Numerical Analysis GC / SIE Introduction

Daniel Kressner

Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch

Outline

- Organization
- Why Numerical Analysis?
- A quick tour through the lecture

Organization

Lectures

Lecturer:

Prof. Daniel Kressner MATH, EPFL MA B2 514 daniel.kressner@epfl.ch

Field of research:

numerical linear algebra and high-performance computing Best way to contact me: Send an e-mail!

Room and date:

SG 0211, Thursday 8:15 - 10:00.

First lecture: 12.09.2024Last lecture: 19.12.2024

Recommended Literature

The material discussed in class room, the lecture notes, and the exercises are sufficient.

- ▶ The lecture notes are available on Moodle, in English.
- Repro@EPFL has offered to print these lecture notes on demand. (Let me know if this does not work out.)
- There is also a slightly outdated French version, for your convenience. The official reference is the English version.
- The lectures will follow the lecture notes closely.

Supplementary literature:

- A. Quarteroni, F. Saleri, P. Gervasio, *Scientific Computing with MATLAB and OCTAVE*, 4th edition, Springer, 2014
- A. Quarteroni, F. Saleri, and P. Gervasi. Calcul Scientifique. 2nd edition. Springer, 2010.
- J. Rappaz, M. Picasso, *Introduction à l'analyse numérique*, PPUR, 2010.
- M. Picasso, Analyse Numérique pour Ingénieurs, online course COURSERA, https:

//www.coursera.org/course/analysenumerique

The library has online versions of Springer books.

Exercises

- Room and Date: INF 3, Thursday, 10h15 - 11h00
- Assistants:

Assistant	Office	E-mail
Fabio Matti	MA B2 514	fabio.matti@epfl.ch
Andrea Eric		andrea.eric@epfl.ch
Giulia Dohy		giulia.dohy@epfl.ch
Basile Tornare		basile.tornare@epfl.ch
Marija Vuksic		marija.vuksic@epfl.ch

The assistants will be happy to answer questions during the exercise sessions and also by e-mail. However, for the benefit of everyone, it would be best to post your questions on the **Ed Discussion Forum** (link on moodle)

- Each exercise session will be a combination of theory questions and PYTHON practice (except for today).
- You will find detailed solution sheets on Moodle about one week later.
- Please take the exercises seriously!¹

¹At least as seriously as the lectures.

PYTHON

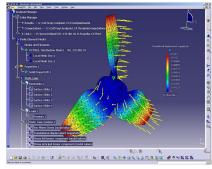
- During this course we will study many algorithms that will allow us to solve mathematical problems with the help of a computer.
- The use of Python is an important part of the exercises and the exam.
- However, this is NOT a coding course. You will not be asked to code complex algorithms. A large part of the algorithms will be provided by us.
- Follow the instructions on Moodle concerning Python/Jupyter/Noto.
- Today's exercise session is meant as an intro/recap of Python concepts important for this course.

LEARNING OUTCOMES

- Choose a numerical method for solving a specific problem.
- Interpret obtained numerical results from a theoretical perspective.
- Estimate numerical errors.
- Prove theoretical properties of numerical methods.
- Implement simple numerical algorithms with Python.
- Apply numerical algorithms to specific problems.
- Describe numerical methods.
- State theoretical properties of mathematical problems and numerical methods.

Fundamental concepts we will talk a lot about:

- stability of an algorithm
- precision of an algorithm
- cost of an algorithm

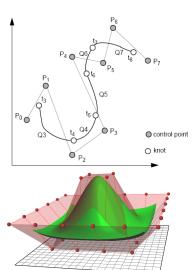

EXAM

- The exam will test the learning outcomes, consisting of a combination of mathematical/algorithmic questions and Python questions.
- We will run a mock exam towards the end of the semester. Details to be announced!
- We will closely monitor the Ed Discussion Forum during the week(s) before the exam.

What is numerical analysis?

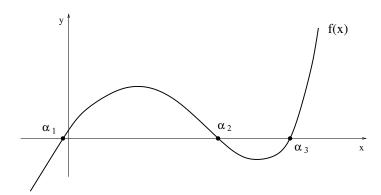
Numerical Simulation

- Numerical simulation has become ubiquitous in civil and environmental engineering.
- The structural analysis of a 3D structure, reservoir simulation, simulation of sedimentation, ... are all massive computational tasks!

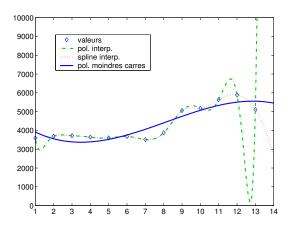


- Get to know algorithms behind commercial software packages.
- Goal of this lecture: Understand most important ingredients of modern numerical methods and get a feeling for numerical computations.
- Understand limitations and what can go wrong!
- Will pay attention to reliability, accuracy, and efficiency.

Other applications of numerical methods


- B-splines, NURBS, ..., to represent smooth curves and surfaces.
 Contained in every vector drawing program and CAD package.
- data fitting
- shape optimization
- active damping
- environmental impact simulation
- crowd behavior

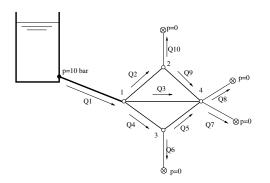
• . . .



A quick tour through the lecture

Nonlinear Equations

Curve Fitting

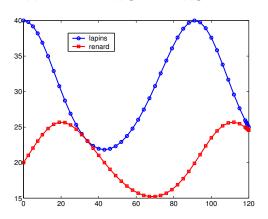

Differentiation and Integration

$$\int_{0}^{1} e^{-x^{2}} dx \qquad \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos^{2} x} dx \qquad \int_{0}^{1} \cos x^{2} dx \qquad \int_{0}^{1} \frac{\log x}{\sqrt{1 + x^{2}}} dx.$$

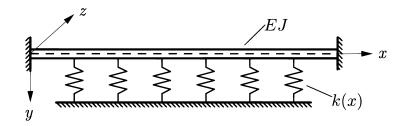
Trapezoidal rule (left) and Simpson rule (right).

Linear Systems

Hydraulic network:


Pressures $\mathbf{p} = [p_1, p_2, p_3, p_4]^T$ at network nodes determined from linear system

 $A\mathbf{p} = \mathbf{b}$.


Ordinary Differential Equations (ODEs)

Lotka-Volterra population model of prey y_1 vs. predators y_2 :

$$y'_1(t) = C_1 y_1(t) [1 - b_1 y_1(t) - d_2 y_2(t)],$$

 $y'_2(t) = -C_2 y_2(t) [1 - d_1 y_1(t)].$

Boundary Vale Problems (BVPs)

