to build a quadrature formula is to use on every sub-interval

the points x;_1, z; as well as the midpoint ¢; = x’%ﬂ“ On every sub-

64 CHAPTER 3. DIFFERENTIATION AND INTEGRATION
interval, we compute the quadratic polynomial pg) interpolating the data
(i1, f(ziz1)), (@i, f(x4)), (¢, f(c;)) and then approximate the integral
f;’_l f(z)dz by f;l_l ng) (x)dx. We leave the calculations as an exercise.
The resulting formula is known as the composite Simpson formula:

n

Q) = 30 B (i) + 47 +)

i=1
h h' = 2h & h
= gf(iﬂo)+§Zf(l‘i)+32f(ci)+gf($n)» (3.10)
i=1 i=1
which uses the nodes x;, i = 0,...,n, and ¢;, i = 1,...,n (2n + 1 nodes in

total). Here is a possible Python implementation:

import numpy as np

def simpson(a, b, n, f):
Composite Simpson formula

- a,b: boundaries of the integration interval
- n: number of sub-intervals
- f: function to integrate

h=((M®-a /n

xi = np.linspace(a, b, n + 1)

sub-interval boundaries

alphai = (h / 3) * np.hstack((0.5, np.ones(n - 1), 0.5))
weights at z_7

ci = np.linspace(a +h / 2, b - h / 2, n)

sub-interval mid-points

betai = (2 * h / 3) * np.ones(n)

weights at c_1

Qh_simp = np.dot(alphai, f(xi)) + np.dot(betai, f(ci))
return Qh_simp

3.2.1 Error analysis

The degree of exactness of a quadrature formula is a qualitative measure for
its accuracy.

Definition 3.5. A quadrature formula Q(f) = Y_i"; i f(z;) has a degree
of exactness r if it integrates every polynomial of degree at most r exactly,
that 1is,

b
Qp) = / p(z)dz, Vp € P,, (3.11)

but there are polynomials of degree r + 1 for which Q) is not exact.

It suffices to check (3.11) for every monomial z*, s < r:

b
Qz”) = / e*de, s=0,1,...,7 (3.12)

3.2. NUMERICAL INTEGRATION 65

Indeed, by the linearity of integration and quadrature formulas, this implies
for every polynomial p(z) = Y} _, axx® that

= Z a;p(z;) = Z o Z a,kx
i=1

=1 =
_Zakza,x _/a kzoakxkd:c—/ p(z)dz,

:f; zkdx

and, hence, (3.11) is satisfied.

Let us emphasize that Definition 3.5 is intended for simple quadrature
formulas, that is, the composite quadrature formula is constrained to a single
sub-interval.

Example 3.3. Let us determine the degree of exactness for the Simpson
formula. We choose a sub-interval I; = [x;_1,x;] and check whether

Ty

% [p(zi—1) + 4p(ci) + p(a;)] = / p(z)dz, with p(zx)=z°

Ti—1

for s =0,1,.... To simplify the calculations, we only consider the interval
I; = [—1,1), which has length h = 2 (but the result carries over to any other
interval). We have

1

@) =1, Z(1+4+1):2:/_11dx
h 1
p(z) =z, 6(—1+4'O+1)—0—/1xdx
1
)=t G 0P 1) =g = [ot
p(z) = 23, g((—1)3+4'(0)3+13):O:/11x3dx.

On the other hand.

h
pla)=at, () 4 (0) 1Y) = #/ﬁxdx—
Therefore, the Simpson formula has degree of exactness 3.

The midpoint and trapezoidal formulas turn out to have degree of ex-
actness 1, which gives the following table:

midpoint | trapezoidal | Simpson

exactness degree 1 1 3

66 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

We now quantify the accuracy of a composite quadrature formula.

Definition 3.6. Consider a composite quadrature formula Qn(f) defined
on n sub-intervals of length h = (b — a)/n for approximating the integral

1= ff f(x)dz. One says that Qn(f) is of order p if there is a constant C,
which may depend on f but not on h, such that

.T) dz — Qh(f) < Ch’pv

for sufficiently smooth functions f.

Theorem 3.3. Considering the setting of Definition 3.6, suppose that the
composite quadrature rule Qp(f) has degree of exactness r on a single sub-
interval. Then Qn(f) is of order r+1. More precisely, for every function f
class C"™t1, it holds that

) dz — Qn(f) <c7nmxﬂfr+”<>wf+% (3.13)

. — (b—a)
with C = Py
Proof. We Qn(f) = >0, QW (f), where QM is the quadrature formula
applied to the i*" sub-interval. Let us consider a sub-interval I; = [i—1, 2]
Ti—1+Ti

and the Taylor series of the function f around the midpoint ¢; = ==5— up
to order r 4 1:

) (¢, (r+1) (¢,
o) = fle) + e =) oot T B ey T o
T} (@) R} ()

for some &; € (¢;,x). Here, T} denotes the degree r Taylor polynomial and
R’]} denotes the residual.

Because of the assumed exactness property, we have that Q1 (T}") =
f;’j’il T§(z) dz. Therefore,

z)dz - Q(“(f)‘ —

/ Ry(z)dz
zio1

h/2 r+1 .
< e v
hr—l—l

[mw -t

< + |QU(Ry)

z;
/ 1dz
Ti—1

i—

+ !Q“’(DI)

L — 1) (2)|2h.
2T+1(7“ + 1)' xe[gtﬁixl] ‘f (’

3.2. NUMERICAL INTEGRATION 67

Finally,

T

Lﬂﬂ@dw—QMﬂ‘=

<de—Q@04

n
=1

Ti—1
n i o) hr+1 (1) n
< _ ? < - r
_; /xi_lf(:v)dx QRV(f) < 2’"(r+1)!;§£§]|f ($)|;h
_ _(b—q (r+1) r+1
= oy @l
which proves the result. O

Using Theorem 3.3, we can establish the following table:

comp. midpoint | comp. trapezoidal | comp. Simpson
order 2 2 4

Example 3.4. Let us compute the integral

3 sin(z) cos®(z

After some very long calculations, one finds that I = 10%3)‘ The follow-
ing Python code uses the composite trapezoidal formula, with an increasing
number of sub-intervals n = 2,4,8,...,1024, to approximate I.

import numpy as np
from ch3_trap import trap

f = lambda x: (np.sin(x) * np.cos(x) ** 3) / (4 - np.cos(2 * x) **x 2
a=20
b =mnp.pi/ 2
Tex = np.log(3) / 16
print("Iex=", Iex)
Qhtrap = np.array([])
errQhtrap = np.array([])
N = np.array([2**i for i in range(l, 11)])
h=(b-2a /N
for n in N:
Q = trap(a, b, n, f)
print("n=%4d" % n, " Qh=", Q)
Qhtrap = np.append(Qhtrap, Q)

OUTPUT

Iex= 0.06866326804175686

n= 2 (h= 0.04908738521234053
n= 4 Gh= 0.06421229026829854
#n= 8 (h= 0.06758370289650516
n= 16 (h= 0.06839501624127321

68 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

n= 32 (h= 0.06859630316226781
n= 64 (h= 0.06864653288981529
n= 128 (h= 0.0686590846320792

n= 256 (h= 0.06866222221296711
n= 512 (h= 0.06866300658603605
n=1024 (h= 0.06866320267791895

As expected, the approximation becomes increasingly accurate as the number
of sub-intervals increases. When using n = 1024, we obtain 6 exact signifi-
cant decimal digits. As the exact value of the integral is known, we can also
compute the error committed by the composite trapezoid formula:

errQhtrap = abs(Iex - Qhtrap)
for i in range(0, len(errQhtrap)):
print ("n=%4d" % N[i], " err=%2.16f" 7, errQhtrap[i])

OUTPUT
n= 2 err=0.0195758828294163
n= 4 err=0.0044509777734583
n= 8 err=0.0010795651452517
n= 16 err=0.0002682518004836
n= 32 err=0.0000669648794891
n= 64 err=0.0000167351519416
n= 128 err=0.0000041834096777
n= 256 err=0.0000010458287898
n= 512 err=0.0000002614557208
n=1024 err=0.0000000653638379

oW OR R R OH W R R KRR

When doubling n (which means that h is halved), the error is approximately
divided by 4, confirming that the composite trapezoid formula is of second
order. This becomes even clearer in a loglog plot of the error:

import matplotlib.pyplot as plt

plt.loglog(h, errQhtrap, "b-", linewidth=2)
plt.loglog(h, h**2, "k--", linewidth=2)
plt.loglog(h, h**4, "k-.", linewidth=2)
plt.grid(True)

plt.legend(["err. trap", "order 2", "order 4"])

Repeating the same calculations for the composite midpoint and Simpson
formulas results in Figure 3.3. The graph clearly reflects that the composite
midpoint and trapezoidal formulas are of second order, whereas Simpson is
of fourth order. Moreover, we notice that the error from the trapezoidal
formula is higher (approximately by a factor 2) than the error from the
midpoint formula.

3.2. NUMERICAL INTEGRATION 69

—— err. point milieu
——err. trapeze
—— err. Simpson
- = =pente 2
== pente 4

1

107

Figure 3.3: Error of the composite midpoint (red), trapezoidal (blue) and Simpson
(green) formulas vs. h when approximating the integral (3.14).

3.2.2 Richardson extrapolation

The Richardson extrapolation method is a general technique for increasing
the accuracy of approximation formulas. We will apply it to composite
quadrature formulas, but it can also be applied to many other situations
(such as numerical differentiation or interpolation).

To approximate I = fab f(z)dz, let us consider a composite quadrature
formula Qp(f) based on a partition of the interval [a,b] in n sub-intervals
I = [zi—1,2],i=1,...,n, of length h = (b—a)/n. Let us suppose that the
formula is of order p, which allows us to write

Qn(f) =1+ Ch? 4+ O(h?), q>p, (3.15)

where C' is a suitable constant which depends, in general, on a high-order
derivative of f.
Example 3.5. Let us consider the composite midpoint formula: (3.8)

n

W) =D hfle), =

=1

Ti + T
—

We use a fourth-order Taylor expansion of f around c; to conclude that

/x f(x)da::/%i f(ci)da:-i—/%i f’(ci)(a;—ci)da:—i—/wi fl/gci>(x—ci)2dx

i—1

x; f”l(Cz') \3 Ti PRY
- 6<%”0“+LHOW ¢)') da

i—1
f"(ci) b 5

= hf(ci) +

70 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

where we used the fact that f (x — ¢)" dx vanishes for every odd r. For
the composite midpoint formula thzs implies

SHURIEDD (hf(@ [dx)

—Z< (e 7+O() (th”)h2+0(h4),

where we used Y i, O(h®) = nO(R®) = b;“)O(h5) = O(h*). Observing
that

n

b
S hf'(e) = Q") = [(@) da+ 002,
i=1 a
we arrive at

m . 1 b "
QYP(f) =1+ Ch* +O(hY), wzthC:—M/a f"(x)dz

which corresponds to expression (3.15) with p =2 and q = 4.

For a composite quadrature formula Qp(f), let us now consider the same
quadrature formula but with half the number of sub-intervals (each of length
2h). By (3.15), we have

Qan(f) =14 C(2h)" + O(RY).
Multiplying this equation with 277 and subtracting (3.15), it follows that
277Qan(f) — @n(f) = (277 = I + O(n7),

and, therefore,

2PQn(f) — Q2n(f)
2 — 1
We can then define a new quadrature formula on n sub-intervals,

an(s) = 2= Q)

=T+ 0(h9). (3.16)

and (3.16) shows that this formula is of order ¢ > p. It is quite remarkable
that two formulas Qp(f) and Q2x(f), both of order p, can be combined into
a formula of order ¢ > p!

The described technique is known as Richardson extrapolation. 1t gen-
erally works pretty well, as long as one knows the order p of the reference
method. We also notice that for the formula Qh(f) to be of order g > p,
we need to require more smoothness from the function f. For example, the
composite midpoint formula szp (f) is of order p = 2 if the function is of
class C? whereas its Richardson’s extrapolation will only be of order q = 4
if the function is of class C* (see Example 3.5).

