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Optional Revision Problems

Exercise 1. A book has n typos. Two proofreaders, Prue and Frida, independently read the book.
Prue catches each typo with probability p1 and misses it with probability q1 = 1−p1, independently,
and likewise for Frida, who has probabilities p2 of catching and q2 = 1 − p2 of missing each typo.
Let X1 be the number of typos caught by Prue, X2 be the number caught by Frida, and X be the
number caught by at least one of the two proofreaders.

1. Find the distribution of X.

2. For this part only, assume that p1 = p2. Find the conditional distribution of X1 given that
X1 +X2 = t.

Solution 1. 1. Denote the events in which Prue and Frida catch a typo with T1 and T2, respec-
tively. Then using De Morgan’s laws and that they are catching typos independently, the
probability that at least one of them is catching a typo is

P (T1 ∪ T2) = 1− P ((T1 ∪ T2)
c) = 1− P (T c

1 ∩ T c
2 ) = 1− P (T c

1 )P (T c
2 ) = 1− q1 · q2

.

Alternatively, by independence and by the inclusion exclusion formula

P (T1 ∩ T2) = P (T1) + P (T2)− P (T1 ∩ T2) = P (T1) + P (T2)− P (T1)P (T2) = p1 + p2 − p1 · p2.

(If you substitute in q1 = 1− p1 and q2 = 1− p2, you can get that these two are the same).

Hence, for each typo, a ”trial” is performed and a typo is caught at least by one of them with
probability 1−q1 ·q2. We have n many typos/trials in total that are i.i.d Bernoulli(1−q1 ·q2),
so it follows that X ∼ Binom(n, 1− q1 · q2).

2. We want to find the probability P (X1 = k|X1 + X2 = t). As Prue cannot find more typos
than the combined numbers between her and Frida, and she cannot find a negative number
of typos P (X1 = k|X1 +X2 = t) = 0 for k < 0 and k > t.

Consider 0 ≤ k ≤ t. By the definition of conditional probability

P (X1 = k|X1 +X2 = t) =
P ((X1 = k) ∩ (X1 +X2 = t))

P (X1 +X2 = t)
.

The event {(X1 = k) ∩ (X1 + X2 = t)} = {(X1 = k) ∩ (X2 = t − k)} as if Prue found k
many typos and together combined they found t many typos, then Frida must have found

1Exercises are based on the coursebook Statistics 110: Probability by Joe Blitzstein
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the remaining t − k typos. As they are finding typos independently it follows that P (X1 =
k) ∩ (X2 = t− k)) = P (X1 = k)P (X2 = t− k).

Each of them is performing n independent typo checks with success rates p1 and p2 respectively,
so it follows that X1 ∼ Binom(n, p1) and X2 ∼ Binom(n, p2). As p1 = p2 it follows that
X1 +X2 ∼ Binom(n+ n, p1) (see digital whiteboard page 30). Now we can finally substitute
back to the previous expression:

P (X1 = k|X1 +X2 = t) =
P (X1 = k)P (X2 = t− k)

P (X1 +X2 = t)

=

(
n
k

)
pk(1− p)n−k

(
n

t−k

)
pt−k(1− p)n−t+k(

2n
t

)
pt(1− p)2n−t

=

(
n
k

)(
n

t−k

)(
2n
t

) ,

that means that (X1|X1 +X2 = t) ∼ HGeom(n, n, t).

(Observe the similarity to Exercise S4E9. It is the same problem with a different story, hence
the same result)

Exercise 2. Let X, Y, Z be discrete r.v.s such that X and Y have the same conditional distribution
given Z, i.e., for all a and z we have

P (X = a|Z = z) = P (Y = a|Z = z).

Show that X and Y have the same distribution (unconditionally, not just when given Z).

Solution 2. From the law of total probability, it follows that

P (X = a) =
∑
z∈Z

P (X = a|Z = z)P (Z = z),

where Z stands for all the possible values the random variable Z can take. Given that the two
conditional probabilities P (X = a|Z = z) = P (Y = a|Z = z) are equal, and using the law of total
probability for Y , we have

P (X = a) =
∑
z∈Z

P (X = a|Z = z)P (Z = z) =
∑
z∈Z

P (Y = a|Z = z)P (Z = z) = P (Y = a),

for all a, that is, the PMF of X and Y are the same, so they have the same distribution.

