
Probability and Statistics MATH-235
Autumn 2024 Mats J. Stensrud

Problem Sheet 5 1

Optional Revision Problems

Exercise 1. People are arriving at a party one at a time. While waiting for more people to arrive
they entertain themselves by comparing their birthdays. Let X be the number of people needed to
obtain a birthday match, i.e., before the X-th person arrives no two people have the same birthday,
but when person X arrives there is a match. Find the PMF of X.

Solution 1. As X denotes the number of people, we only consider positive integers, therefore
P (X = k) = 0 for k /∈ N+. If only one person arrives clearly there can be no birthday match,
so P (X = 1) = 0. In contrast, if we have more than 367 people at the party (accounting for
birthdays in leap years), then for sure there was a birthday match before the last person arrived,
so P (X = k) = 0 for k > 367, k ∈ N+.

Consider P (X = k) for 1 < k ≤ 367. The first person can have their birthday on any day out of
the 366, and there will be no birthdays shared. The second one to arrive must have it some other
day, so the probability that their birthdays are not shared is 365/366. The third one must not share
their birthday either with person 1 or person 2, so they can have it any day out of the remaining
364, meaning that the probability that they have their birthday in one of the ”non-taken” days is
364/366. In general, if the j-th person arrives, j < k, the probability that they have their birthday
on a day that no one else from the previous j − 1 people, is (366− (j − 1))/366. Therefore, using
the multiplication rule, the probability that all the people up until the (k−1)-th had their birthday
on a different day is

k−1∏
i=1

366− (i− 1)

366
.

Finally, the k-th arrival must have their birthday shared with one of the previously arrived guests.
They have k − 1 options for that, so

P (X = k) =
k−1∏
i=1

366− (i− 1)

366
· k − 1

366
for 2 ≤ k ≤ 367.

See Figure 1 for the PMF

Exercise 2. Let X be an r.v. with CDF F , and Y = µ + σX, where µ and σ are real numbers
with σ > 0. (Then Y is called a location-scale transformation of X.) Find the CDF of Y , in terms
of F .

1Exercises are based on the coursebook Statistics 110: Probability by Joe Blitzstein
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Figure 1: Disclaimer: The PMF here is represented with a continuous line, but it is still a discrete
random variable (i.e. P (X = 20.1) = 0).

Solution 2. The CDF of X is F (x) = P (X ≤ x), while the CDF of Y can be written as

FY (y) = P (Y ≤ y) = P (µ+ σX ≤ y),

by the definition of Y . From simple algebra and from the fact that σ > 0, it follows that

P (µ+ σX ≤ y) = P

(
X ≤ y − µ

σ

)
= F

(
y − µ

σ

)
.

Exercise 3. 1. Show that p(n) =
(
1
2

)n+1
for n = 0, 1, 2, . . . is a valid PMF for a discrete r.v.

2. Find the CDF of a random variable with a PMF from part 1.

Solution 3. 1. The candidate PMF has to satisfy two conditions to be valid: It has to be non-
negative and it has to sum to one over the support of the random variable. The former is
clearly satisfied, so let’s focus on the latter.

∞∑
n=0

p(n) =
∞∑
n=0

(
1

2

)n+1

=
1

2

∞∑
n=0

(
1

2

)n

=
1

2
· 1

1− 1
2

= 1.

(If the second to last equation is not clear, please consult the Math Appendix of the course
book.)

2. For integer-valued random variables, the following equality holds for the CDF:

FX(x) = P (X ≤ x) = P (X ≤ ⌊x⌋),
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hence it is sufficient to find the CDF for k ∈ N.

FX(k) =
k∑

n=0

P (X = n) =
k∑

n=0

(
1

2

)n+1

=
1

2

k∑
n=0

(
1

2

)n

=
1

2
·
1−

(
1
2

)k+1

1− 1
2

= 1−
(
1

2

)k+1

.

(Again, please consult the Math Appendix of the course notes, if a refresher is needed on the
sum of geometric series.)

Exercise 4. In a chess tournament, n games are being played, independently. Each game ends in
a win for one player with probability 0.4 and ends in a draw (tie) with probability 0.6. Find the
PMFs of the number of games ending in a draw, and of the number of players whose games end in
draws.

Solution 4. Denote the number of games ending in a draw with D. Since the games are conducted
independently, D is a sum of n many independent Bernoulli trials, therefore D ∼ Bin(n, p), so

P (D = k) =

(
n

k

)
pk(1− p)n−k for k ∈ {0, 1, . . . , n},

and P (D = k) = 0 otherwise.
Denote the number of players whose games resulted in a draw with R. Note that if a game ended

in a draw, then exactly two players finished their games with a draw, thus R = 2D. Thinking hastily,
one could conclude that R ∼ Bin(2n, p), but it is not! A random variable with the distribution
Bin(2n, p) could take any of the values {0, 1, . . . , 2n} with positive probability, however, as the
players whose games ended in a draw should be always multiples of 2, R cannot take odd values.
Rather R ∼ 2 ·Bin(n, p), so

P (R = k) =

(
n

k/2

)
pk/2(1− p)n−k/2 for k ∈ {0, 2, 4, . . . , 2n},

and P (R = k) = 0 otherwise.