3.2. NUMERICAL INTEGRATION 71

3.2.3 A posteriori error estimation

It is natural to ask how many sub-intervals are needed for a composite
quadrature formula to approximate an integral up to a given tolerance. It
is difficult to answer this question exactly as one usually does not know
the exact value of the integral to be computed and, hence, we cannot even
compute the error exactly, let alone estimating the number of required sub-
intervals. However, in an heuristic approach, we can proceed as follows:
Compute the quadrature formula Qp(f) on n sub-intervals, compute the
quadrature formula Q9p,(f) on n/2 sub-intervals, and then use the Richard-
son extrapolation Qp,(f), which is usually more accurate, as a proxy for the
exact value I. This idea leads to the error indicator

= |Qn(f) — Qu(f)]-

In fact, we have

11— Qu(f) < I =Qu(f)l +1Qn(f) — Qu(f)] = +O(h?) = np,.

UL
~—
O(h?)
If the error indicator does not satisfy the given tolerance, we then double
the number of sub-intervals and continue until the estimated error is smaller
than the fixed tolerance. This procedure is summarized in the following
algorithm.

Algorithm 3.1: Adaptive quadrature based on Richardson extrap-
olation

Data: f(x), [a,b], no, tol

Result: I, err, n

h = (b—a)/ng; // mp: initial number of sub-intervals

Ip = Qn(f); // initial estimation of [

k=0;err =tol 4+ 1;

while err > tol do

k=k+1;, h=nh/2

I = Qn(f); // new approximation of I
=~ g —
Iy, = %; // Richardson extrapolation

err =]fk — Ii|;
end
I=I,n=(b—a)/h.

72 CHAPTER 3. DIFFERENTIATION AND INTEGRATION

Chapter 4

Linear systems — direct
methods

In this chapter, we are interested in the numerical solution of a linear system
of n equations in n unknowns z1,...,z,, which takes the form:

a11°1 + a1ox2 + . .. + a1pxy = by

a91x1 + agere + ... + a2, = by (A1)

Ap121 + 2o + ... + apnTn = by,.

If we define the vectors x,b € R™ and the matrix A € R™"*"

x1 b1 air a2 ... Qin
T2 by az1 Q@ ... a2,

X = . 9 b = . 9 A = . . 3
Tn b Anl Ap2 ... Qnpn

then the system (4.1) can be written on the ore compact form

Ax = b.

4.1 Triangular systems

Some linear systems which are particularly simple to solve. Let us consider,
for example, a lower triangular linear system

a1171 =b
ag1x1 + a2 = by
az1ry +azrs + azzrs = b3 (4.2)
ap1T1 + apara + ... + GpnTn = by

73

74 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

with a;; # 0 for ¢ = 1,...,n. To solve this system we can start from the
first equation
by
rl1 = —,
ai
then move to the second equation
1
Ty = — (by — az111),
a22

and so on, until arriving at the last equation to determine x,. This idea
results in the following algorithm, called forward substitution:

Algorithm 4.1: Forward substitution algorithm

fori=1,...,ndo

=1 (p. =1).
‘ Ti = & (bl - Zj:l aw%)v
end

Likewise, if we have an upper triangular system

a1171+ a1ere+ ...+ a1p-1Tp-1t AnTp = by
azrst+ ...+ Ap- 1Tp_1+ Aon Ty = by
(4.3)
Up—1n—1Tn—1+ Gpn—1pTn = bp_1
nn Ty = bn
with a;; # 0 for ¢ = 1,...,n, we can start by solving the last equation

ZTn = bp/an, and work upwards until we reach the first equation. This
results in an algorithm called backward substitution:

Algorithm 4.2: Backward substitution algorithm

fori=n,n—-1,...,1do

1 [y N e
‘ Ti= a0 (bz Zj:iJrl awx]),
end

4.2 Gaussian elimination and LU decomposition

Given any linear system of equations, Gaussian elimination allows us to
transform it into an upper triangular system using elementary operations
that effect linear combinations of the rows of the matrix. As we saw in
the previous section, once we obtain an upper triangular system, it can be
easily solved using backward substitution. We will now explain Gaussian
elimination algorithm with an example.

4.2. GAUSSIAN ELIMINATION AND LU DECOMPOSITION 75

Example 4.1. Let us consider the linear system Ax = b with

2 1 0 4
A=|-4 3 -1|, b=|2
4 -3 4)

We let T&l), T‘él), r:gl) denote the initial three equations of the system:

Tgl): 2x1 +xo =4
Tgl): —4dry 3w —wzy =2

rél): 41 -3z +4x3 =-—2

Gaussian elimination transforms these equations, in a systematic way, to
an upper triangular system.

15¢ step:
7“§2) — rgl) = 2r1 +x2 =4
—4
el = (T = s om0
~——
l21
4
réz) — rél) — (2) 7“%1) == —oxy +4wxz = —10.
——
l31
ond step:
rf’) — 7{2) = 211+ =4
T§3) <_ 7"&2) S oty —x3 =10
-5
NOPENC <5> r? = 315 =0,
~——

We have arrived at an upper triangular system. Notice that the matriz of
the system has been transformed in the following way:

2 1 0 2 1 0 2 1
A=AV =4 3 -1 = AP =1]0 5 —-1| = 4¥ =10 5
4 -3 4 0 —5 4 00

Therefore, in the first step, the elements below the diagonal in the first
column have been annihilated, while in the second step, the elements below
the diagonal in the second column has been annihilated.

76 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

We now store the multipliers l;; used in every step of the algorithm in
the lower triangular part of a matriz L with diagonal elements equal to 1:

1 1 1
LW =1-4 1 — L@ =|-2 1 — I®=|-2 1
: 1 2 -2 2 -11

and we notice that LU = A.

From the previous example one can deduce the general principle of Gaus-
stan elimination, which uses a series of linear row combinations to build an
upper triangular matrix that we call U. Moreover, by saving every multi-
plier used by the linear combinations in a lower triangular matrix L with
main diagonal elements equal to 1, we obtain that

A=1LU.

Thus, the matrix A is factored (decomposed) as the product of two triangular
matrices. This factorization is called LU decomposition. For general n,
Gaussian elimination is performed by the following algorithm. Note that I,
denotes the n x n identity matrix.

Algorithm 4.3: Gaussian elimination (and LU decomposition)
Data: A = {a;;} € R**", b= {b;} € R"
Result: L,U € R™" b ¢ R"
Al — A; L =1,

fork=1,...,.n—1do // algorithm steps
fori=k+1,...,ndo // loop over the rows
L, — aﬁﬁ)
ik al(c];))
for j=k+1,...,ndo // loop over the columns
agﬁl) al(f) — lika,(:;.);
end
bglﬁ-l) _ 0 likbgg);
end
end
U=Am,

Algorithm 4.3 returns matrices L and U such that A = LU. Additionally
a vector b(™ is returned that contains the original vector b modified by the
same operations the rows of A are subjected to. Comparing with forward
substitution one notes that b(™® = L~'b. One still needs to solve the upper
triangular system Ux = b(™ | which is done by backward substitution.

The computation of b during Algorithm 4.3 is optional. If we only
compute the LU decomposition of A, we can still solve the linear system

Ax=Db = LUx=Db

4.3. GAUSSIAN ELIMINATION WITH PIVOTING 77

afterwards. Introducing the auxiliary vector y, the linear system can be
solved in two steps:

{Solve Ly =b (lower triangular system ~- forward substitution)

Solve Ux =y (upper triangular system ~» backward substitution).

Note that the vector y corresponds to the vector b(™ returned by Algo-
rithm 4.3.

4.3 Gaussian elimination with pivoting

Gaussian elimination, as prescribed by Algorithm 4.3, does not always suc-
ceed even when A is invertible. The coefficient a,(jg) at the k' step may
become zero, which makes it impossible to continue, as we cannot compute
the multiplier /;z. The elements agz) are called pivots.

In order to avoid zero pivots and continue the algorithm, one can swap
rows of the matrix, a technique known as pivoting. Let us explain this idea

for an example.

Example 4.2. Let us perform Gaussian elimination for the matriz

1 2 3
A=12 4 5
7 8 9

After the first step of the algorithm, we obtain the following matrices

1 2 3 1
AP =10 o] -1|, LW=]2 1
0 —6 —12 7 1

As the pivot aéQ) is zero, Gaussian elimination cannot continue.

However, this situation is resolved when swapping the first and second
rows in the matriz A®. Correspondingly, we also need to swap the multi-
pliers contained in in the matriz L' . This gives

i 1 2 3 i 1
A® =10 -6 —-12|, LW=|71
0 0 -1 2 1

(2)

The new pivot ayy is not zero and the algorithm can continue. By coinci-
dence, the matriz A® is already upper triangular and nothing remains to
be done. We have reached the final step of the factorization:

) 1 2 3
U=A0 =A@ = |0 —6 —12
0 0 -1

)

1
L=L® =71
2 0 1

78 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

If we now compute the matriz multiplication

1 0 0] (1 2 3 1 2 3
LU= |71 0|0 =6 =12 =1|7 8 9],
2 0 1,10 0 -1 2 4 5
L U

we recover the initial matrixz A, but with the second and third rows swapped.
This can be addressed by applying the same row permutations to A that we
performed during the algorithm.

Let us introduce the permutation matrix

100
P=10 0 1
010

This matrixz is obtained using the identity matriz and performing a permu-
tation of the second and third rows. Then one easily verifies that

PA=LU.

The previous example indicates that performing a suitable permutation
every time a pivot is zero, then Gaussian elimination terminates successfully
for an invertible matrix and we obtain two triangular matrices L and U.
Their multiplication is equal to PA, where the permutation matrix P reflects
every permutation performed during the algorithm.

(k)

In general, if a pivot a, is zero, we can decide to swap row k with any
row ¢ > k that satisfies al(,’:) # 0. However, from a numerical perspective,

a tiny value of \a§£)| will blow up the size of the entries in the transformed
matrix and lead to massive problems with roundoff error. To make the
algorithm numerically robust, one chooses the row r that gives the pivot
of maximal magnitude: |a7(f]?| > \agllz)| for every i = k,...,n. In turn, one
always performs a swap of rows k and r, even when the pivot a,(jc) is not zero.
A rigorous formulation of the resulting algorithm is given in Algorithm 4.4.

The success of the algorithm is guaranteed (in exact arithmetic).

Theorem 4.1. Algorithm 4.4 returns for every invertible matriz A € R™*™
a lower triangular matriz L (with diagonal entries 1), an upper triangular
matriz U, and a permutation matrixz P, such that

PA=LU. (4.4)

Given the decomposition (4.4), we we now want to solve the linear system
Ax = b. We notice that

Ax=b & PAx=Pb <« LUx= Pb.

4.3. GAUSSIAN ELIMINATION WITH PIVOTING

79

Algorithm 4.4: Gaussian elimination with pivoting

Data: A = {a;;} € R"*" b= {b;} € R"
Result: L, U, P € R"*" b(" ¢ R"

AW = A L =1, P=1I,;
fork=1,...,n—1do

determine r such that |a£,l,?] = maX;—k, . n |a§£) l;

?

vector b®) and the first k& — 1 columns of L;
fori=k+1,...,ndo

L = aﬁ'zi).

lk_@7

for j=k+1,...,ndo

(k1) _ () (B).

i Gij — ik

end
b§k+1) _ bgk) B likbgf)

9

end
end
U=Am,

swap rows k and r in the matrices A®) and P, as well as in the

We can then solve the linear system using the following operations:

{Solve Ly = Pb (lower triangular system~- forward substitution)

Solve Ux =y (upper triangular system~~ backward substitution).

Again, the vector y corresponds to the vector b returned by Algorithm 4.4.

Gaussian elimination algorithm with pivoting is utilized by the Python
commands numpy.linalg.solve and scipy.linalg.solve, Specifically, one calls
x=scipy.linalg.solve(A b) to solve the linear system Ax = b. One can also
explicitly calculate the LU decomposition with pivoting using the command
P,L,U = scipy.linalg.lu (A). The following code performs this for the matrix

from Example 4.2.

import numpy as np
import scipy.linalg as sc

A = np.array([[1, 2, 3], [2, 4, 51, [7, 8, 911)
P, L, U = sc.1lu(p)
print("L: ", L)

print("U: ", U)

print("P: ", P)

OUTPUT

L: [[1. 0. 0.]

[0.28571429 1. 0.]