Week 6 Exercises

Exercise 3. Find the mean and variance of a Discrete Uniform r.v. on 1, 2, . . . , n.
Hint: See the math appendix for some useful facts about sums.

Solution 3. We defined the expectation of a discrete r.v. X as

E(X) =
∑
k

k · P (X = k).

Since in this exercise X is Discrete Uniform on 1, 2, . . . , n, P (X = k) = 1/n if k ∈ {1, 2, . . . , n} and
0 otherwise. So

E(X) =
n∑

k=1

k(1/n) =

∑n
k=1 k

n
=

(n+ 1)n

2n
=

n+ 1

2
,
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where in the last but one step we used that
∑n

k=1 k = (n+ 1)n/2 (example of Gauss summing 1 to
100 from Lecture 5, or Math Appendix).

The variance can be calculated either as V ar(X) = E((X −E(X))2) or as V ar(X) = E(X2)−
E(X)2. Arguably the latter is easier, so we continue with that approach. By the law of the
unconscious statistician (LOTUS), for a Discrete Uniform X

E(X2) =
n∑

k=1

k2P (X = k) =
n∑

k=1

k2(1/n) =

∑n
k=1 k

2

n
.

From the Math Appendix Section A.8.4 we know that

n∑
k=1

k2 = n(n+ 1)(2n+ 1)/6.

Therefore, the variance of X is

V ar(X) =
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=

(n+ 1)(2(2n+ 1)− 3(n+ 1))

12
=

(n+ 1)(n− 1)

12
=

n2 − 1

12
.

Exercise 4. A certain small town, whose population consists of 100 families, has 30 families with
1 child, 50 families with 2 children, and 20 families with 3 children. The birth rank of one of these
children is 1 if the child is the firstborn, 2 if the child is the secondborn, and 3 if the child is the
thirdborn.

1. A random family is chosen (with equal probabilities), and then a random child within that
family is chosen (with equal probabilities). Find the PMF, mean, and variance of the child’s
birth rank.

2. A random child is chosen in the town (with equal probabilities). Find the PMF, mean, and
variance of the child’s birth rank.

Solution 4. 1. Denote with RF a child’s birth rank, who was chosen randomly from a randomly
chosen family, and denote with F the size of the randomly chosen family. We want to find
the PMF first, i.e. P (RF = k), that is non-zero only if k ∈ {1, 2, 3} and zero otherwise. By
the law of total probability

P (RF = k) = P (RF = k|F = 1)P (F = 1) + P (RF = k|F = 2)P (F = 2)

+ P (RF = k|F = 3)P (F = 3).

Observe that P (RF = k|F = j) = 0 for k > j, as you cannot have higher birth rank than
the size of your family, e.g. you cannot be thirdborn if in your family there are only two
children (including yourself). If k ≤ j then P (RF = k|F = j) = 1/j by the naive definition
of probability, e.g. if you pick a family with two children, you can pick each of the children
with equal probability of 1/2. Finally, by the naive definition of probability, you can pick at
random a family of size 1,2, and 3, with probabilities 30/100, 50/100 and 20/100 respectively.
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Putting everything together

P (RF = 1) = P (RF = 1|F = 1)P (F = 1) + P (RF = 1|F = 2)P (F = 2)

+ P (RF = 1|F = 3)P (F = 3)

= 1 · 3

10
+

1

2
· 5

10
+

1

3
· 2

10
=

37

60
P (RF = 2) = P (RF = 2|F = 2)P (F = 2) + P (RF = 2|F = 3)P (F = 3)

=
1

2
· 5

10
+

1

3
· 2

10
=

19

60
P (RF = 3) = P (RF = 3|F = 3)P (F = 3)

=
1

3
· 2

10
=

4

60
,

and P (RF = k) = 0 for all other values of k. By the definition of expectation

E(RF ) =
3∑

k=1

k · P (RF = k) = 1 · 37
60

+ 2 · 19
60

+ 3 · 4

60
=

87

60
≈ 1.45.

The variance of RF is V ar(RF ) = E(R2
F )− E(RF )

2. By LOTUS,

E(R2
F ) =

3∑
k=1

k2 · P (RF = k) = 1 · 37
60

+ 22 · 19
60

+ 33 · 4

60
=

149

60
,

therefore,

V ar(RF ) =
149

60
−
(
87

60

)2

=
1371

3600
≈ 0.381.