Week 5 exercises

Exercise 5. 1. A fair die is rolled. Find the expected value of the roll.

2. Four fair dice are rolled. Find the expected total of the rolls.

Solution 5. 1. Denote the outcome of the roll with X, then we are interested in the quantity
E(X). Since this is a 6-faced fair die, each of the faces have the same probability, 1/6, i.e.
P (X = x) = 1

6
for x ∈ {1, . . . , 6} and 0 otherwise. Then by the definition of expectation,

E(X) =
6∑

x=1

P (X = x) · x

=
1

6

6∑
x=1

x =
21

6
=

7

2
.
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2. Denote the total of the rolls (i.e. the sum of the rolls) with T , and the roll of each of the four
dice with X1, X2, X3, and X4, respectively. Then by the linearity of expectation and by Part
1.

E(T ) = E(X1 +X2 +X3 +X4)

= E(X1) + E(X2) + E(X3) + E(X4)

= 4 · 7
2
= 14.

Exercise 6. Consider the St. Petersburg paradox (Example 4.3.14 in the course book), except
that you receive $n rather than $2n if the game lasts for n rounds. What is the fair value (i.e.
the amount a rational player would be willing to offer to play this and the amount that a rational
bettor would be willing to accept) of this game? What if the payoff is $n2?

Hint: Try to use the trick from Example 4.3.6

Solution 6. Let X be the total winnings from the game, then the fair value corresponds to E(X),
as if the player offers E(X) to the bettor, then both of their expected gains (and losses, as it is a
zero-sum game) are 0.

Suppose that the payout is $n if the game lasted n rounds. Then E(X) =
∑∞

n=1 n ·
(
1
2

)n
, as we

have a fair coin, thus a sequence of n− 1 tails and one head has probability 1
2n
.

We know (see the Math Appendix) that for |p| < 1 the sum is
∑∞

n=1 p
n = 1

1−p
. Taking the

derivative in p on both sides, we get

∞∑
i=1

n · pn−1 =
1

(1− p)2
.

Multiplying both sides with p
∞∑
i=1

n · pn =
p

(1− p)2
,

where the left-hand side is exactly the formula for E(X), if we substitute with p = 1
2
(note that

crucially |1/2| < 1). Evaluating the right-hand side at p = 1/2, we get

E(X) =
1/2

1/4
= 2,

that is a steep decrease from the infinite fair value of the original problem.
Now suppose that the payout is modified to $n2, if the game lasted for n rounds. Thus, the

expected payout is E(X) =
∑∞

n=1 n
2 ·
(
1
2

)n
. Following the previous approach, let us take the

derivative of
∑∞

n=1 p
n = 1

1−p
twice in p:

∞∑
n=1

n(n− 1)pn−2 =
2

(1− p)3
.

By multiplying both sides by p2, we get

∞∑
n=1

(n2 − n)pn =
2 · p2

(1− p)3
,
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so it follows that

E(X) =
∞∑
n=1

n2 · pn =
∞∑
n=1

(n2 − n) · pn +
∞∑
n=1

n · pn

=
2 · p2

(1− p)3
+

p

(1− p)2
=

2 · p2 + p(1− p)

(1− p)3
,

where in the second line we used our findings from the first part. Using the substitution p = 1/2,

it follows that the game has the fair value of 1/2+1/4
1/8

= 4 + 2 = 6.

Exercise 7. Are there discrete random variables X and Y such that E(X) > 100E(Y ) but Y is
greater than X with probability at least 0.99?

Solution 7. Yes. Consider what happens if we make X usually 0, but on rare occasions, X is
extremely large (like the outcome of a lottery); Y , on the other hand, can be more moderate. For
a simple example, let X be 106 with probability 1/100 and 0 with probability 99/100, and let Y
be the constant 1 (which is a degenerate r.v.). There are literally infinite examples for a pair of
random variables satisfying these properties, so if you have a different answer, that is completely
fine.

Exercise 8. Let X ∼ Bin(n, p) and Y ∼ NBin(r, p). Using a story about a sequence of Bernoulli
trials, prove that P (X < r) = P (Y > n− r).

Solution 8. Interpret X as the number of successes out of n many independent Bernoulli(p) trials,
and Y as the number of failures in a sequence of independent Bernoulli(p) trials, before the r-th
success is reached.