80 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

[0.14285714 0.5 1. 77
#U: [[7. 8. 9.]
[o. 1.71428571 2.42857143]
[o. 0. 0.5 17
P: [[0. 0. 1.]
[o. 1. 0.]
[1. 0. 0.7]

Note that Python used a permutation different from the one we used in
Example 4.2. The product LU gives the original matrix A with the first
and third rows swapped.

print ("L*U: ", np.dot(L, U))
OUTPUT

LxU: [[7. 8. 9.]

[2. 4. 5.]

[1. 2. 3.1

4.4 Memory usage and fill-in

Many engineering applications lead to linear systems of enormous sizes.
However, often many of the matrix entries are actually zero. This has im-
portant consequences on how such a matrix should be stored in memory as
well as on the computational cost of solving a linear system.

Definition 4.1 (Dense matrix). We say that a matriz A € R"*™ is dense
if the number of non-zero entries is of the order of n? (which means that a
significant fraction of the entries are non-zero).

Storing a dense matrix requires O(n?) memory. When using double
precision floating point numbers, every entry consumes 64 bits of memory,
which corresponds to 8 bytes (as every byte consists of 8 bits). Laptops have
a (RAM) memory of a few Giga-bytes. To give a rough idea, let us consider
a laptop with 4 GB = 4-10? bytes of RAM, which allows us to store at most
5-10% double precision floating point numbers. Thus, the absolute maximum
on the size of a fully populated matrix that can be stored in memory is
n = V5 -10% &~ 20000. Engineering applications, such as structural analysis
of materials or fluid flow simulations, easily lead to linear systems with 103
to 107 unknowns. These linear systems can only be solved by exploiting the
sparsity of the matrices.

Definition 4.2 (Sparse matrix). We say that A € R™*" is a sparse matrix
if the number of non-zero entries is of the order of n.

In other words, a sparse matrix has — on average — a constant number
of entries per row. It suffices to store the non-zero entries along with their

4.4. MEMORY USAGE AND FILL-IN 81

positions in the matrix. This reduces memory usage to O(n) and it is easily
possible to store a 10% x 10° matrix on a laptop if the matrix is sparse.

In Python, several formats for storing sparse matrices are available using
scipy, depending on in which order the entries and how their positions are
stored. Popular choices include:

o Compressed Sparse Row format (scipy.sparse.csr_matrix),
o Compressed Sparse Column format (scipy.sparse.csr_matrix),
o COOrdinate format (scipy.sparse.coo_matrix).

For example, the following code stores the matrix

1 00 5
-101 0
A=10 03 o0
0 10 -1

in the Compressed Sparse Row format.

import scipy.sparse as sp
import numpy as np

A = np.array([[1, 0, O, 5],
[-1, 0, 1, 07,
(o, o, 3, 01,
o, 1, 0, -111)

A = sp.csr_matrix(A)

print (A)

OUTPUT
0, 0) 1
0, 3)

(1, 0) -1
(1, 2) 1
2, 2)

(3, 1) 1
3, 3 -1

H WO R R R R

It can be seen that Python only stores the non-zero entries of the matrix
along with their positions.

Definition 4.3 (Banded matrix). A € R™" is called a banded matrix
with bandwidth K if its entries a;; satisfy

a;j =0, if |j*’b|>K

82 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

Every row of a banded matrix with bandwidth K contains at most 2K +1
non-zero entries. For K = 1, such a matrix is called tridiagonal. A band
matrix is a particularly simple (but still important) case of a sparse matrix,
where the non-zero elements are concentrated around the diagonal. Storage
as a sparse matrix requires O(Kn) (instead of O(n?)) memory.

The Python command matplotlib.pyplot.spy (A) visualizes the non-zero
entries of a matrix; see Figure 4.1 for examples.

matrice pleine

8 8 8 8 3 38 &8 8

5 8 8 38 85 88 3

o
0
|
|
|
50|
o)
o)
o)
|
100)

o

“ &0 100 50
nz = 9804 1153 nz = 460

Figure 4.1: Example of a full (left), sparse (middle) and banded (right) matrices.
Visualization obtained using the command spy.

The memory needed to store the factors L, U of an LU decomposition for
a sparse matrix is difficult to predict. Obviously, the factors for a full matrix
can be expected to be full (below and above the diagonal, respectively). On
the other hand, the factors for a sparse matrix are not necessarily sparse, due
to a phenomenon called fill-in. For example, Figure 4.2 (middle) shows that
the factors lose a lot of the sparsity of the original matrix from Figure 4.1
(middle). For a banded matrix A, it can be shown that the factors L and U
are zero below and above the bands of A, respectively. At the same time,
additional zero structure within the bands is not necessarily preserved by
the LU decomposition; see Figure 4.2 (right). In many practically relevant

LU matrice pleine LU matrice bande

g8 8 8 8 8 38 & 8

8 8 8 38 8 8 88 3

o
0
|
|
|
50|
o)
o)
o)
|
100)

o

Figure 4.2: Non-zero entries of the LU decompositions of the matrices from Figure
4.1. L corresponds to the lower triangular part and U to the upper
triangular part of the visualized matrices. Left: full matrix; middle:
sparse matrix; right: banded matrix.

E] W 50
= 1918

0 60
z = 10000

situations, fill-in can be reduced (sometimes dramatically) , to a certain ex-
tent by reordering the rows and columns of the matrix A prior to performing
an LU decomposition. The Python command scipy.sparse.linalg.spsolve

effects such a reordering, using UMFPACK by default. Other popular soft-

4.5. COMPUTATIONAL COST OF LU DECOMPOSITIONS 83

ware packages for effecting such sparse direct LU decompositions include
MUMPS, Pardiso, and SuperLU.

4.5 Computational cost of LU decompositions

Processors on laptops nowadays work with a frequency of a few Giga-Hertz,
allowing one to perform a O(10°) operations per second. In the following,
we will perform rough estimates of the computational cost for some typical
linear algebra operations.

e Scalar product: Given two vectors x,y € R™, the scalar product
n
xy)=y'x=) zy
i=1

requires n multiplications and n — 1 additions. Hence, the number
of elementary operations is of the order of n (more precisely, 2n — 1)
and we say that the computational cost is O(n). For n = 1000, this
translates into approximately 10~ seconds computational time, as the
computer can perform O(10%) operations per second.

e Product of a dense matrix with a vector: Given x € R" and
A € R™™ ™ we want to compute

n
y = Ax, = yi:ZAijxj, 1=1,...,n.
j=1

Computing each entry y; requires n multiplications and (n — 1) ad-
ditions. As there are n entries in y, the computational cost of this
operation is O(n?). For n = 1000, this translates into approximately
1073 seconds computational time.

We now consider the LU decomposition of a dense matrix, using Algo-
rithm 4.3 (or Algorithm 4.4). The cost is dominated by the operation

JED 0)

i ij ikakj >

which contains a multiplication and a subtraction, that is, two elementary
operations. This instruction is inside 3 nested loops (k, ¢, and j); we there-

fore arrive at .
5% Y 20w

k=1i=k+1j=k+1

operations. For n = 1000, this translates into a computational time in the
order of 1 second. Due to the cubic dependence, this number increases

84 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

quickly with n. For example, for n = 104, the computational time becomes
~ 103 seconds, that is, in the order of 15 minutes. For a banded matrix
with bandwidth K, we can limit the two internal loops in Algorithm 4.3 to
K entries and, in turn, the computational cost reduces to O(nK?).

The following table summarizes the computational cost and memory
requirements of an LU decomposition for an n x n matrix:

compt cost | memory
dense matrix O(n?) O(n?)
banded matrix (bandwidth K) | O(nK?) O(nK)

4.6 Effects of round-off errors

Gaussian elimination (with pivoting) yields the exact solution of a linear
system in a finite number of operations. A computer, however, executes all
operations inexactly and uses floating point representation for real numbers,
which introduces small round-off errors of the order of 107!6 (in double
precision).

In this section, we aim at giving some insights on the effect of these
round-off errors on the solution obtained by the computer. We formalize
this question as follows. Assume we wish to solve

Ax =D,

which will be called the “exact system”. Already the storage of the vector
b and the matrix A is usually not exact because their entries need to be
rounded in order to fit the floating point format. Hence, the computer
solves a slightly modified system

Ax = b, (4.5)

which will be called the “perturbed system”. Apart from rounding the in-
put, Gaussian elimination introduces additional roundoff error in every op-
erations. Backward error analysis allows one to push this error back to the
original system, allowing one to view the computed solution as the exact so-
lution of the perturbed (4.5). For a good (backward stable) algorithm, like
Gaussian elimination with pivoting, we expect that this perturbed system
remains very close to the exact system. More specifically, we may assume
that
b; = bi(1+€), where ¢; is of order of 10716,

Likewise, the entries of A satisfy
CALZ‘j = aij(l + "7ij)7 with Nij of order of 10716,

One may conclude that the solution x of the slightly perturbed sys-
tem (4.5) is close to the exact solution x. This is indeed often but not

4.6. EFFECTS OF ROUND-OFF ERRORS 85

always the case, depending on the matrix A. The following example shows
that things may go wrong.

Example 4.3. Let us consider the exact linear system

1 107167 24 1
L N

with the solution (x1,x2) = (1,0), and the perturbed system

Al oa 1 107167 34 141016
R s

Note that we only perturbed the first entry of b. The solution of the per-
turbed system is (&1,%2) = (1,1), that is, the second entry of the solution
is completely wrong! In other words, the small perturbation 10716 of the
right-hand side term has been amplified tremendously!

To better understand the phenomenon observed in Example 4.3 and
analyze the error x — X, we first introduce some notation. Let us recall that

the Euclidean norm of a vector x is ||x|| = 1/>_i~; #?. We aim at estimating

the relative error ||x — x||/||x||. For this purpose, we need to generalize the
notion of norm to matrices.

Definition 4.4 (Norm of a matrix). Given a matric A € R™*™ (not
necessarily square), we define the (spectral) norm of A as

A
14] = sup 141
wemn |||
x#0

This definition of norm implies, in particular, that
[Ax[| < [[Allllx]l, ~ vx €R™

Given square symmetric matrix B € R™*" let \;(B) € R, i = 1,...,n,
denote the eigenvalues of B. We set Apax(B) = max;—; ., \i(B) and
Amin(B) = min;—1,_, Aj(B), the maximum and minimum eigenvalues, re-
spectively. We have the following characterization of the norm of a matrix.

Lemma 4.2. For any matriz A € R™*" it holds that || A]| = /Amax(AT A).
If A is square and invertible, then

1
VAmin (AT A)

Definition 4.5 (Condition number). The (spectral) condition number of
a square and invertible matrix A is defined as

JA™ = A (AT A1) =

Amax(ATA)

k(A) = [|[A7||| Al =)
(A) = [A1 Al (AT)

86 CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

In Python, the norm and condition number of a matrix are computed using
the commands numpy.linalg.norm and numpy.linalg.cond, respectively.
If A is a symmetric matrix, that is, AT = A, then

MN(ATA) = 2N(A4Y) = (A2, i=1,...,n.

A symmetric matrix A is positive definite if and only if all its eigenvalues
are positive. In this case, it follows that

K(A) = Amax(A) /Amin(4).

We now aim at analyzing the relative error ||x —x||/||x]||. For simplicity,
we will analyze the case when only perturbations in the right-hand side
b are allowed (that is, 7;; = 0). The findings are nearly identical when
perturbations in A are allowed as well. We have

A
A

M
1l
o> o

and therefore
x—x=A"'(b-b) = |[x—x|<[A7'Ib-b,
where

; “ 1/2
IB—bl = (3_8e)"* < max |ef[b].
i=1

On the other side,

bl < 4l = o < e
If we multiply the two inequalities, we get
% —x|| 1 Ib=D]
i S ANAT [T < K(A) max el (4.6)
El Ib] A 1

In summary, we have proved the following result.

Lemma 4.3. For an invertible matriz A € R™", let x € R" and x € R™
denote the solutions of the linear systems Ax = b and Ax = b, respectively,
where b; = bj(1+¢€;) fori=1,...,n. Then

% = x| < K(A) emax, (4.7)

where €max = MaX;—1,..n €3]

4.6. EFFECTS OF ROUND-OFF ERRORS 87

The inequality (4.7) shows that the condition number of the matrix A
plays the role of the amplification factor of how round-off errors impact the
accuracy of the solution.