2. Denote the a randomly chosen child’s birth rank with RC . We know that there are 20 families
with 3 children, so 20 thirdborn children, in addition 50 families with 2 children so in total
50 + 20 = 70 secondborn children, and 30 families with only one child, so 30 + 50 + 20 = 100
first born children. Therefore, we have 100 + 70 + 20 = 190 children in total. By the naive
definition of probability the PMF is

P (RC = 1) =
100

190

P (RC = 2) =
70

190

P (RC = 3) =
20

190
,

and P (RC = k) = 0 for all other values of k.

We calculate the expectation as in part 1.

E(RC) =
3∑

k=1

k · P (RC = k) = 1 · 100
190

+ 2 · 70

190
+ 3 · 20

190
=

300

190
≈ 1.579.

Similarly, V ar(RC) = E(R2
C)− E(RC)

2 and by LOTUS

E(R2
C) =

3∑
k=1

k2 · P (RC = k) = 1 · 100
190

+ 22 · 70

190
+ 32 · 20

190
=

560

190
,
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then

V ar(RC) =
560

190
−
(
300

190

)2

=
16400

36100
≈ 0.454

(Mildly) interestingly, if we are selecting a family first and then the child from the selected
family, on average the rank of the selected child is lower, then if we are selecting a child at random.
However, the variance of the rank is lower in the former case. So the imprecise definition of ”random
selection” can make a difference.

Exercise 5. Let X ∼ Bin(100, 0.9). For each of the following parts, construct an example showing
that it is possible, or explain clearly why it is impossible. In this problem, Y is a random variable
on the same probability space as X; note that X and Y are not necessarily independent.

1. Is it possible to have Y ∼ Pois(0.01) with P (X ≥ Y ) = 1?

2. Optional Challenging Exercise: Is it possible to have Y ∼ Bin(100, 0.5) with P (X ≥
Y ) = 1?

Solution 5. 1. No it is not possible. X can only take values in {0, . . . , 100} while Y can take
any non-negative integer values, 0, 1, 2, . . . . Therefore

P (X ≥ Y ) = 1− P (X < Y ) ≤ 1− P (100 < Y ).

As Y can take any non-negative integer values P (100 < Y ) is non-zero (even though it is very
small), therefore P (X ≥ Y ) < 1.

2. This is a more rigorous argument for why the example works, skip if you just
want to see the example for which P (X ≥ Y ) = 1 holds.

In Section 3.3 of the book, it was discussed that the random variable distributed as Bin(n, p)
can be thought of as a sum of n independent Bernoulli random variables, each having a success
probability p. So let us rewrite X and Y as X = X1 +X2 . . . X100 and Y = Y1 + Y2 . . . Y100,
where all Xi and Yi are i.i.d Bern(0.9) and Bern(0.5) respectively (the Xi-s are not necessarily
independent from the Yi-s). Note that the event {X ≥ Y } = {(X1 + X2 . . . X100) ≥ (Y1 +
Y2 . . . Y100)} is implied by the intersection of the events {X1 ≥ Y1} ∩ {X2 ≥ Y2} · · · ∩ {X100 ≥
Y100}. In words, if for two sums of the same length, the elements of one of the sums are always
greater than or equal to the corresponding elements of the other sum, then the first sum itself
will be greater than or equal to the second sum (the converse is not true, 6 + 2 ≥ 3 + 4, but
6 ≥ 3, 2 ≤ 4). Therefore, P (X ≥ Y ) ≥ P ({X1 ≥ Y1} ∩ {X2 ≥ Y2} · · · ∩ {X100 ≥ Y100}). Note
that as Xi-s are i.i.d and the Yi-are i.i.d. also the events {Xi ≥ Yi} are independent from
each other, hence P ({X1 ≥ Y1} ∩ {X2 ≥ Y2} · · · ∩ {X100 ≥ Y100}) = P ({X1 ≥ Y1})P ({X2 ≥
Y2}) . . . P ({X100 ≥ Y100}). Thus if we can define Xi and Yi such that P (Xi ≥ Yi) = 1, then
P ({X1 ≥ Y1}) · P ({X2 ≥ Y2}) · · · · · P ({X100 ≥ Y100}) = 1 ≤ P (X ≥ Y ), and as probabilities
are between 0 and 1, it follows that P (X ≥ Y ) = 1

