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15. Statistics

Introduction

Probability. What kinds of questions are addressed in probability?

• The questions so far in the course about cards, dice, birthdays etc.

• For example, what is the chance that two people in this class were born on the

same day?

Statistics. What kinds of questions are addressed in statistics? Here are some examples.

• We want to know the proportion of left-handed and right-handed people in Lau-

sanne. How many people need to be surveyed to achieve an estimate with ±x%

accuracy, valid at 99% confidence?

• We have data from a large experiment, run by Novartis, where we have one group

who received a cancer drug and one group who received control. How do we use

the results of the experiment to conclude that the experiment has an e↵ect?

Probability vs. Statistics? To simplify:

• In probability, we know the model and focus on what it generates.

• In statistics, we have data and focus on the underlying model (in reality, it’s

more complex). In that sense, statistics is the science of learning from data.

Thus:

• The probabilist poses their model F , and uses probability laws to deduce the

properties of Y—they are certain, if their reasoning is correct!

• The statistician does the opposite: they use the data y to infer the properties of

the model F—they are uncertain, because y is finite and it is rarely certain that

their assumptions are correct.

• Key points:
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– The context of the problem is important—it is essential to know how the data

were collected and what they represent when doing statistics; this determines

the assumptions we make when doing statistical modelling

– The variability (of the data) and the uncertainty that result are represented

with probabilistic models;

– We try to quantify uncertainty when drawing conclusions (we will see how to

do this in terms of confidence intervals), and

– account for uncertainty when choosing actions based on a study.

Probabilities and Data

• To connect data and probabilities, suppose our observations y = (y1, y2, . . . , yn)

are random:

– either by imposing a random mechanism, such as the randomization of an

experiment or a survey;

– or by assuming they result from a random process, e.g., suppose that the

delay R of my bus follows an exp(�) law, and I try to estimate P (R > 5)

from observations r1, . . . , rn, because I want to arrive on time for a lecture...

• Often, we study the behavior of a variable y in

– a population—the entire set of interest for our investigation—from which we

sample

– a sample y1, . . . , yn,

– assuming this sample is a realization of random variables Y1, . . . , Yn from a

probabilistic model F .
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Statistical Process

Main steps are:

• Formulating the research question or hypotheses;

• Data collection, leading to

– Experiment planning (design, implementation, and data acquisition);

– If experiments are not possible, an observational study, where the data col-

lection is not under the investigator’s control.

• Data analysis, Two di↵erent ways:

– Exploratory analysis,

– Inference. (which is what I will focus on).

• Interpreting results and drawing practical conclusions.

Nomenclature

• When we use the word law, we are referring to a distribution, which is character-

ized by the CDF (or, equivalently with the PDF or PMF).

• Definition 134. A statistical model is a law (or family of laws) of probability con-

structed for a statistical study. A parameter is any (constant) function of a CDF,

often denoted with Greek letters. A model determined by a finite-dimensional

parameter is parametric, otherwise, it is nonparametric.

• Definition 135. A statistic S = s(Y ) is any function of data Y . This includes

functions like the mean, but also graphs.

• Definition 136. The sampling distribution of a statistic S = s(Y ) is its proba-

bility law when Y is generated by a statistical model.

• Definition 137. A random sample Y1, . . . , Yn
iid⇠ F is a realization y1, . . . , yn of

such Y1, . . . , Yn.
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Concept Description
Estimand The quantity or parameter of interest that we aim to

learn about from the data, defined as a function of the
population’s probability distribution or CDF. Example:
the population mean µ = E[Y ].

Estimator A rule, algorithm, or function that maps the observed
data Y to an estimate of the estimand. It is a statis-
tic S = s(Y ) derived from the data. Example: µ̂ =
1
n

Pn
i=1 Yi.

Estimate The numerical value obtained from the estimator when
applied to observed data. Example: µ̂ = 5.2 based on a
specific dataset.

Table 4. Di↵erence between Estimand, Estimator, and Estimate
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Example: Evaluating effects of a drug

Drug company test a new drug on elderly people with breast cancer. They only have

a sample of n individuals, where n1 is the number of treated and n0 is the number of

untreated individuals. The aim is to assess the e↵ect of the drug on being cured.

We use “hats” to denote estimates below.

• Step 1: Compute Proportions in Each Group

– Treated group (p̂1): The proportion cured in the treated group is:

p̂1 =
Number of Cured in Treated Group

Total Number in Treated Group
=

300

500
= 0.6.

– Untreated group (p̂0): The proportion cured in the untreated group is:

p̂0 =
Number of Cured in Untreated Group

Total Number in Untreated Group
=

250

500
= 0.5.