Example 4.4. Coming back to Fxample 4.3, let us compute the condition
number of A. We have

T,_(1 1\/1 107\ / 2 10716
A A<10_16 0)\1 0) \107'¢ 10732

det(ATA —AI) =22 — (2+10732)A + 10732

and

Hence, the two eigenvalues of AT A are
A2(ATA) = %(2 + 10732 £ /4 4 10-64)
and therefore
Amax(ATA) ~ 2, Anin(ATA) ~ %10—32.
We conclude that the condition number of A is

max(ATA)

~9.1016
Nt (ATA) 2-10

r(A) =

which explains the bad results reported in FExample 4.5.

88

CHAPTER 4. LINEAR SYSTEMS - DIRECT METHODS

Chapter 5

Linear systems — iterative
methods

In the previous chapter we studied Gaussian elimination for solving a linear
system Ax = b. However, we also saw that the computational cost and
the memory requirements of this method can be excessive as the size of
A increases. Even for sparse matrices, fill-in may severely challenge the
feasibility of LU decompositions.

In this chapter, we will study iterative methods for (approximately) solv-
ing linear systems, which constitute an alternative to Gaussian elimination
for large-scale problems. The general idea is to build a sequence of vectors
x(®) that converges to the solution x of the system Ax = b:

lim x®) = x.
k—o0

5.1 Richardson methods

A general procedure to build iterative methods is to choose an invertible
matrix P (for which linear systems are very easy to solve) and incorporate
this matrix into Ax = b by re-writing the system in the equivalent form

Px=(P—-A)x+b.

9 we perform the iteration

Given an arbitrary initial vector x!

Px*D) = (p— A)x® + b, k=0,1,..., (5.1)

which requires to solve a linear system with P in every iteration. If the
sequence {X(k)}kzo converges to a vector Xeo, limy_yeo Xx*) = X, then it
necessarily follows that

Pxoo =(P—A)x+b <“— Ax, = b.

89

90 CHAPTER 5. LINEAR SYSTEMS — ITERATIVE METHODS
In other words, x = x is the solution of the original linear system.
The iteration (5.1) can be rearranged as

Solve Pz*) = r(k), r®) =p — Ax(k),

Set x(k+D) — x(®) | (k) (5.2)

leading to the following algorithm:

Algorithm 5.1: Richardson method (without stopping criterion)

Given x(¥ and P € R™™ invertible;
for k=0,1,... do
compute r¥) = b — Ax(

solve the linear system Pz = r(k);
compute xF+1) = x(k) 4 (k).
end

Methods of the form (5.2) are called Richardson methods. The matrix
P is called preconditioner and the vector r® is called the residual of x(¥).
Note that r*) = 0 if and only if x*) is the exact solution of the system.
Normally, r®) 0, and the norm of r*) can be viewed as a measure of how
far the vector x(*) is from the exact solution. This will be used for stopping
Algorithm 5.1 in Section 5.4.

Note that the Richardson method can be viewed as a fized-point method
(as the ones studied in Chapter 1 for n = 1): After rewriting the equation
f(x) = Ax — b = 0 in the equivalent form

x = p(x) = P7[(P — A)x +b],

the Richardson method amounts to performing the fixed-point iteration
x(k+1) = p(x(F)),

5.1.1 Computational cost

Let us discuss the cost of Algorithm 5.1, first for the case of a dense matrix
A. The most costly operations in every iteration are:

e The matrix-vector product Ax*), requiring O(n?) operations.

« The solution of the linear system Pz(*) = r(k)_ Its cost entirely de-
pends on the choice of the preconditioner P. For example, for a diag-
onal matrix P, the computational cost is O(n), while for a triangular
matrix, the cost is O(n?).

Unless P is unfortunately chosen, we expect that the cost of one iteration
is O(n?). Thus, if we obtain a sufficiently accurate approximation to the
solution in much less than n iterations, then the total cost will be smaller
than the O(n?) needed by Gaussian elimination.

5.2. JACOBI AND GAUSS-SEIDEL METHODS 91

When A is sparse then the cost of a matrix-vector product reduces to
O(n). In this case, the most common choices for P (see below) also lead
to a cost of O(n) when solving a linear system with P. Hence, the cost of
one step of the iteration reduces to O(n). If the Richardson method does
not converge too slowly, it offers a cheap alternative to direct methods. The
convergence speed will be analyzed in Section 5.3.

5.2 Jacobi and Gauss-Seidel methods

The Jacobi and Gauss-Seidel methods are particular instances of the Richard-
son method.

In the Jacobi method the preconditioner P is a diagonal matrix con-
taining the diagonal of A (in Python P=numpy.diag(numpy.diag(A))):

Gnn

The (k + 1)* iteration of the Jacobi method amounts to solving

apy :vgjri; 0 a2 -+ x?]z 1
+ .
o2) a1 0 : Ly b
= - +
Qnn :L'gl,) o Gpn—1 0 xEL) bn
The it" component of the vector x*+1) can be computed using
(k1) _ 1 ~)
+1 .
. = — b— : .)7 :1,...’ 5 53

J#i

provided that a; # 0 holds for i =1,...,n.

The Gauss-Seidel method uses the preconditioner P containing the
lower triangular part of A, including its diagonal (in Python P=numpy.tril(A)):

92 CHAPTER 5. LINEAR SYSTEMS - ITERATIVE METHODS

The (k 4 1) iteration of the Gauss-Seidel method amounts to solving

ay, xngrl) 0 ajg --- ain xgk) b,
az1 Qg 2y _ 0o . : 73 + by

: . Gnin : :
apl '+ Gnn x%kJrl) 0 :C%k) bn

This lower triangular linear system can be solved by forward substitution.
In turn, the ™ component of the vector x**1) is given by

i—1 n
k+1) _ 1 (k+1) (k) .
x, = b; — Zaij:cj — Z aijT; , i=1,...,n, (54)
j=1 Jj=i+1
again assuming that a; # 0 fori=1,... n.
The Gauss-Seidel method is very similar to the Jacobi method, with the

major difference that that while computing a new component xEkH)
(k+1)

J

we use

the updated components x , for j < 4, instead of the old components

)

5.3 Convergence analysis

The Jacobi and Gauss-Seidel methods are not guaranteed converge for every
invertible matrix A. To gain more insight in this matter, we will now analyze
the general class of Richardson methods

Px*+h — (P — A)x® 4+ b (5.5)
with an invertible preconditioned P. We let
e®) — x — x(®)
denote the error after k iterations. We want to understand under which
conditions e®) converges to zero as k — oo, which means that all its entries

converge to zero. Equivalently, the norm of ek converges to zero.
We use that the exact solution satisfies the system

Px=(P-Ax+b, (5.6)

which is equivalent to the initial system Ax = b. Subtracting (5.5) from (5.6)
gives Pelkt1) = (P — A)el®) or, equivalently,

e+ = p~(p — A)e® = (1 — P~1A)e.
B

5.4. ERROR CONTROL AND STOPPING CRITERION 93

Definition 5.1. The matriz B = (I—P~'A) is the iteration matriz of (5.5).
Recalling Definition 4.4 of a matriz norm, we have
le®™ V) < [[B]lle®] < | B]*lle® V|
<< ||IBF e).

Hence, the error converges to zero if ||B|| < 1. We proved the following
result.

Theorem 5.1. The Richardson method (5.5) with the iteration matric B =
(I — P~'A) converges for any initial vector x©) if | B|| < 1. Moreover,

e = x®) < B]*lx — <. (5.7)

Notice the similarity between the convergence condition || B|| < 1 for the
Richardson method and the condition |¢/(cr)| < 1 for the local convergence
of a fixed-point method (see Chapter 1). However, in contrast fixed-point
methods for a nonlinear equation, the method (5.5) converges for any initial
vector x(0) if | B|| < 1.

The quantity || B]| gives an indication of the convergence speed because,
according to (5.7), a small value of || B|| leads to fast convergence.

Let us emphasize that ||B|| < 1 is sufficient but not necessary for con-
vergence. A necessary and sufficient condition can be formulated in terms
of the spectral radius.

Definition 5.2 (Spectral radius). Let \;(B), i = 1,...,n, denote the
etgenvalues of a square matrix B € R™*". Then

p(B) = max [Xi(B) (5.8)

i=1,...,n
is called the spectral radius of B.

Theorem 5.2. The Richardson method (5.5) converges for every initial
vector if and only if the iteration matriz B = (I — P~'A) satisfies p(B) < 1.

Based on the theory developed, it can be shown that the Jacobi and
Gauss-Seidel methods are guaranteed to converge if A is symmetric positive
definite or strictly diagonal dominant (that is, |a;i| > >_,; ai;]).

5.4 Error control and stopping criterion

We now supplement Algorithm 5.1 with a stopping criterion. Ideally, one
would like to stop the iterations when the norm of the error ||e®)| =
|x — x®)|| is smaller than a given tolerance. Unfortunately, this requires
knowledge of the exact solution. Instead, we can use the residual

b Z b Ax(®

94 CHAPTER 5. LINEAR SYSTEMS - ITERATIVE METHODS

to control convergence. Because of ||r(®)|| = ||Ax — Ax®)|| < ||A]| ||x —x®)|,
the norm of r*) is small when x*) is close to the exact solution. Specifically,
we verify that the residual is small relative to the right-hand-side:

(k)
(Ll I (5.9)

stopping criterion: T

This leads to the following algorithm:

Algorithm 5.2: Richardson method (with stopping criterion)
Data: A, b, x©, P, tol

Result: x, res, niter

r® =pb— Ax©): k = 0;

while ||r*®)|| > tol||b| do
Pz*) = pk),
x(k+1) = x(k) 4 z(k).
rb+1) — b = Ax(+D),
k=k+1;

end

x = x®) | res= ||r®)||, niter= k;

Algorithm 5.2 ensures that (5.9) is satisfied, but what can we say about
the true error [|[e®]| = ||x — x*)||?
Note that the exact solution satisfies Ax = b, and the approximate
solution x(¥) satisfies
Ax®) = p — r®)

that is, the right-hand side is modified by r®). This matches the situation
covered in Section 4.6 and from (4.6) we obtain that

e — x®|

Il

Ib—bl _]

S Ty S T

< < k(A) - tol,

where we recall that x(A) denotes the condition number of A. Hence, for
moderate condition numbers, the error is reliably estimated by the residual.
For high condition numbers, the residual may not provide a good estimate
of the true error ||x — x¥)|.

5.5 Gradient methods

An important class of matrices which appears often in physics and engineer-
ing applications are symmetric positive definite (spd) matrices For example,
such matrices arise when we are looking for an equilibrium configuration of a
physical system that minimize its energy. We recall that a matrix A € R™*™
is positive definite if

vIiAv >0 Vv e R", v #0.

5.5. GRADIENT METHODS 95

As mentioned before, a symmetric matrix is positive definite if and only if
all its eigenvalues are positive.

A linear system Ax = b with spd A can be associated with an energy
function ¢ defined as

¢:R" = R, o(v) = §VTAV —v'b, v e R"™ (5.10)

We have the following important characterization of the solution:

Proposition 5.3. The solution x of Ax = b for an spd matriz A is the
unique minimum of the function ¢, that is,

X = argmin ¢(v).
veR”?

We now discuss the case n = 2 in more detail.
Example 5.1. Consider the linear system
on) [=
a2 axz| |y ba|
———— =~
A X b
Then the energy function is
1 ar a12} [«T] |:b1:|
T,y) == |x — |z
ory) =5 [z] [au am| [y| =& Y5,

1 1
= §a11$2 + apzy + §a22y2 — biz — bay.

Its gradient is given by

o
Vo(z,y) = o _ |anztawny—bi
Y %) a12 + asy — by ’

and the Hessian matrix is

82¢’ 82¢ a a
_ | 822 ozoy| _ |Q11 12| _
H¢(£L’,y) - [82¢ d%’] o |:a12 CL22:| =4
oxdy Oy?

The stationary points of ¢ satisfy the condition
¢(z,y) = Ax—b =0.

As the system Ax = b has only one solution, we conclude that there is
exactly one stationary point, which coincides with the solution of the linear
system. Moreover, as the Hessian matriz Hy = A is spd, this stationary
point is the unique minimum of the function ¢.