This is the example:

P (Xi ≥ Yi) = 1 if Yi = 1 =⇒ Xi. Thus we can define Yi as

Xi =


1, with probability 1 if Yi = 1,

1, with probability p if Yi = 0,

0, otherwise.
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Now we just have to find p, such that Xi ∼ Bern(0.9). We know that P (Yi = 1) = 0.5 and
by the law of total probability

P (Xi = 1) = P (Xi = 1|Yi = 1)P (Yi = 1) + P (Xi = 1|Yi = 0)P (Yi = 0) = 1 · 0.5 + p · 0.5.

Thus 0.9 = 0.5 + 0.5p so it follows that p = 0.8

With this specific structure of dependence, we can guarantee that each Bernoulli trial Xi is a
success whenever Yi is a success, therefore the total number of successes for X is greater than
or equal to the total number of successes for Y (equal whenever Yi = 1 for all i), such that
the marginal distributions for X and Y are as specified in the exercise.

Exercise 6. Ten million people enter a certain lottery. For each person, the chance of winning is
one in ten million, independently.

1. Find a simple, good approximation for the PMF of the number of people who win the lottery.

2. Congratulations! You won the lottery. However, there may be other winners. Assume now
that the number of winners other than you is W ∼ Pois(1), and that if there is more than one
winner, then the prize is awarded to one randomly chosen winner. Given this information,
find the probability that you win the prize (simplify).

Solution 6. 1. Let X be the number of people who win. Then X has a distribution of
Binom(n, p), where n = 1/p = 107. Then

E(X) = np =
107

107
= 1.

A Poisson approximation is very good here since X is the number of “successes” for a very
large number of independent trials where the probability of success on each trial is very low.
So X is approximately Pois(1), and for k a nonnegative integer, P (X = k) ≈ 1

e·k!

2. Let A be the event that you win the prize, and condition on W :

P (A) =
∞∑
k=0

P (A|W = k)P (W = k) =
1

e

∞∑
k=0

1

k + 1

1

k!

=
1

e

∞∑
k=0

1

(k + 1)!
=

e− 1

e
= 1− 1

e
.

(If the last but one equation is unclear, see the Math Appendix A.8.3: Taylor series for ex.)

Exercise 7. In a group of 90 people, find a simple, good approximation for the probability that
there is at least one pair of people such that they share a birthday and their biological mothers
share a birthday (i.e. both of the two people have their birthdays at date x and both of the moms
at date y). Assume that no one among the 90 people is the biological mother of another one of the
90 people, nor do two of the 90 people have the same biological mother. Express your answer as a
fully simplified fraction in the form a/b, where a and b are positive integers and b ≤ 100.

Make the usual assumptions as in the birthday problem. To simplify the calculation, you can
use the approximations 365 ≈ 360 and 89 ≈ 90, and the fact that ex ≈ 1 + x for x ≈ 0.
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Solution 7. For each pair of people, they have the same birthday with probability 1/365. Similarly,
for each pair of mothers, they have the same birthday with probability 1/365. Since the (calendar)
date of the daughters/sons and the mothers are independent, it follows that the probability for each
pair that both the ”descendants” and the mothers share their birthdays is 1/365 · 1/365. As they
are

(
90
2

)
pairs of people, and the pairs of people also determine the pairs of mothers (everyone has

exactly one biological mother), from the Poisson paradigm, the number X of people and mother
birthday matches is approximately distributed as Pois(λ), where λ ≈ 90·90

2
1

360·360 = 1
32
, where we

used the approximations given in the exercise. The probability that at least one pair of people and
the corresponding pair of biological mothers share their birthdays is

P (X ≥ 1) = 1− P (X = 0) ≈ 1− e−λ.

By the second approximation given in the exercise e−λ ≈ 1− 1
32
, hence

P (X ≥ 1) ≈ 1− (1− 1

32
) =

1

32
= 0.03125.

.
Using R we can get an exact answer for this question by pbirthday(90, classes=365*365), as

we choose a pair from 90 people and we have 3652 classes induced by the composition of ”descen-
dants” and biological mothers. This gives 0.02962109, so we are not too far off, given that we used
approximations at multiple steps, and the Poisson distribution was an approximation in itself.
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