Q: What does the LLN tell us about these estimates?

Q: What does the central limit theorem say about the distribution of these

estimates?

• Step 2: Compute Confidence Intervals for Each Proportion

– Treated group (p̂1): The 95% confidence interval is:

CI = p̂1 ± z ·

s
p̂1(1� p̂1)

n1
,

where z = 1.96, p̂1 = 0.6, and n1 = 500. Substituting:

CI = 0.6± 1.96 ·
r

0.6 · 0.4
500

= 0.6± 1.96 · 0.022.

CI = (0.556, 0.644).

– Untreated group (p̂0): The 95% confidence interval is:

CI = p̂0 ± z ·

s
p̂0(1� p̂0)

n0
,
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where z = 1.96, p̂0 = 0.5, and n0 = 500. Substituting:

CI = 0.5± 1.96 ·
r

0.5 · 0.5
500

= 0.5± 1.96 · 0.022.

CI = (0.456, 0.544).

• Step 3: Compute the Di↵erence in Proportions

– The di↵erence in proportions (p̂1 � p̂0) is:

p̂1 � p̂0 = 0.6� 0.5 = 0.1.

• Step 4: Confidence Interval for the Di↵erence in Proportions

– Formula: The 95% confidence interval for the di↵erence in proportions is:

CI = (p̂1 � p̂0)± z ·

s
p̂1(1� p̂1)

n1
+

p̂0(1� p̂0)

n0
.

– Substituting values:

CI = 0.1± 1.96 ·
r

0.6 · 0.4
500

+
0.5 · 0.5
500

= 0.1± 1.96 · 0.031.

CI = (0.1� 0.061, 0.1 + 0.061) = (0.039, 0.161).

• Step 5: Relation to the CLT and LLN

– Central Limit Theorem (CLT): The CLT ensures that the sample pro-

portion (p̂) is approximately normally distributed for large sample sizes (n).

This allows us to use the normal approximation to construct confidence in-

tervals for the sample proportion (p̂).

– Law of Large Numbers (LLN): The LLN guarantees that the sample

proportion (p̂) converges to the true population proportion (p) as the sample

size (n) increases. This justifies the reliability of the point estimates (p̂).

• Step 6: Final Results

– Confidence interval for the treated group (p̂1): (0.556, 0.644).
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– Confidence interval for the untreated group (p̂0): (0.456, 0.544).

– Confidence interval for the di↵erence in proportions (p̂1 � p̂0): (0.039, 0.161).

Interpretation of a Confidence Interval (CI)

• A fundamental goal of statistics is to provide an understanding of the uncertainty

of an observation, and the confidence interval is one way of quantifying such

uncertainty.

• Let ✓ be an unknown parameter, and let ✓̂ be an estimate of ✓ based on data

y1, . . . , yn:

– If n = 105, we can be much more confident that ✓̂ ⇡ ✓ than if n = 10.

– To express this, we want to construct an interval that is wider when n = 10

and narrower when n = 105, clearly illustrating the uncertainty associated

with ✓̂.

• Definition 163. Let Y = Y1, . . . , Yn be data sampled from a distribution F

with a scalar parameter ✓ of interest. A confidence interval (CI) (L,U) for

✓ is a statistic that takes the form of an interval and contains ✓ with a specified

probability. This probability is called the confidence level of the interval.

• Notes:

– The limits L and U are functions of the data Y1, . . . , Yn, not unknown quan-

tities.

– A two-sided (bilateral) confidence interval, of the form (L,U), is most com-

monly used.

– A one-sided (unilateral) confidence interval, of the form (�1, U) or (L,1),

can sometimes be useful.
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Approximate Confidence Intervals

• In most cases, approximate confidence intervals (CIs) are constructed based on

estimators where variance estimates are required; that is, we usually don’t know

the true variance.

Definition 164. Let ✓̂ = ✓̂(Y1, . . . , Yn) be an estimator of ✓, ⌧ 2n = var(✓̂) its variance,

and V = v(Y1, . . . , Yn) an estimator of ⌧ 2n. The quantity V
1/2 (or its realization v

1/2) is

called the standard error of ✓̂.

• (L,U) is a random interval that contains the parameter ✓ with a specified proba-

bility, 1� ↵.

• Imagine an infinite series of repetitions of the experiment, resulting in di↵erent

(L,U) intervals.

• The CI we calculate is one of the possible CIs, and we can consider it as being

randomly chosen among them.

• We do not know if our random CI (L,U) contains ✓, but this event has a proba-

bility of 1� ↵.
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Hypothesis testing

• Objective: Evaluate whether observed data provides su�cient evidence to reject

a null hypothesis (H0) in favor of an alternative hypothesis (Ha).