96 CHAPTER 5. LINEAR SYSTEMS - ITERATIVE METHODS

The calculations of Example 5.1 for n = 2 are valid for general n. In
particular, we have that

Gradient : Vo(x) = Ax — b, Vx € R", (5.11)
Hessian : Hy(x) = A, Vx e R"™. (5.12)

Thanks to this interpretation of the solution of a linear system as the min-
imum of an energy function, we can build iterative methods by trying to
approximate the minimum of ¢.

5.5.1 Gradient method (or steepest descent)

Gradient methods are widely used in optimization and relatively simple to
implement. Here, we will only discuss the special case of a gradient method
applied to to the energy function ¢ defined above.

The idea of the gradient method is relatively simple. Suppose we have
an approximation x(®) of the solution to Ax = b, which is also an approx-
imation of the minimum of ¢. We aim at building a better approximation
x(+D for which ¢(x*+D) < ¢(x®). To this end, we are following the
direction of the steepest slope of the function ¢, trying to arrive as fast as
possible at the minimum of ¢. From (5.11), we know that the gradient of ¢
at x*) is

Vo(x*)) = Ax®) — b = —r®),

Therefore, the residual r'®) gives the direction of steepest descent. We then
define
(D) = x(*) 4 g r(*) (5.13)

for some steplength ay, > 0 that will be determined below. Note that ay = 1
corresponds to the Richardson method with P = I,,.

To choose the steplength ay,, we use a technique called “exact line search”,
that is, we choose oy, such that ¢(x*+1)) is as small as possible. Thanks to
the simple form of ¢, it is possible to determine an explicit expression for
such «j. For this purpose, we use the chain rule to compute

o
= (A(x(k) + ar(k)) — b)Tr(k)
— _(r(m)Tr(k) + a(r(k))T Ar®)

0 T/ 0
= o(xk) (k)y — (k) (k) (xR (k)
8aqﬁ(x + ar™) = Vo (x"™ + arl®) (8 (x"™ +ar))

For a minimum o, this derivative needs to zero and, hence, it follows that
which gives us the optimum value

()T p(®)

5.5. GRADIENT METHODS 97

Once the new approximation x**1) is computed according to (5.13), we can
update the residual using the formula

rF) = b — Ax*HD — b — AP 4 apr®)) = £ B — o Ar®)

The following algorithm implements the described gradient method, again
using the stopping criterion based on the normalized residual.

Algorithm 5.3: Gradient method
Data: A, b, x(9 tol

Result: x, res, niter

r® =pb— AxO@: = 0;
while ||[r*)|| > tol - ||b|| do
wk) = Ar®),

_)T
Ak =) Tw

x(b+1) = x(k) 4 o p(F).
r+D) = p(k) — o, w(k)
k=k+1;

end

)

)

x = x| res= ||r(®)||, niter= k;

For the convergence of the gradient method, we have the following result.

Theorem 5.4. The gradient method applied to Ax = b with spd A always
converges to the exact solution for any initial vector x(©). Moreover, the
error bound

k(A) — 1"
Ix-x®) < 0 (D) - x0, (5.14)

holds for some constant C.

5.5.2 Generalizations

In this section, we will briefly discuss some generalizations of the gradient
method.

Preconditioned gradient method

According to Theorem 5.4, the convergence speed of the gradient method is
linked to the factor (k(A)—1)/(k(A)+1). For large x(A), this factor is very
close to 1 and the convergence can be expected to be very slow. To speed
up convergence, we can use preconditioning.

As for the Richardson method, we assume the availability of a precon-
ditioner P € R™ "™ for which it is easy to solve linear systems. We assume
that P is spd and multiply its inverse to both sides to Ax = b:

P~ 'Ax = P7'b. (5.15)

98 CHAPTER 5. LINEAR SYSTEMS - ITERATIVE METHODS

The preconditioned gradient method is the gradient method applied to (5.15).
The convergence of this method is controlled by the condition number of
P~1'A. While all eigenvalues of P~ A are still real and positive, this matrix
is generally not symmetric. We therefore have to slightly adjust the notion
of condition number and set

R(P7'A) = Mpax (P71 A) Amin(P7LA).

One can then show that the iterates x(®) of the preconditioned gradient
method satisfy

AP1A) —1*
||x—x(k)‘| <C (M) \|x—x(0)||, (5.16)

Thus, we will have fast convergence when %#(P~'A) remains modest.
The k' iteration of the preconditioned gradient method computes the

next iterate x**t1) as
KB) | g),

where z(*) is the preconditioned residual (residual of the preconditioned sys-
tem (5.15)) defined as

z#) = P71 — P71 Ax®) = p1p(k),

2(0) T p(k)
@) T Az
Since we do not want to explicitly compute the inverse matrix P~!, the
update of the solution proceeds as follows:

and «y is given by ay =

SolvePz*) = r*) (5.17)

Setx D) = x(*) 4 o,z

This results in the following algorithm:

Algorithm 5.4: Preconditioned gradient method
Given x(and spd P € R™*", get r(®) = b — Ax(®);
for k=0,1,...do

Solve Pz¥) = (k).

wk) = Az(*).

_ ¥k

Ok = () T

x(F+1) = x(k) 4 o 7 (k)

D) = p(®) _ o w(k)

end

)

9

The choice of the matrix P is delicate. the On one hand, it has to be
chosen such that #(P~1A) < k(A). On the other hand, the linear system

5.5. GRADIENT METHODS 99

(5.17) has to be easily solvable. If we only considered the first criterion,
the ideal choice of preconditioner would be P = A. In fact, in this case we
have #(P~!A) = k(I) = 1 and the method converges in only one iteration.
However, with this choice, the linear system (5.17) to solve in every itera-
tion is as complicated as the initial system and we do not gain anything.
Therefore, we have to find a good compromise: the matrix P must be close
to A in some sense, while keeping the solution of the linear system (5.17)
relatively simple.

One possibility already considered in the context of the Jacobi method
is to construct P from the diagonal of A.

In the case of a sparse matrix, another very common choice is to com-
pute an incomplete LU decomposition of the matrix A, that is, P = LU
where L and U are approximations of the factors L and U of A. This tech-
nique is called ILU (incomplete LU). In particular, we can perform an LU
decomposition of A and save only the “larger” entries of the matrices L and
U (ILUt: incomplete LU with threshold). An even more radical choice is
to not allow for any fill-in and only save the entries at positions where A
is nonzero (ILUO). In Python, an ILU decomposition is computed using

scipy.sparse.linalg.spilu .

ILU avoids all problems related to fill-in and (hopefully) gives a matrix
P = LU that is close enough to A. Note that the system Pz®*) = r(#) ig
easy to solve because the P matrix is already factored.

Conjugate gradient method

The gradient method takes the form

<+ — 5 ®) 4 o p)

where r*) = —V¢(x*) is the direction of steepest descent of ¢.

It is natural to ask whether there are other descent directions that allows
one to reach the minimum of ¢ in less iterations. A strategy that works
particularly well consists in choosing at iteration k£ a direction p®), which
has the following property:

(") Tap® =0, j=o0,.. k-1 (5.18)

Vectors p¥) satisfying (5.18) are called A-conjugate or A-orthogonal. In this
case, the update of the solution is

where

100 CHAPTER 5. LINEAR SYSTEMS - ITERATIVE METHODS

The direction p*) can be computed with the following recurrence:

(Ap(k))Tr(k)

MY) 0)
(p(9)T Ap(|

ptth) = p(h+D) _ g p) g = and p© =l
The described method is called conjugate gradient method, which has
the following convergence property.

Theorem 5.5. The conjugate gradient method applied to the linear system
Ax = b, with spd A, converges in at most n iterations to the exact solution
for any initial datum x©) (in exact arithmetic). Moreover, the error at the
k™ iteration satisfies the bound the following estimation

k
Kk(A)—1
l[x — X(k)H <C </1(A)+1> llx — X(O)H) (5.19)

for some positive constant C.

We notice that the conjugate gradient method converges faster than the
gradient method as the reduction factor of the error is controlled by /k(A)
instead of k(A).

Again, we can combine the conjugate gradient method with precondi-
tioning, which leads to PCG (preconditioned conjugate gradient). With a
good choice of preconditioner, the PCG method is very effective for the so-
lution of linear systems. In fact, PCG is the iterative method of choice for
solving large-scale spd linear systems. In Python, PCG is implemented in

scipy.sparse.linalg.cg .

Chapter 6

Ordinary differential
equations

In this chapter we are interested in the numerical solution of an ordinary
differential equation (ODE) of the form: Find a continuously differentiable
function u : Ry — R such that

du(t)
o~ @), >0, (6.1)
u(0) = uyp,

This problem is called a Cauchy problem.
In applications, we often encounter systems of ordinary differential equa-
tions. Given
Ul(t) fl(t7u17"‘7um)
)= | and £(t,u) = ; |
Um(t) fm(t,U1,...,um)

we are looking for a vector-valued function u: Ry — R™ such that

du(t)
— = f(t,u(t)), t>0 ' (6.2)
u(0) = ug

Example 6.1. Let us derive a model for the evolution of a rabbit population.
Let u(t) be the number of individuals at any time t and ug = u(0) the number
of individuals at the initial time t = 0. It is reasonable to assume that the
growth rate of the population at any time t, that is, the number of individuals
being born minus the number of individuals deceased in one unit of time, is
proportional to the total number u(t) of individuals in the population:

growth rate at any given time t: 7(t) = Cu(t).

101

102 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Thus, we can model the population dynamics using the following ODE:

du(t)
ke Cu(t), t>0, (6.3)
u(0) = up

The solution of (6.3) is u(t) = uget. This shows that the model is
realistic; it foresees that the population will increase indefinitely with time!
As the food available for the rabbits is not infinite, a more realistic model
predicts that the number of individuals cannot exceed a certain value Upax.
Thus, another possible differential model is

du(t) _ Cu(t) (1 _ u(®)) t>0, '

dt Umax
u(0) = uo.

(6.4)

In this model, the growth rate 7(t) = Cu(t) (1 - %) becomes zero when

the population reaches the mazrimum value uyax and the population cannot
grow anymore.

Example 6.2. We now consider two populations: rabbits and foxes. Let
ui(t) be the number of rabbits and uy(t) the number of foxes at any given
time t. For each of these populations individually, we can use an equation
of the type (6.3) or (6.4). Let simplicity, we use (6.3). This time, however,
the dynamics of the two populations are linked. In fact, foxes eat rabbits and
therefore the food available for the foxes depends on the number of rabbits
ui(t). Moreover, the mortality rate of rabbits depends on the number of
foxes. We can then write the following model

d“;t(t) = aui(t) — Bur()ua(t), t >0,
d“;t(t) = —yus(t) + dur (Hus(t), t>0,
u1(0) = uy 0, u2(0) = ua,

where auy (t) is the number of birth minus the natural death rate of the rabbit
population; —PBuy(t)us(t) is the mortality rate of rabbits due to the presence
of foxes; —yuo(t) is the natural death rate of foxes; dui(t)us(t) is the birth
rate of foxes, which is proportional to the number of rabbits alive. This
model is known as Lotka-Volterra model. It is a system composed of two
coupled ODEs, which can be written in the vector form (6.2) with

|u(®) | aui(t) — Bur(t)ua(t)
w =[] s =[O

6.1. EXISTENCE AND UNIQUENESS OF SOLUTIONS 103

6.1 Existence and uniqueness of solutions

In this section, we briefly recall results on the existence and uniqueness of
solutions to ODEs. Both, existence and uniqueness, are nontrivial questions,
as shown by the following two examples.

Example 6.3. Let us consider the Cauchy problem

di‘;) — Vu®), t>0, u(0)=0.

It is easy to check that ui(t) = 0, t > 0 and ug(t) = 22, t > 0 are two
possible solutions and, hence, this Cauchy problem does mot have a unique
solution.

Example 6.4. Let us consider the Cauchy problem

du(t)

i u*(t), t>0, u(0) = 1.

1

1=, which only exists for t < 1.

The solution is u(t) =

In our study of methods for the numerical solution of ODEs, we want
to exclude the situations encountered in Examples 6.3 and 6.4. For this
purpose, we recall a result on the existence and uniqueness of the solution
of (6.1) for all ¢ > 0.

