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Autumn 2024 Mats J. Stensrud

Problem Sheet 11 1

Based on Chapters 9.5 and 10.1-10.3 the course book.

Optional Revision Problems

Exercise 1. While Fred is sleeping one night, X legitimate emails and Y spam emails are sent to
him. Suppose that X and Y are independent, with X ∼ Pois(10) and Y ∼ Pois(40). When he
wakes up, he observes that he has 30 new emails in his inbox. Given this information, what is the
expected value of how many new legitimate emails he has?

Hint: You might find Theorem 4.8.1 and 4.8.2 from the course book useful.

Solution 1. By Theorem 4.8.1, the total number of new emails sent to Fred overnight is (X+Y ) ∼
Pois(50). By Theorem 4.8.2, the conditional distribution of X given X + Y = 30 is a Binomial
distribution with parameters n = 30 and p = 10

10+40
= 1

5
. The expectation of a Binom(n, p) is np,

hence the expected number of valid emails that Fred receive overnight is 1
5
· 30 = 6. This agrees

with our intuition, as if he receives spam emails with a rate 4 times as the rate of legitimate emails,
then the spam and non-spam emails should reflect this same ratio (6 to 24).

You can also solve this exercise using Definition 9.1.1 and by calculating the conditional PMF,
however, that would require more calculation than multiplying two numbers.

Exercise 2. Let X1, X2, . . . be i.i.d. r.v.s with mean 0, and let Sn = X1 + · · · +Xn. As shown in
Example 9.3.6 in the book, the expected value of the first term given the sum of the first n terms is

E(X1|Sn) =
Sn

n

Generalize this result by finding E(Sk|Sn) for all positive integers k and n.
Note: There is no restrictions which one of k and n is the greater number, so you should

consider all cases.

Solution 2. We have to consider three cases here, when k < n, k = n, and k > n, the first two are
easier, as when k < n can use the linearity of expectation and the result from the example to get

E(Sk|Sn) = E(X1|Sn) + . . . E(Xk|Sn) =
Sn

n
+ · · ·+ Sn

n
=

k

n
Sn.

If k = n, we can either take the same approach as above, or even easier, by ”taking out what is
known” E(Sk|Sn) = E(Sn|Sn) = Sn.

For k > n, we have to realize that the terms Xi, i > n in the sum are independent from Sn as
the Xi-s are independent. Thus it would make sense to split the sum Sk to two parts, the sum until
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n, that does depend on Sn and the sum after n, that does not. Hence by linearity of expectation
and by the previous result

E(Sk|Sn) = E(Sn +Xn+1 +Xn+2 + . . . Xk|Sn)

= E(Sn|Sn) + E(Xn+1 +Xn+2 + . . . Xk|Sn)

= Sn + E(Xn+1|Sn) + E(Xn+2|Sn) + . . . E(Xk|Sn).

Now by the independence stated above, we can simplify all the conditional expectations left to
unconditional ones i.e. E(Xn+1|Sn) = E(Xn+1), . . . E(Xk|Sn) = E(Xk), and since all the Xi-s have
mean zero, the sum of these expectations is zero, thus

E(Sk|Sn) = Sn,

for k > n.
In summary

E(Sk|Sn) =
min(k, n)

n
Sn,

for any positive integers k and n.

Week 11 exercises

Exercise 3. Joe will read N ∼ Pois(λ) books next year. Each book has a G ∼ Pois(µ) number
of pages, with book lengths independent of each other and independent of N . Find the variance of
the number of book pages Joe will read next year.

Hint: Remember from last week that E(T |N) = Nµ

Solution 3. By Eve’s law (law of total variance), V ar(T ) = E(V ar(T |N)) + V ar(E(T |N)) To
calculate the first half of the sum, observe that

V ar(T |N) = V ar

(
N∑
i=1

Gi

∣∣∣∣∣N
)

=
N∑
i=1

V ar(Gi|N),

where we can do the last step due to the independence of the Gi-s and by the property ”taking
out what’s known”. Since Gi is independent of N , and the Gi-s are identically distributed, the
right-hand side simplifies to NV ar(G). Given that G ∼ Pois(µ), we have that V ar(T |N) = Nµ.
Finally, as N ∼ Pois(λ), E(Nµ) = λµ.

For the second half of the sum, we can use that last week we established, that E(T |N) = Nµ.
Then

V ar(E(T |N)) = V ar(Nµ) = µ2V ar(N) = µ2λ.