Consider an infinite sequence of independent Bernoulli(p) trials. X just focuses on the first n
and counts the number of successes among them, while Y counts the number of failures among
all the trials that were performed before the r-th success is reached. A crucial difference is that
P (X ≤ n) = 1, but Y is unbounded (∄M such that P (Y < M) = 1). The event {X < r}
corresponds to less than r successes in the first n trials, which means that there were at least n− r
failures. On the other hand {Y > n− r} describes the event that more than n− r failures occurred
before the r-th success was reached, so in the first (n − r) + r = n trials, they must have been at
least n− r failures. Therefore, {X < r} and {Y > n− r} describe the same event, hence they have
the same probability.

Exercise 9. A discrete random variable X has the memoryless property if it has the distribution
P (X ≥ j + k|X ≥ j) = P (X ≥ k) for all nonnegative integers j, k.

1. If X has a memoryless distribution with CDF F and PMF pi = P (X = i), find an expression
for P (X ≥ j + k) in terms of F (j), F (k), pj, pk.

2. Name a discrete distribution which has the memoryless property. Justify your answer with a
clear interpretation in words or with a computation.

Solution 9. 1. By the memoryless property,

P (X ≥ k) = P (X ≥ j + k|X ≥ j) =
P (X ≥ j + k,X ≥ j)

P (X ≥ j)
=

P (X ≥ j + k)

P (X ≥ j)
,
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so

P (X ≥ j + k) = P (X ≥ j)P (X ≥ k) = P ((X > j) ∪ (X = j))P ((X > k) ∪ (X = k))

= (P (X > j) + P (X = j)) · (P (X > k) + P (X = k))

= (1− P (X ≤ j) + P (X = j)) · (1− P (X ≤ k) + P (X = k))

= (1− F (j) + pj)(1− F (k) + pk),

where we used the axiom of probability for disjoint events and the definition of CDF-s.

2. The Geometric distribution is memoryless (in fact, it turns out to be essentially the only
discrete memoryless distribution!). This follows from the story of the Geometric: consider
Bernoulli trials, waiting for the first success (and defining waiting time to be the number
of failures before the first success). Say we have already had j failures without a success.
Then the additional waiting time from that point forward has the same distribution as the
original waiting time (the Bernoulli trials neither are conspiring against the experimenter nor
act as if he or she is due for a success: the trials are independent). A calculation agrees: for
X ∼ Geom(p),

P (X ≥ j + k|X ≥ j) =
P (X ≥ j + k)

P (X ≥ j)
=

qj+k

qj
= qk = P (X ≥ k).

Exercise 10. A coin with probability p of Heads is flipped n times. The sequence of out-
comes can be divided into runs (blocks of H’s or blocks of T’s), e.g., HHHHTTHTTTH becomes

HHH TT H TTT H , which has 5 runs. Find the expected number of runs.
Hint: Start by finding the expected number of tosses (other than the first) where the outcome

is different from the previous one.

Solution 10. If a toss has a different outcome from the previous toss, that means that a new run
has started. Hence, the expected number of tosses with a different outcome than the previous one
is almost equal to the expected number of runs. The only difference is that, this way, we have not
accounted for the first run (since the first toss cannot be different from the nonexistent ”zeroth”),
therefore, by adding 1 to this expectation, we get the expected number of runs.

Denote the number of runs with R and the event that the toss i is different from the (i−1)-th toss
with Di for i = 2, . . . , n. The Di-s are independent and identically distributed indicator/Bernoulli
random variables. Using the observations of the first paragraph, we can obtain the expected number
of runs as

E(R) = E

(
1 +

n∑
i=2

Di

)
.

Using the linearity of expectation (and that the expectation of constant is equal to the constant)
we have

E(R) = 1 +
n∑

i=2

E(Di),

therefore we only have to determine E(Di). There are two possibilities for the i-th toss to be
different from the preceding toss: Either the (i− 1)-th toss was heads and the current toss is tails,
or the (i − 1)-th toss was tails and the current one is heads. These two disjoint events can occur
with probabilities p(1 − p) and (1 − p)p, respectively, and we know that if either of these two
occurs, Di = 1. Hence Di ∼ Bern(2 · (1 − p)p). We have seen in class that a Bern(p∗) random
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variable has expectation p∗ (but you can show it from the definition of expectation too), hence
E(Di) = 2 · (1− p)p. Finally, plugging back into the formula for E(R) we get

E(R) = 1 +
n∑

i=2

2p(1− p) = 1 + 2p(1− p)
n∑

i=2

1 = 1 + 2(n− 1)p(1− p).
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Figure 2: Expected number of runs in n = 20 coin tosses.
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