Theorem 6.1. Suppose that f : R x Ry — R is with respect to both argu-
ments and Lipschitz-continuous with respect to its second argument, that is,
there exists a constant L > 0 (the Lipschitz constant) such that

|f(t7$)_f(t7y)‘ §L|$_y|v Vm,yE}R, Vit € [0,00)

Then the Cauchy problem (6.1) has a unique solution u(t) defined for all
t € [0,00). Moreover, the solution is continuously differentiable.

Theorem 6.1 generalizes to systems of ODEs. Throughout the rest of this
chapter, we will assume that the hypotheses of Theorem 6.1 are verified.

6.2 One-step methods

We aim at approximating the solution to the Cauchy problem (6.1) in the
interval [0,T] for a fixed end time 7" > 0. For this purpose, we divide the
interval in N sub-intervals [t,, t,+1] of the same length At = %, such that
t, =nAt, n =0,...,N. The methods discussed in this chapter approximate
the solution, starting from %, subsequently interval by interval.

104 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Forward Euler method (also called Explicit Euler)

A simple idea to approximate the solution on the interval [t,,¢,1] consists
in replacing the derivative % at time ¢, with the forward finite differences

formula:
du(ty) w(tpt1) — ulty)
dt At '
Letting u™ & u(t,,) denote the approximation of u(t,), we obtain an approx-
imation u"*! & u(t,y1) by performing one-step of the so called forward
Euler method:

~ 5L ult,) =

n+1 n

u"t —u
At
u’ = ug (known)

= f(tn,u"), nzO,l,...,N—l' (6.5)

For n = 0, this means that u! is computed from u° (which is known) as

u' = u® + At f(to,u°).

Once u' is computed, by substituting n = 1 in (6.5) we can find the

value of u? and so on. The explicit Euler method produces a sequence
(u®, ut,u?, ..., u™N) which we expect to be a good approximation of the exact
solution at the corresponding time steps (up = u(tg), u(t1), u(t2),...,u(ty) =
u(T)). The term explicit refers to the fact that we can compute the solution
ut1 explicitly from the solution u™.

A Python implementation of the forward Euler method:

import numpy as np

def euler(f, I, u0, N):
Solves the Cauchy problem

v'=f(t,u), t in (t0,T], w(t0)=u0
using the forward Euler method with a time step dt=(T-t0)/N
Input:

f: function f(t, w)

I: the integration interval [t0,T]

u0: initiale condition

N: number of subintervals
Output:

t: vector of time instants tn

u: approzximate solution un

dt: time step
dt = (I[1] - 1I[0]) / N
t = np.linspace(I[0], I[1], N + 1)
u = np.zeros(N + 1)
ul0] = u0
for n in range(N):

uln + 1] = uln] + dt * £(t[n], ulnl)

return t, u, dt

R S TR TR S S SRS

6.2. ONE-STEP METHODS 105

Example 6.5. We apply the forward Euler method to the Cauchy problem

(6.6)

dult) — _(Lu+3te™t), te(0,20],
u(0) = 1.

The exact solution is given by uex = “1le 3t 4 12(1+ %t)e_t. The following
code computes the approrimate solution using the Euler method with N = 20
(At = 1) and compares it with the exact solution:

import numpy as np
import matplotlib.pyplot as plt
from ch6_euler import euler

a=20.5

b =23

f = lambda t, u: -(a * u + b * t * np.exp(-t))

ud = 1

Tf = 20

I = [0, Tf]

uex = (
lambda t: (u0 - b / (1 - a) *x 2) * np.exp(-a * t)
+b*x (1 + (1 -a)*t)*np.exp(-t) / (1 - a) *x 2

)

t = np.linspace(0, Tf, 2001)
plt.plot(t, uex(t), "r")

N = 20

tn, un, dt = euler(f, I, u0, N)
plt.plot(tn, un, "g*x-")

Figure 6.1 shows the obtained result as well as the approximations ob-
tained for N =40 (At =0.5) and N = 80 (At = 0.25). The forward Euler

—sol. exact
Euler: N=20|

—e— Euler: N=40|

05 —+— Euler: N=80H

Figure 6.1: Exact solution of Cauchy problem (6.6) and approximations obtained
with forward Euler with N = 20, 40, 80.

106 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

method is seen to yield approximated solutions that become increasingly ac-
curate when the number N of sub-intervals increases or, equivalently, when
the time step At decreases.

Backward Euler method (also called Implicit Euler)

du(tn)
dt 7’

Instead of the forward finite difference for approximating
consider other choices, such as the backward finite difference:

u(tn) — u(tn-1)
At '

This choice results in the backward Euler method

one can

du(ty,)
dt

~ O u(tn) =

— n+1 — _
AL fltpy1,u™™), n=0,1,...,N—1 (6.7)
u® = ug (known).

Given u", we now need to solve the equation

u't = AL (b, u"t) ="

to determine the next approximation «”*!. This is a non-linear equation in

the unknown u"*!. Setting = u"*!, we thus have to find the root of the
function

gn(z) = — At f(tpt1,2) —u" = 0. (6.8)

This implicit definition of u™*! explains the name implicit of the method.
For solving (6.8), we can use one of the methods introduced in Chapter 1.
For example, one could use the following fixed-point method:

e ® D = AL f(tnar, 2®) + u”.

Since we expect the solution u™*! to be close to u", we can use (9 = ™ as
initial value for the fixed-point method. The Newton method
k k
D) — (k) _ a® — At f(tngr,2™) - u”j k=01..... 20—y

1— At (tq,2®)

can be expected to converge faster. However, there is no need compute the
solution more accurately than the approximation error introduced by the
finite difference approximation. In fact, one-step of the Newton method is
usually sufficient.

At first glance, the backward Euler method seems to offer little benefit
and in view of the additional complications implied by need for solving a
nonlinear equation in every time step. However, we will see in Section 6.4
that this method has better stability properties compared to the forward
Euler method.

6.2. ONE-STEP METHODS 107

Crank-Nicolson method

Another way to approximate the solution of (6.1) is obtained via quadrature.
For this purpose, we integrate (6.1) between t,, and t,1,

tnt1 du(s)

utns1) — ulty) = / 1) 4 = / " Fs u(s)) ds,

n

and then apply the trapezoidal formula to approximate the integral:

[Hs e ds xS At ulta)) + (b).

This gives us the Crank-Nicolson method:

un+1 n

—u 1 1
e = ™) g f b u™), n=0,1, N -1,

u® = ug (known).

(6.9)

Once again this an ‘mplicit method, which requires the solution of a non-
linear equation in every time step. We will see that this scheme is usually
more accurate than Euler’s method (forward and backward)

Heun method

To avoid the need for solving a nonlinear equation in the Crank-Nicolson
method, one can first compute an approximation of u"*! using forward
Fuler:

A"t = u" + At f(tn, u).

Using 4" instead of u"*! in the right-hand side of (6.9) gives

un+1 —um

_ 1 n 1 ~n—+1
i =)+ 5 (b, 7).

Combining both equations results in the Heun method

un-l—l n

OT - §f(tn7u)+ if(tn—klau + Atf(tn’u))’ (6'10)

u’ =wugp (known),
with n = 0,1,..., N — 1. Note that this method is explicit and as we can

compute the new solution v"*! in an explicit way from u" using

At At
s S 5 Sty ™)+ = (b, 0™ + ALt u™)).

Up to now, every method we studied computes u"*! using the last step

u™ only. To reflect this property, we call them one step methods.

108 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Definition 6.1. A one-step method to approzimate solution to the Cauchy
problem (6.1) is a method of the form

un+1 —um
— = or(u™, u b, Ab). (6.11)
If the function ¢y does not depend on u™t1, the method is called explicit,

and otherwise implicit.

The following table collects the functions ¢ for the methods studied above:

Method Gr(u™ ut L, At) =

Forward Euler f(tn,u™)

Backward Euler [ty + At unth)

Crank Nicolson $f(tn, u™) + S f(tn + At w1

Heun f(tn ™) + 3 F(tn + At u™ + At f(tn, u"))

Multistep methods construct solution u”*! by not only using «™ but also

w1 w2, etc. Such methods will not be discussed in this lecture.

6.3 Error analysis

Given a one-step method of the form (6.11), we now aim at studying the
behavior of the approximation error. Specifically, we consider the error at
the final step 71"

ey = [u(T) —u|, where N =T/At.

We have already seen for the forward Euler method that the error decreases
as the time step size At decreases. The following definitions captures the
quality of this decrease.

Definition 6.2. A numerical method that performs N time steps of size
At to approximate the Cauchy problem (6.1) is said to be convergent of
order p if there is a constant C > 0 such that

u(T) —u™| < CAP,
provided that the exact solution is sufficiently smooth.

To study the convergence order of a numerical method, we have to in-
troduce some additional concepts.

Definition 6.3 (Local truncation error). Let u(t,) be the exact solution
of the Cauchy problem (6.1) at time t, = nAt forn =0,1,...,N. The local
truncation error of a one-step method (6.11) at instant t,11 is defined as

- u(tny1) — u(tn)

Tn = Al — Op(u(tn), u(tnsr), tn, At). (6.12)

6.3. ERROR ANALYSIS 109

The overall truncation error is defined as

T= nzog}?(Nfl [7nl-

Let us emphasize that the truncation error is the error committed by the
one-step method at t,41 when the previous approrimation u, is replaced by
the exact value u(t,). Of course, this exact value is not known unless n = 0,
so the actual error of the one-step method at ¢,41 is a combination of the
truncation error 7, and the errors resulting from the first n time steps of
the method.

Example 6.6 (Truncation error of the forward Euler method). For the
forward Euler method we have

u(tpyr) — ultn)
Tn = a At - f(tn,u(tn)).

We recall that the approximation error of forward finite differences (see
Chapter 3) satisfies

tni1) — u(tn)
At

/ u(At "
tn) — < —).
u'(tn) -2 te[gl%i:-ﬂ)l

As u(t) is the exact solution of the Cauchy problem (6.1), it satisfies u'(t,) =
f(tn,u(ty)) and thus

u(tny1) — u(ty)
At

max _|u”(t)].

/
(b)) < 2 t€ltn,tni1]

70| =

Therefore,

1
T <CAt with C == max |u"(t)|.
2 tc[0,T]

Example 6.7 (Truncation error of the Crank-Nicolson method). For the
Crank-Nicolson method, we have

Uine) Zvltn) L g, u(t)) - 2 F e ultn).

We recall that the error of the trapezoidal quadrature formula on a single
interval (see Chapter 3) satisfies

Tn =

tnt1 At 17 3
[atds = 5 (olta) + g(tain))| < € _max |01
tn

tE[tn,tn+1]

Inserting g(t) = u'(t) = f(t,u(t)) allows us to write

1| [At

ITnl = — / W (s)ds — — [f(tn,u(tn)) + f(tns1, u(tns1))]| < C max |u”(t)| At
At tn 2 tE[tn,tn+l]

and thus

7 < C max |u"(t)|At%
te[0,7)

110 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

In general, one has the following result for one-step methods: If the
truncation error is of order p, that is, T < CAtP, then the numerical method
is convergent of order p.

We will prove this result for the forward Euler method only.

Proof for forward Fuler method. Let us set
" = wu(t,) + Atf(te,u(t,)), n=0,...,N—1,

which allows us to express the local truncation error as
u(tn+1) _ ’l]n+1
Ty = —

" At

In order to bound the total error u(t, 1) — u"**

, we split it into two parts:

u(tni1) — w1 < Jultngr) — @ @ — w
=At|Tn|
= Atl7p| + [u(tn) — u" + AU(f (tn, u(tn)) — f(tn,u"))]
< Atfma| + Ju(tn) — u"| + At [f(tn, u(tn)) = f(tn, u”)]
<L|u(tn)—un| as f is Lipschitz.
< At + (1 + LAY u(ty) — u".