Putting everything together, the total variation is

V ar(T ) = µλ+ µ2λ = λ(µ+ µ2).

Had we used wrongly the relationship T = N ·G, we would have gotten the same expectation,
but it would be still incorrect to say that. To see that T and N ·G do not have the same distribution,
calculate the variance of N ·G, and compare to V ar(T ).
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Exercise 4. Let X1, X2, and Y be random variables, such that Y has finite variance. Let

A = E(Y |X1) and B = E(Y |X1, X2).

Show that
V ar(A) ≤ V ar(B)

Also, check that this make sense in the extreme cases where Y is independent of X1 and where
Y = h(X2) for some function h.

Hint: Use Eve’s law on B, with conditioning on X1 (Theorem 9.3.8).

Solution 4. From the Hint, we can rewrite the variance of B as

V ar(B) = E(V ar(B|X1)) + V ar(E(B|X1)).

Writing out B in the second term we have V ar(E(E(Y |X1, X2)|X1)), and by using the Theorem
mentioned in the hint, this is equal to V ar(E(Y |X1)), that is by definition the variance of A.

Since the first term in the decomposition of V ar(B) is the expectation of a variance, i.e. the
expectation of something non-negative, it follows that

V ar(B) = E(V ar(B|X1)) + V ar(A) ≥ V ar(A).

To consider the extreme cases mentioned above, note that if Y ⊥⊥ X1, then A = E(Y |X1) =
E(Y ) = c for some constant c ∈ R, hence V ar(A) = 0, so the inequality trivially holds. If however
Y = h(X2), then by taking out what is known E(Y |X1, X2) = E(h(X2)|X1, X2) = h(X2) = Y , thus
V ar(B) = V ar(Y ). Applying Eve’s law once again, we have by definition

V ar(B) = V ar(Y ) = E(V ar(Y |X1)) + V ar(E(Y |X1)) = E(V ar(Y |X1)) + V ar(A).

Arguing again that the variance is non-negative, and the expectation of a non-negative random
variable is non-negative, it follows that

V ar(B) ≥ V ar(A).

Exercise 5. One of two identical-looking coins is picked from a hat randomly, where one coin has
probability p1 of Heads and the other has probability p2 of Heads. Let X be the number of Heads
after flipping the chosen coin n times. Find the mean and variance of X.

Solution 5. The distribution of X is a mixture of two Binomials; this is not Binomial unless
p1 = p2. Let I be the indicator of having the p1 coin. Then

E(X) = E(X|I = 1)P (I = 1) + E(X|I = 0)P (I = 0) =
1

2
n(p1 + p2),

as the expectation of Binom(n, p) is np.
Alternatively, we can represent X as

X = IX1 + (1− I)X2

with Xj ∼ Bin(n, pj), and I,X1, X2 independent. Then by Adam’s law and using ”taking out
what’s known”

E(X) = E(E(X|I)) = E(Inp1 + (1− I)np2) =
1

2
n(p1 + p2).
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For the variance, note that it is not valid to say

Var(X) = Var(X|I = 1)P (I = 1) + Var(X|I = 0)P (I = 0);

an extreme example of this mistake would be claiming that “Var(I) = 0 since Var(I|I = 1)P (I =
1) + Var(I|I = 0)P (I = 0) = 0;” of course, Var(I) = 1

4
. Instead, we can use Eve’s Law:

Var(X) = E(Var(X|I)) + Var(E(X|I)),

where by using again that X is a mixture of binomials, Var(X|I) = Inp1(1−p1)+(1−I)np2(1−p2),
and E(X|I) = Inp1+(1−I)np2. So, by taking the expectation over Inp1(1−p1)+(1−I)np2(1−p2)
and the variance over Inp1 + (1− I)np2 we get

Var(X) =
1

2

(
np1(1− p1) + np2(1− p2)

)
+

1

4
n2(p1 − p2)

2,

where it was used that the I ∼ Bern(1/2).

Exercise 6. Let X and Y be i.i.d. positive r.v.s, and let c > 0. For each part below, fill in
the appropriate equality or inequality symbol: write = if the two sides are always equal, ≤ if the
left-hand side is less than or equal to the right-hand side (but they are not necessarily equal), and
similarly for ≥. If no relation holds in general, write ?.

