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15. STATISTICS
INTRODUCTION

Probability. What kinds of questions are addressed in probability?

e The questions so far in the course about cards, dice, birthdays etc.
e For example, what is the chance that two people in this class were born on the

same day?

Statistics. What kinds of questions are addressed in statistics? Here are some examples.

e We want to know the proportion of left-handed and right-handed people in Lau-
sanne. How many people need to be surveyed to achieve an estimate with 2%
accuracy, valid at 99% confidence?

e We have data from a large experiment, run by Novartis, where we have one group
who received a cancer drug and one group who received control. How do we use

the results of the experiment to conclude that the experiment has an effect?

Probability vs. Statistics? To simplify:

e In probability, we know the model and focus on what it generates.
e In statistics, we have data and focus on the underlying model (in reality, it’s

more complex). In that sense, statistics is the science of learning from data.
Thus:

e The probabilist poses their model F', and uses probability laws to deduce the
properties of Y—they are certain, if their reasoning is correct!

e The statistician does the opposite: they use the data y to infer the properties of
the model F—they are uncertain, because y is finite and it is rarely certain that

their assumptions are correct.

e Key points:
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— The context of the problem is important—it is essential to know how the data
were collected and what they represent when doing statistics; this determines
the assumptions we make when doing statistical modelling

— The variability (of the data) and the uncertainty that result are represented
with probabilistic models;

— We try to quantify uncertainty when drawing conclusions (we will see how to
do this in terms of confidence intervals), and

— account for uncertainty when choosing actions based on a study.

PROBABILITIES AND DATA

e To connect data and probabilities, suppose our observations y = (y1,¥2, .-, Yn)
are random:

— either by imposing a random mechanism, such as the randomization of an
experiment or a survey;

— or by assuming they result from a random process, e.g., suppose that the
delay R of my bus follows an exp(\) law, and I try to estimate P(R > 5)
from observations 7y, ...,7,, because I want to arrive on time for a lecture...

e Often, we study the behavior of a variable y in

— a population—the entire set of interest for our investigation—from which we

sample
— a sample Y1, ..., Yn,
— assuming this sample is a realization of random variables Y7, ... Y, from a

probabilistic model F.
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STATISTICAL PROCESS

Main steps are:

Formulating the research question or hypotheses;
Data collection, leading to
— Experiment planning (design, implementation, and data acquisition);
— If experiments are not possible, an observational study, where the data col-
lection is not under the investigator’s control.
Data analysis, Two different ways:
— Exploratory analysis,
— Inference. (which is what I will focus on).

Interpreting results and drawing practical conclusions.

NOMENCLATURE

When we use the word law, we are referring to a distribution, which is character-
ized by the CDF (or, equivalently with the PDF or PMF).

Definition 134. A statistical model is a law (or family of laws) of probability con-
structed for a statistical study. A parameter is any (constant) function of a CDF,
often denoted with Greek letters. A model determined by a finite-dimensional
parameter is parametric, otherwise, it is nonparametric.

Definition 135. A statistic S = s(Y) is any function of data Y. This includes
functions like the mean, but also graphs.

Definition 136. The sampling distribution of a statistic S = s(Y') is its proba-
bility law when Y is generated by a statistical model.

Definition 137. A random sample Yi,...,Y, % F is a realization Y1, ..., Yn Of

such Yy, ... Y,.
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Concept

Description

Estimand

The quantity or parameter of interest that we aim to
learn about from the data, defined as a function of the
population’s probability distribution or CDF. Example:
the population mean u = E[Y].

Estimator

A rule, algorithm, or function that maps the observed
data Y to an estimate of the estimand. It is a statis-
tic S = s(Y) derived from the data. Example: g =

P i Vi

Estimate

The numerical value obtained from the estimator when
applied to observed data. Example: i = 5.2 based on a
specific dataset.

TABLE 4. Difference between Estimand, Estimator, and Estimate
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EXAMPLE: EVALUATING EFFECTS OF A DRUG

Drug company test a new drug on elderly people with breast cancer. They only have
a sample of n individuals, where n; is the number of treated and ng is the number of
untreated individuals. The aim is to assess the effect of the drug on being cured.

We use “hats” to denote estimates below.

e Step 1: Compute Proportions in Each Group

— Treated group (p1): The proportion cured in the treated group is:

Number of Cured in Treated Group 300

=—=10.6.
Total Number in Treated Group 500

p1=
— Untreated group (pg): The proportion cured in the untreated group is:

. Number of Cured in Untreated Group 250

= =—=0.5.
bo Total Number in Untreated Group 500

Q: What does the LLN tell us about these estimates?
Q: What does the central limit theorem say about the distribution of these
estimates?

e Step 2: Compute Confidence Intervals for Each Proportion

— Treated group (p1): The 95% confidence interval is:

—
Clep 42 PL=P)
n

where z = 1.96, p; = 0.6, and n; = 500. Substituting:

0.6-04

Cl=06=£1.96-
500

= 0.6 £1.96-0.022.