Defining €, = |u(t,) — u"|, the error at time t,, applying the previous
relation repeatedly allows us to link €,41 to &,, then to €,_1, and so on,
until arriving at eg = |u(tg) — u°| = 0:

ent1 < AtT + (1 + LAb)e,
< Atr + (14 LAt AtT + (1 + LAt) e,

<Y (14 LAY 'Atr + (1 + LAt g
=0
1+ LA™ —1

= 7’7

L
where the last step uses the identity

1— Tn-i—l

n
>t
¢ 1—r
=0

for r = 1+ LAt > 1. We now use the inequality (1 4+ x) < e*, z > 0, to

conclude LAIN o
e —1 et —1
\u(T)—uN\:&:NS 7 T = 7 T,

which proves that the error at the final step is of the same order as the
truncation error. O

6.4. ABSOLUTE STABILITY 111

The order of the one-step methods discussed so far is summarized in the
following table:

Method order
Forward Euler 1
Backward Euler
Crank Nicolson
Heun

NN

6.4 Absolute stability

An autonomous system of differential equations takes the form

du(t)
— — f®), >0, (6.13)
u(O) = o,

that is, the function f does not depend explicitly on time. The system of
Example 6.2 is an instance of an autonomous system.

The values u (if they exist) for which f(u) = 0 are called equilibrium
points. If we set ug = u, the solution of (6.13) is u(t) = u for all ¢; the
system remains in equilibrium.

An equilibrium point is called a global attractor if, for all ug, the solution
of (6.13) satisfies lim;_,oo u(t) = u. In other words, any solution of (6.13)
approaches the equilibrium after some (long) time. For many reasons, this
is an important property and, ideally, the approximation produced by a
numerical method should preserve it. This gives rise to the following stability
question: Given an autonomous system (6.13) with a global attractor u such

that
Y uy, tliglo u(t) = u,

1s it true that the approximation u"™ computed by a numerical method also
satisfies

Y ug, lim u"=u?
n—o0

In other words, if the exact solution approaches the equilibrium value, is
the numerical solution also approaching this equilibrium value? As we will
see, this is not always the case.

The answer to the stability question raised above is difficult to answer
in the general nonlinear case. However, we can give precise answers for a
linear system:

du(t)
dt
where u(t) = (u1(t),...,un(t))", A € R™*™ and b € R™,
We have the following result regarding equilibrium points for (6.14).

= Au(t)+b, t>0, u(0) = uy, (6.14)

112 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Theorem 6.2. Given a linear system (6.14), suppose that R(\;(A)) < 0 for
every eigenvalue A\i(A) € C of A. Then (6.14) has exactly one equilibrium
point @ = —A~ b, which is a global attractor:
Y uy, lim u(t) =u=—-A4"'b.
t—o0

We now investigate when the property of Theorem 6.2 is preserved by a
numerical method.

Definition 6.4. Under the hypothesis of Theorem 6.2:

o A numerical method that computes approzimations u" ~ u(t,) at uni-
form time steps is called absolutely stable for a fized time step size
At if

Y ug lim u"=a=-A4"'b.
n—oo

o A numerical method is called unconditionally absolutely stable
(or A-stable) if it is stable for all At > 0. Otherwise, if the method
is stable only for some At > 0, it is called conditionally absolutely
stable.

To verify whether a numerical method is absolutely stable, it suffices to
consider the case b = 0. Indeed, after performing the substitution v(¢) =
u(t) —u for u(t) satisfying (6.14), we see that v(t) satisfies the homogeneous

system d‘;l—ff) = Av(t) with the initial value v(0) = ug — u.

6.4.1 Scalar model problem

We will first study the scalar case as a warmup:

du(t)
dt

= Au(t), t>0, u(0) = up. (6.15)
We assume A < 0, which implies u(t) = uge — 0 for t — oo.

Lemma 6.3. The forward Euler method applied to (6.15) is absolutely stable
if

2
At < —. 6.16

The backward Euler method applied to (6.15) is unconditionally absolutely
stable.

Proof. The forward Euler method applied to (6.15) takes the form

" = w4 At T = (14 A) =L = (14 AN "u.

6.4. ABSOLUTE STABILITY 113

Therefore " =% 0 if and only if |14 AtA| < 1, which gives the condition
(6.16).
The backward Euler method applied to (6.15) takes the form

u" = u" 4+ Athu” = u":LA:".:éuO‘
1— AtA (1 — AtA)»
As A <0, we have || < 1 and u” %% 0 for all At > 0, which proves
the second part. O

6.4.2 Vector model problem
We now consider the homogeneous case of the linear system (6.14):
du(t)
dt
and assume that ®(A\;(4)) <0 fori=1,...,m.
The following lemma generalizes the result of Lemma 6.3.

= Au(t), t >0, u(0) = uy, (6.17)

Lemma 6.4. The forward Euler method applied to (6.17) is absolutely stable
if |1+ At\;| < 1 holds for every eigenvalue \; of A or, equivalently,

2[R
A .
R PWE

(6.18)

The backward Euler method applied to (6.17) is unconditionally absolutely
stable.

Proof. To simplify the proof, we assume that A is diagonalizable (the result
also holds for non-diagonalizable A). Hence, there is an invertible matrix V'
(containing the eigenvectors of A) such that

A=VDV~! D=diag\,...,\).

The forward Euler method takes the form

n+1 n

= — Au" = VDV ",

—u

At

If we multiply both sides of this equation with V' ~! and perform the change
of variable w” = V~1u”, we obtain that

WnJrl —wn

A =V 'vDv—tu" = Dw".

Because D is diagonal, the i'" entry of this equation reads as

n+1 n
w; Wy

At

)

=Nw!' = w't =1+ NAYW?E, i=1,...,m.

114 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Hence, it follows that every entry of the vector w”, and thus also the vector
u” = Vw", converges to zero as n — oo if and only if

1+ NAL <1 Vi=1,....m.
which corresponds to
(1+ AtRN))? + APS(N)? < 1

= 2R\ + AN <0,

giving the condition (6.18) using that R(\;) < 0 and At > 0.
On the other hand, the backward Euler method takes the form

n+1 _
At

n

- = A"t = VDVt

u

After again performing the change of variable w” = V~lu", we get

Wt —wn = DW”‘H,
At
which entrywise reads as
wzn—‘rl_wzn_)\ n+1 n+l _ 1 noo;__
= W) = W _mwi, 1=1,...,m.

Since R(\;) < 0 for every i = 1,...,m, it follows that

|wy' |wi!

T— XA /1 - ROWAL? + S0)PAL

i = < |wil.

Thus, w” = V~'u” — 0 for n — oo for all At > 0, which proves that the
method is A-stable. O

Lemma 6.4 shows that forward Euler is only stable for sufficiently small
step sizes. It can be shown that every explicit method requires such a step
size restriction.

6.5 Error control: An adaptive algorithm

So far, we have assumed that the time step size is constant and chosen a
priori. In this section, we will develop an approach that chooses the time
step size At,, adaptively (and differently) in every time step.

A good choice of At, has to strike a compromise between not being
too large (to ensure good accuracy) and being too small (to avoid excessive

6.6. RUNGE-KUTTA METHODS 115

cost). We will control accuracy through the local truncation error, ignoring
contributions to the error from previous time steps:

[u(tnsr) —u™*|

At

The obvious problem with this formula is that we do not know the exact so-
lution u(t,+1). To address, we will replace it by a proxy — an approximation
computed with a more accurate method, that is, a method of higher order.
For example, suppose that the forward Euler method is used to compute
u™ 1. Then one could use the Heun method to compute

B0) + B0 F 1 4 At A (1 ™)

an—‘rl — un +

and replace u(t,+1) by 4"

,&n-{—l _ un+1|

n At,

Given the estimate 7,,, we accept the approximation produced by the
time step size At, if 7, < tol/T for a prescribed tolerance tol > 0. If,
however, 7, > tol/T, we reduce At,, (for example, dividing it by two) and
repeat the process until we have found an acceptable time step size.

It could also happen that 7,, < tol/T, that is, the estimated error is a
lot smaller than the tolerance. In this case, it is wise to increment the time
step for the next time step (for example, by doubling it).

As a final twist, we expect that the Heun method will deliver better
accuracy than the forward Euler method. Hence, we return the approxima-
tion by the Heun method (even if the error is controlled for the less accurate
forward Euler method).

The described adaptive strategy is summarized in Algorithm 6.1.

6.6 Runge-Kutta methods

All the one-step methods studied in this chapter belong to the more general
family of Runge-Kutta methods, which take the following form:

S
KZ':f(tn+CiAt,un+AtZainj>, izl,...,S
j=1
s (6.19)
uttt =y + Atz b;K;, m>0.
i=1
Such a Runge-Kutta method first computes the so called stages K, ..., K
and computes the next approximation u"*! using a linear combination of
these stages.

116 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Algorithm 6.1: ODE solver with adaptive time stepping: Combi-
nation of forward Euler with Heun.

Data: f(t,u), uo, [to, T], Atinit, tol

Result: N, [to,t1,...,txy = T), [io, u1, . .., an]

n = 0; Aty = Atinit // initial time step;
while ¢,, < T do
"t = u™ + Aty f(tn, u™) // forward Euler;
At = un o B f(t,, un) + B2 f(t, + Aty u"t) // Heun;
P i : :
Tn = —FAp // error estimate;
if 7,, > tol/T then // reduce time step size
| Atn = Aty /2;
else // accept time step
lnt1 =tp + Atp;
if 7,, < tol/2T then // increase time step size
| Atppr = min{2A¢,, T =ty };
else
| Atpr =min{At,, T — tp};
end
n=n++1;
end
end

A Runge-Kutta method is completely identified by the coefficients {a;;},
{b;} and {¢;} which are usually stored in a table (called Butcher table):

C1 ail e ais
Cs | As1 - Qss
by, .- b

The method is explicit if a;; = 0 for all 7 > 4, as every stage K; can be
computed explicitly from the previous stages K, j < i. As mentioned
above, such methods are only conditionally stable, at best. The Butcher
tables for the methods discussed in this chapter are collected in Table 6.1
(check them as an exercise).

Python contains, within scipy.integrate, several implemented Runge-Kutta
methods. For example, scipy.integrate.RK45 implements a variation of Al-
gorithm 6.1. It uses a Runge-Kutta method of order 5 with s = 7 stages
to control the accuracy (and thus choose the time step size) for a nearly
identical Runge-Kutta method of order 5.

6.6. RUNGE-KUTTA METHODS 117

0]0 L)1 (1) (1) 0
1 1
2 2
Forward Euler Backward Euler Crank-Nicolson Heun

Table 6.1: Butcher tables corresponding to the forward Euler, backward Euler,
Crank-Nicolson and Heun methods.

118 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Chapter 7

Boundary value problems in
one dimension

7.1 Example: Heat equation

Let us consider a metal bar of length L with density p and specific heat
capacity c¢,. We let T'(x,t) denote the temperature of the bar at the point
xz € [0, L] and at time t. Moreover, we let J(z,t) denote the corresponding
heat flow. Let us consider a heat source f(x,t) generated, for example, by

(0

A T

The temperature variation in time in an infinitesimally small slice [z, z+
Az] of the bar is given by

a flame:

dT’
pep (@, DAz = J(x,t) = J (@ + Ax,t) + f(x, 1) A

Dividing by dx and taking the limit for Az — 0 results in

dr aJ
pcp%(xﬂt) = _%(x7t) + f((l?,t)
Fourier’s law tells us that the heat flow is proportional to the temperature

gradient:
oT

J($7t) = _k"ai($vt)a (71)
x
with k being the heat conductivity. Combining both equations finally results
in a differential model for describing the evolution of the temperature in the
bar (1D heat equation):

dT o0*T
pcp%(x,t) — kw(:ﬁ,t) = f(z,1), x € (0,L), t>0. (7.2)

119

120 CHAPTER 7. BOUNDARY VALUE PROBLEMS

This is a partial differential equation (PDE), with the unknown being a
function, the temperature distribution 7'(x,t) in the bar at any given time.
To find a solution, we will have to provide the temperature distribution at
the initial instant and specify what happens at both end points of the bar.
For example, if the bar is in contact with heat tanks of constant temperature,
we can add the boundary conditions

T(0,t) =T, T(Lt)=T, t>0.

Boundary conditions of this type are called Dirichlet boundary conditions.

Another possibility is that the bar is thermally insulated. In this case,
there is no heat flow at the end points of the bar and the boundary conditions
are

oT oT

J(O,t)——kaw(o,t)—o, J(L,t)——kax(L,t)—O, t>0.
These conditions are called Neumann boundary conditions and they depend
on the value of the derivative of the solution at the end points, instead of
the value of the solution itself.

Of course, we can also consider a mix of both types of conditions and
consider, for example, a Dirichlet condition at the left end point and a
Neumann condition at the right end point.