1. E(ln(X)) ln(E(X))

2. E(X)
√

E(X2)

3. P (X > c) E(X3)
c3

4. P (X ≤ Y ) P (X ≥ Y )

5. E(XY )
√

E(X2)E(Y 2)

6. P (X + Y > 10) P (X > 5 or Y > 5)

7. E(min(X, Y )) min(E(X), E(Y ))

8. E(X/Y ) E(X)/E(Y )

9. E(X2(X2 + 1)) E(X2(Y 2 + 1))

10. E
(

X3

X3+Y 3

)
E
(

Y 3

X3+Y 3

)
Solution 6. 1. E(ln(X)) ≤ ln(E(X))

• By Jensen’s inequality: logarithms are concave.

2. E(X) ≤
√

E(X2)

• Follows from Var(X) ≥ 0 or by Jensen’s inequality, after squaring both sides.

3. P (X > c) ≤ E(X3)
c3
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• Using Markov’s inequality after cubing both sides, i.e. P (X > c) = P (X3 > c3) ≤
E(X3)

c3

4. P (X ≤ Y ) = P (X ≥ Y )

• By symmetry, since X and Y are i.i.d.

5. E(XY ) ≤
√
E(X2)E(Y 2)

• By the Cauchy-Schwarz inequality.

6. P (X + Y > 10) ≤ P (X > 5 or Y > 5)

• If X + Y > 10, then either X > 5 or Y > 5, however, (X > 5 or Y > 5) does not imply
X + Y > 10, e.g. take X = 2, Y = 6.

7. E(min(X, Y )) ≤ min(E(X), E(Y ))

• Since min(X, Y ) ≤ X gives E(min(X, Y )) ≤ E(X), and similarly for Y .

8. E(X/Y ) ≥ E(X)/E(Y )

• From E(X/Y ) = E(X)E(1/Y ) that follows from independence, with E(1/Y ) ≥ 1/E(Y )
by Jensen’s inequality.

9. E(X2(X2 + 1)) ≥ E(X2(Y 2 + 1))

• Since E(X4) ≥ (E(X2))2 = E(X2)E(Y 2), and X2 because Y 2 are i.i.d., and independent
implies uncorrelated.

10. E
(

X3

X3+Y 3

)
= E

(
Y 3

X3+Y 3

)
• By symmetry, as X and Y are i.i.d.

Exercise 7. For i.i.d. r.v.s X1, . . . , Xn with mean µ and variance σ2, give a value of n (as a specific
number) that will ensure that there is at least a 99% chance that the sample mean, defined as
Xn = 1

n

∑n
i=1Xi will be within 2 standard deviations of the true mean µ.

Solution 7. We have to find n such that

P (|Xn − µ| > 2σ) ≤ 0.01.

By Chebyshev’s inequality (in the form P (|Y − E(Y )| > c) ≤ Var(Y )
c2

), we have

P (|Xn − µ| > 2σ) ≤ VarXn

(2σ)2
.

Using the independence of the Xi-s we have

Var(Xn) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
nσ2

n2
=

σ2

n
.

Hence

P (|Xn − µ| > 2σ) ≤
σ2

n

4σ2
=

1

4n
.

So the desired inequality holds if n ≥ 25.
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Exercise 8. In a national survey, a random sample of people are chosen and asked whether they
support a certain policy. Assume that everyone in the population is equally likely to be surveyed
at each step, and that the sampling is with replacement (sampling without replacement is typically
more realistic, but with replacement will be a good approximation if the sample size is small
compared to the population size). Let n be the sample size, and let p̂ and p be the proportion of
people who support the policy in the sample and in the entire population, respectively. Show that
for every c > 0,

P (|p̂− p| > c) ≤ 1

4nc2
.

Solution 8. Let X be the number of people who were asked in the survey, who would support the
policy. You can think about X as the number of successes, if a success is selecting a person who
supports the policy from the total population to be included in the survey. Since the proportion of
”supporters” is p in the total population, the probability of success is p, thus X ∼ Bin(n, p), where
we also rely on the fact that we sample with replacement. We can write p̂ = X/n. So E(p̂) = p,
and Var(p̂) = p(1− p)/n. Then by Chebyshev’s inequality,

P (|p̂− p| > c) ≤ Var(p̂)

c2
=

p(1− p)

nc2
≤ 1

4nc2
,

where the last inequality holds because p(1− p) is maximized at p = 1/2.
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