CI = (0.556, 0.644).

— Untreated group (po): The 95% confidence interval is:

Y
ClL= ot 2 - | 2L —Po),
o
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where z = 1.96, py = 0.5, and ng = 500. Substituting:

0.5-0.5
500

Cl=05£1.96- = 0.5+ 1.96 - 0.022.

CI = (0.456,0.544).

e Step 3: Compute the Difference in Proportions

— The difference in proportions (p; — po) is:

p1—po=0.6—-0.5=0.1.

e Step 4: Confidence Interval for the Difference in Proportions

— Formula: The 95% confidence interval for the difference in proportions is:

CI_(ﬁl—ﬁo)iz-\/pl(l_pl) +p0(1—]?0).

ny o

— Substituting values:

06-04 0.5-0.5
[=0.14+£1.96- =0.1£+1.96-0.031.
Cl=0 96 \/ 500 + 500 0 96 - 0.03

CI = (0.1 —0.061,0.1 + 0.061) = (0.039,0.161).

e Step 5: Relation to the CLT and LLN

— Central Limit Theorem (CLT): The CLT ensures that the sample pro-

portion (p) is approximately normally distributed for large sample sizes (n).

This allows us to use the normal approximation to construct confidence in-

tervals for the sample proportion (p).

— Law of Large Numbers (LLN): The LLN guarantees that the sample

proportion (p) converges to the true population proportion (p) as the sample

size (n) increases. This justifies the reliability of the point estimates (p).
e Step 6: Final Results

— Confidence interval for the treated group (p;): (0.556,0.644).
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— Confidence interval for the untreated group (po): (0.456,0.544).

— Confidence interval for the difference in proportions (p; — po): (0.039,0.161).

INTERPRETATION OF A CONFIDENCE INTERVAL (CI)

e A fundamental goal of statistics is to provide an understanding of the uncertainty
of an observation, and the confidence interval is one way of quantifying such
uncertainty.

e Let 8 be an unknown parameter, and let 6 be an estimate of 6 based on data
Yy« s Yn'

— If n = 10°, we can be much more confident that 6 = # than if n = 10.

— To express this, we want to construct an interval that is wider when n = 10
and narrower when n = 10°, clearly illustrating the uncertainty associated
with 6.

e Definition 163. Let Y = Yi,...,Y,, be data sampled from a distribution F
with a scalar parameter 6 of interest. A confidence interval (CI) (L,U) for
0 is a statistic that takes the form of an interval and contains 6 with a specified
probability. This probability is called the confidence level of the interval.

e Notes:

— The limits L and U are functions of the data Y7, ..., Y, not unknown quan-
tities.

— A two-sided (bilateral) confidence interval, of the form (L,U), is most com-
monly used.

— A one-sided (unilateral) confidence interval, of the form (—oo,U) or (L, c0),

can sometimes be useful.
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APPROXIMATE CONFIDENCE INTERVALS

e In most cases, approximate confidence intervals (Cls) are constructed based on
estimators where variance estimates are required; that is, we usually don’t know

the true variance.

Definition 164. Let = 0(Y;,...,Y,) be an estimator of 0, 72 = var(f) its variance,
and V = v(Yy,...,Y,) an estimator of 72. The quantity V'/2 (or its realization v'/2) is
called the standard error of 6.
e (L,U) is a random interval that contains the parameter 6 with a specified proba-
bility, 1 — a.
e Imagine an infinite series of repetitions of the experiment, resulting in different
(L,U) intervals.
e The CI we calculate is one of the possible Cls, and we can consider it as being
randomly chosen among them.
e We do not know if our random CI (L, U) contains 6, but this event has a proba-

bility of 1 — a.
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HYPOTHESIS TESTING

e Objective: Evaluate whether observed data provides sufficient evidence to reject
a null hypothesis (Hp) in favor of an alternative hypothesis (H,).
e Key Steps:
— Define Hypotheses:
« Null Hypothesis (Hp): Assumes no effect or difference.
« Alternative Hypothesis (H,): Assumes an effect or difference exists.
— Test Statistic: Calculate a statistic (e.g., t-statistic, z-statistic) that sum-
marizes the data.
— Sampling Distribution: Assume Hj is true to derive the distribution of
the test statistic.
— P-value: Compute the probability of observing data as extreme as, or more
extreme than, the observed data, under Hy.
— Decision Rule: Reject Hj if the p-value is less than a pre-specified signifi-
cance level (a, often 0.05 but the choice is somewhat arbitrary).
e Interpretation:
— If Hy is rejected, the result is indicating evidence against H.
— Failing to reject Hy does not confirm it is true; it indicates insufficient evi-

dence against it.

e Example of a null hypothesis to test:
Hy : The drug has no effect on the cure rate.