If we are only interested in the temperature distribution in equilibrium
state (assuming that the heat source does not change over time), we can
solve the associated stationary problem

2
_k%(:ﬁ) ~ f@), ze(0,L) (7.3)

either with Dirichlet boundary conditions:

~kGE@) = f(x), we€(0.D), (14
T(0) =1, T(L)="T,, '
or with Neumann boundary conditions:
~kGE (@) = f(z), =€ (0.L), -
kSL(0) = Jy, k9L(L) = J (75)
Bw()i b 8&:()7 T

Equation (7.3) is a second order differential equation because it features
the second derivative with respect to x. Problems of the form (7.4) and (7.5)
are called boundary value problems.

7.2. FINITE DIFFERENCES APPROXIMATION 121

7.2 Finite differences approximation of the station-
ary heat problem

We now consider the numerical solution of the one-dimensional stationary
heat problem with Dirichlet boundary conditions. To simplify notation, we
will denote the unknown function as u(x), set k = 1, and denote the Dirichlet
conditions by « and f:
0%u
u(0) =, u(L) =p.

To find an approximated solution, we will proceed as follows: we divide the

interval [0, L] in n + 1 sub-intervals I; = [x;_1, ;] of length h = n%rl, where
xzj = jh, j =1,...,n, and we seek for an approximation u; ~ u(z;) at the

nodes ;.

At the end points g = 0 and z,+1 = L, the solution is known because
of the imposed Dirichlet boundary conditions. This means that as we set
up = « and u, 41 = [, it remains to determine the values u; at the internal
nodes x;, with j =1,...,n.

At every internal node, the exact solution satisfies the equation

0%u
—@(%’) = f(z;).
The idea is now to replace the exact second derivative by the finite difference
approximation

&u u(wj—1) — 2u(x;) + u(zj41)

~

@(%’) ~ 12 .

We then get the following scheme:

—Ui_1 + 2u; — Ujp1 .
J h2] I = f(xy), ji=1,...,n,

o=, Uns1 =B

(7.7)

Taking into account the boundary conditions, the first and last equation can
be re-written as follows

(I ey PR
—Up_1 +i;ﬁn —Un+l _ Flan) 7“%;2“” = f(xn) + %,
and, in turn, the system (7.7) becomes
%lhi;“?:f(mm% for j =1,
—Uj_1 +§;Jj — Uil f(x;), forj=2,....,n—1, (7.8)
_u%jzun—f(g;n)—k% for j = n.

122 CHAPTER 7. BOUNDARY VALUE PROBLEMS

If we introduce the unknowns vector u = [uy,... ,un]T, the linear system
(7.8) can be written in matrix form

Au =T,

with matrix A € R™ " and the right-hand side f € R" given by

2 ~1 [f(z1) + %_
X -1 2 -1) f($2)
A= 1 e . f= : (7.9)
- -1 f(zn_1)
i 1 2] | f(@n) + 12

Therefore, in order to solve Problem (7.6) approximately using finite differ-
ences, we have to solve a linear system of equations. We notice that the
matrix A is symmetric and tridiagonal. Moreover, we can prove that it is
also positive definite. This means we can use the LU factorization method
(or Cholesky factorization) in a very efficient way.

Additionally, one can prove that the condition number of the matrix A
satisfies

that is, the matrix A becomes increasingly ill-conditioned as h becomes
smaller (when increasing the number of discretization points).

7.2.1 Stability and error analysis

For System (7.8), one can prove the following stability result:

Theorem 7.1. For all f = [f(z1),..., f(z,)]T € R" and every a, B € R,
the system (7.8) admits a unique solution w = [u1,...,u,]" € R™ which
satisfies

max o] < 5 max [7(a;)]+ max{lal. 7]} (7.10)

This result tells us that the norm of the solution u cannot become too
big; it is controlled by the norm of the vector f and the values «, 5 at the
boundaries.

We are now interested in studying the behavior of the error e; = u(x;) —
uj, j = 1,...,n, associated to the finite differences approximation (7.8) in
terms of h (or, equivalently, in terms of the number of discretization points).
For this purpose, we introduce notions analogous to the ones already used
in the study of numerical schemes for ODEs (see Chapter 6).

7.2. FINITE DIFFERENCES APPROXIMATION 123

Definition 7.1. A numerical scheme approximating the boundary value
problem (7.6) is convergent of order p if there exists a constant C > 0
such that
N sl < CRP
j:(rf_liﬁﬂ u(z;) — us| <)

provided that the solution is sufficiently smooth.

We also introduce a corresponding notion of local (in space) truncation
erTor.

Definition 7.2 (Local truncation error). Consider the exact solution
u(xj) of Problem (7.6) at the nodes xj; = jh for j =0,...,n+ 1. Then the
local truncation error at the node x; of the finite differences scheme (7.8) is

defined as

—u(®j—1) + 2u(z;) — u(zjt1)
h2

T = —f(x), j=1,...,n. (7.11)

As the exact solution satisfies —%(xj) = f(z;), the local truncation

error
u(zj_1) — 2u(zj) + u(zjr1) | 0*u ‘
h2 axQ (xj)

T = —

represents the approximation of the second derivative of u using finite dif-
ferences. We have the following result (the proof is left as an exercise)

Result 7.1. The local truncation error (7.11) satisfies
max |75] < h—Q max_|u""(z)], (7.12)
j=1,...n = 12 z€efo,L]

provided that the exact solution is four times continuously differentiable.

According to the definition of local truncation error, the exact solution
satisfies the discrete problem

—u(wj—1) + 2u(r;) — u(z;j41)
h2

:f(a:j)—i—Tj, j=1,...,n, (7.13)

while the approximated solution u; satisfies the problem

—Uuj—1+ QUJ' — Ujy1
h2

= f(z;), j=1,....n (7.14)

If we subtract (7.14) from (7.13), we get the following system of equations
for the error:

(7.15)

—e'_1+26'—e-+1 . .
e h2] = =1, j=1.../n,
€0 = En+1 = 0.

124 CHAPTER 7. BOUNDARY VALUE PROBLEMS

This system has the same form of (7.7), or equivalently, of System (7.8),
with the local truncation error on the right-hand-side and with homogeneous
boundary conditions (o« = 8 = 0). This allows us to apply the stability result
of Theorem 7.1 to conclude

1
max |e;j| < — max |T7;
i=1,.... el < 8 i:l,..‘,n| il
which gives an estimation of the error of the solution in terms of the maximal
local truncation error.

The following theorem summarizes the results obtained.

Theorem 7.2. The finite differences scheme (7.8) applied to (7.6) converges
with second order. More specifically, we have

max |u(z;) —uj| < Ch?, (7.16)

]:1,...,7’L

where C' = gz max,eqo r) |[u"" ()|, provided that the exact solution is four
times continuously differentiable.

Thanks to the stability result of Theorem 7.1, we notice that the error
max;j—1,..n |u(x;)—u;| has the same order, in h, as the local truncation error.
This conclusion is also true for several other boundary value problems and
finite differences discretizations. Indeed, it often suffice to study the local
truncation error to predict the order of the method.

7.2.2 Neumann boundary conditions

Let us now consider a case of mixed Dirichlet—Neumann boundary condi-
tions:

0%u
_@<x) = f(a:), HARS <O7L)’ (717)

u(0) =, u/(L)=2.

As in the previous section, we divide the interval [0, L] in n+ 1 sub-intervals
I; = [zj_1,x;] of length h = HLH, where z; = jh, j =0,...,n+ 1, and we
let u; ~ u(z;) denote the approximate solution at node z;.

This time, the solution at the node x,1 (right extremity) is not known,

which means that the vector of unknowns is u = [uy, ..., uny1]" € R?FL
At every internal node z;, j = 1,...,n, we write the approximated
equation

—uj-1 +2uj — ujy
B2
We still have to determine the equation for the right end point (at the
node z,+1) and how to discretize the Neumann boundary condition «'(L) =
B. To this end, we have two possibilities which are presented below.

:f(xj), j=1,...,n.

7.2. FINITE DIFFERENCES APPROXIMATION 125

First method: First order finite difference

The first idea is to discretize the Neumann condition v/(z,11) = 3 using a
finite difference. As the vector of unknowns contains the values uq, . .., un11,
it makes sense to backward finite differences, yielding the equation

Unp41 — Un
—_—— . '1
—t_p an

Note that this formula is only of first order! Using this choice, we arrive at
the following system of n + 1 equations:

2u1 — ug o .
T:f(fﬂl)‘i‘ﬁ, for]:17
—Uj—1 + 2uj — Uit .

J h2j = = f(xy), forj=2,...,n,
_Un‘;Un+1 — B, fOI'j —n+ 17

which can be written in matrix form

Au =T,
with
(2 -1 | [fa1) + 3]
-1 2 -1 f(562)
1 . . - _
A= 3 -1 . e , f= :) (7.19)

o —1 f(gn)

I -1 1| A T

As mentioned, the drawback of this approach is that the approxima-
tion (7.18) is only of first order, that is, the local truncation error at the
node x,11 satisfies

L) O B < max ()

_u(zng) —u@,)
’Tn-i-l’ - h 5 2 TE[Tn,Tn+1]

In turn, the approximation of Problem (7.17) is also only of first order.

Second method: Ghost node

To retrieve a second order approximation, we would like to use a centered
finite difference in x,.1. For this purpose, we introduce the node z,10 =
(n + 2)h, which is outside the interval [0, L], and the corresponding value
Up+2, SO that we can write the centered finite difference

Up+2 — Up -
BT =p, forj=n+1. (7.20)

126 CHAPTER 7. BOUNDARY VALUE PROBLEMS

Because we added the new unknown w2, we also have to add an equa-
tion. At node x,4+1, the finite differences discretization of the equation
—u/ = f can be written as:

—Up + 2Up41 — Upy2 _ f(

- Tng1). (7.21)

From Equation (7.20), we get u,4+2 = uy, + 2h5 which we insert in (7.21) to

obtain o 4 2 25
—4Unp Unp,

We finally arrive at the following system of n + 1 equations:

2u1 — ug o]
T:f(ﬂfl)-l-ﬁ, for j =1,
— Ui Mbs — Ui

Uj—1 +hg] Uj+l f(xj), for j =2,...,n, (7.23)
—Up + U 1 B ‘
nTnﬂzif(x”“)JrE’ for j =n+ 1,

which can be written in matrix form as Au = f with

2 -1 [flz)+ 55]
' -1 2 -1 fx2)
A= 1 , f= : L (1.24)
E— f(xn)
i 1 1] |3/ (@ns1) + 4

We notice that the node x5 and the corresponding unknown u,, o have
both been introduced only to be able to write the centered finite difference
(7.20), but they do not appear in the final system (7.23). The node x,2 is
called ghost node.

Notice also that the only difference between System (7.24) and System
(7.19) can be found in the last component of the vector f, the matrix A
being the same in both cases. However, this small difference is sufficient to
produce a method of second order!

	Nonlinear Equations
	Example: electrical circuit
	Bisection
	Fixed-point iterations
	Introduction using the electrical circuit example
	Fixed-point method
	Higher-order methods

	Newton Method
	Systems of nonlinear equations
	Newton method for systems of equations

	Curve fitting
	Polynomial interpolation of data
	Piecewise linear interpolation
	Spline interpolation
	Error analysis

	Least-squares approximation

	Differentiation and integration
	Finite differences
	Higher-order derivatives
	Effects of round-off errors

	Numerical integration
	Error analysis
	Richardson extrapolation
	A posteriori error estimation

	Linear systems – direct methods
	Triangular systems
	Gaussian elimination and LU decomposition
	Gaussian elimination with pivoting
	Memory usage and fill-in
	Computational cost of LU decompositions
	Effects of round-off errors

	Linear systems – iterative methods
	Richardson methods
	Computational cost

	Jacobi and Gauss-Seidel methods
	Convergence analysis
	Error control and stopping criterion
	Gradient methods
	Gradient method (or steepest descent)
	Generalizations

	Ordinary differential equations
	Existence and uniqueness of solutions
	One-step methods
	Error analysis
	Absolute stability
	Scalar model problem
	Vector model problem

	An adaptive algorithm
	Runge-Kutta methods

	Boundary value problems
	Example: Heat equation
	Finite differences approximation
	Stability and error analysis
	Neumann boundary conditions