This approach involves attempting to refute the null hypothesis, which assumes no
difference in cure rates between the treated and untreated groups—a “stochastic
proof by contradiction.”

e Data obtained:

— Treated group: n; = 500, p; = 0.6 (proportion cured).
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— Untreated group: ny = 500, ps = 0.5 (proportion cured).
e Test statistic:
L _h—h
test SE )

. . 1 1
SE - \/pa—p) (o+a).

and the pooled proportion is:

where:

o+ 300+ 250

= = 0.55.
ni + N9 500 4 500

p=

Substituting:

1 1 2
B = D045 | —=+ — | = .55 -0.45 - — = 0.029.
S \/055 0.45 (500—}-500) \/055 0.45 500 0.029

The test statistic becomes:

e Compute the p-value:
Dobs = 2 P(Ziest > |2test|) = 2 - P(Zgest > 3.45).
Using the standard normal distribution:
Dobs ~ 2 - 0.00028 = 0.00056.

e Interpret results:
— Either Hj is true, and the observed difference in cure rates is due to random
chance, or:
— H, is false, and the drug has a statistically significant effect on the cure rate.

e Decision:
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— Since peps = 0.00056 is much smaller than the significance level (o = 0.05),
we reject Hy.
— This suggests strong evidence that the drug increases the cure rate.
e Additional note:
— Had pons &~ 0.05, the result would have been less convincing, and further

studies might have been necessary before concluding the drug’s effectiveness.
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16. SOME CLAIMS ABOUT HYPOTHESIS TESTING AND P-VALUES

The probability that the 95% CI from our study includes the true parameter is
95%. False

If we repeat our study in many random samples from the same population, the
95% CI will include the true parameter in 95% of the samples.

If we published hundred of studies, at the end of our career we expect that, the
95% CI included the true parameter in 95% of our studies

The p-value for the null hypothesis is the probability that the test hypothesis is
true. False

The p-value for the null hypothesis is the probability that chance alone produced
the observed association False, unless better specified. The p-value is a probability
computed under the null hypothesis...

The p-value for the null hypothesis is the probability of obtaining an estimate
at least as far from the null as the estimate we have obtained, only if the null

hypothesis and all other assumptions used to compute the p-value are true.
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When Doing Inference, What Makes a Good Estimator?
o We now assume Y = V;,...,Y, “° F and that we want to estimate 6 = 0(F') with
an estimator 6 = 0(Y1,...,Y,).
e Two criteria for good estimators:
— Asymptotic: How does 6 behave as n — 0o?

— Finite-sample: How to compare 6, and 6, for a fixed n?

e Consistency is a key asymptotic criterion: 05 0asn— 0.
Definition 152. An estimator 0 of 0 is called consistent if § = 6 as n — oo.

Mean Squared Error.
Definition 154. The bias b(6;0) of 0 is b(0;0) = E(0) — 6.

Definition 155. The mean squared error (MSE) of 0 is
MSE(4;0) = E {(é . 9)2} .

Lemma 156. We can write MSE(6; 6) = b(0;0)% + var(f).

e Bias is a property of the estimator é, and this property may vary depending on 6.
e Interpretation of bias:

— If b(0;0) < 0, then on average § underestimates 6.

—If b(é; 0) > 0, then on average 6 overestimates 6.

— If b(0;0) = 0, then 0 is unbiased.
e A quality indicator of f is the absence of systematic deviation from 6: b(é; ) ~ 0.
e An even more important indicator is MSE(@; 0), which also measures the variabil-

ity of 6.

Note to Example 157.
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e We've already seen that

E(X,) = %E(x1 Fot X)) = %(E(Xl) to 1t B(X)) = p

so this mean estimator is unbiased.

Also, the sample variance

is unbiased because

Jj=1

we would have bias downwards because E(R,,) < E(S,).
Efficiency.

Definition 158. Let él and 9~2 be two unbiased estimators of the same parameter 6. Then
MSE(él, 9) = Var(él), MSE(@Q, 9) = V&I’(ég),

and we say that 6, is more efficient than 0y if

var(fy) < var(6,), €€ ©.

We prefer 0;.

Ezxample 159. Let Yy,...,Y, i N (11, 0?), with large n. Find the properties of the sample
median M, and the sample mean Y,. Which is preferable? And what if outliers are

present?
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Example of unbiasedness.

e We've already seen that

E(Y)=u, var(Y)=o0%/n,

so the bias of Y as an estimator of u is E(Y) — pu = 0.

e One can also show that for large n,
EM)~p, var(M)~—

so both estimators are (approximately) unbiased (in fact exactly unbiased), but

var(M) T o1
var(Y) 2

which means M is less efficient than Y; its variance is larger. However, if there
are outliers, the median M is little affected, while the mean Y can be significantly
impacted. Our choice between these estimators will depend on how much we fear

that our data will be contaminated by outliers.