• Key Steps:

– Define Hypotheses:

⇤ Null Hypothesis (H0): Assumes no e↵ect or di↵erence.

⇤ Alternative Hypothesis (Ha): Assumes an e↵ect or di↵erence exists.

– Test Statistic: Calculate a statistic (e.g., t-statistic, z-statistic) that sum-

marizes the data.

– Sampling Distribution: Assume H0 is true to derive the distribution of

the test statistic.

– P-value: Compute the probability of observing data as extreme as, or more

extreme than, the observed data, under H0.

– Decision Rule: Reject H0 if the p-value is less than a pre-specified signifi-

cance level (↵, often 0.05 but the choice is somewhat arbitrary).

• Interpretation:

– If H0 is rejected, the result is indicating evidence against H0.

– Failing to reject H0 does not confirm it is true; it indicates insu�cient evi-

dence against it.

• Example of a null hypothesis to test:

H0 : The drug has no e↵ect on the cure rate.

This approach involves attempting to refute the null hypothesis, which assumes no

di↵erence in cure rates between the treated and untreated groups—a “stochastic

proof by contradiction.”

• Data obtained:

– Treated group: n1 = 500, p̂1 = 0.6 (proportion cured).
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– Untreated group: n2 = 500, p̂2 = 0.5 (proportion cured).

• Test statistic:

ztest =
p̂1 � p̂2

SE
,

where:

SE =

s

p̂(1� p̂)

✓
1

n1
+

1

n2

◆
,

and the pooled proportion is:

p̂ =
x1 + x2

n1 + n2
=

300 + 250

500 + 500
= 0.55.

Substituting:

SE =

s

0.55 · 0.45 ·
✓

1

500
+

1

500

◆
=

r
0.55 · 0.45 · 2

500
⇡ 0.029.

The test statistic becomes:

ztest =
0.6� 0.5

0.029
⇡ 3.45.

• Compute the p-value:

pobs = 2 · P (Ztest > |ztest|) = 2 · P (Ztest > 3.45).

Using the standard normal distribution:

pobs ⇡ 2 · 0.00028 = 0.00056.

• Interpret results:

– Either H0 is true, and the observed di↵erence in cure rates is due to random

chance, or:

– H0 is false, and the drug has a statistically significant e↵ect on the cure rate.

• Decision:
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– Since pobs = 0.00056 is much smaller than the significance level (↵ = 0.05),

we reject H0.

– This suggests strong evidence that the drug increases the cure rate.

• Additional note:

– Had pobs ⇡ 0.05, the result would have been less convincing, and further

studies might have been necessary before concluding the drug’s e↵ectiveness.
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16. Some claims about hypothesis testing and p-values

• The probability that the 95% CI from our study includes the true parameter is

95%. False

• If we repeat our study in many random samples from the same population, the

95% CI will include the true parameter in 95% of the samples.

• If we published hundred of studies, at the end of our career we expect that, the

95% CI included the true parameter in 95% of our studies

• The p-value for the null hypothesis is the probability that the test hypothesis is

true. False

• The p-value for the null hypothesis is the probability that chance alone produced

the observed association False, unless better specified. The p-value is a probability

computed under the null hypothesis...

• The p-value for the null hypothesis is the probability of obtaining an estimate

at least as far from the null as the estimate we have obtained, only if the null

hypothesis and all other assumptions used to compute the p-value are true.
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When Doing Inference, What Makes a Good Estimator?

• We now assume Y ⌘ Y1, . . . , Yn
iid⇠ F and that we want to estimate ✓ = ✓(F ) with

an estimator ✓̂ = ✓̂(Y1, . . . , Yn).

• Two criteria for good estimators:

– Asymptotic: How does ✓̂ behave as n ! 1?

– Finite-sample: How to compare ✓̂1 and ✓̂2 for a fixed n?

• Consistency is a key asymptotic criterion: ✓̂
P! ✓ as n ! 1.

Definition 152. An estimator ✓̂ of ✓ is called consistent if ✓̂
P! ✓ as n ! 1.

Mean Squared Error.

Definition 154. The bias b(✓̂; ✓) of ✓̂ is b(✓̂; ✓) = E(✓̂)� ✓.

Definition 155. The mean squared error (MSE) of ✓̂ is

MSE(✓̂; ✓) = E

n
(✓̂ � ✓)2

o
.

Lemma 156. We can write MSE(✓̂; ✓) = b(✓̂; ✓)2 + var(✓̂).

• Bias is a property of the estimator ✓̂, and this property may vary depending on ✓.

• Interpretation of bias:

– If b(✓̂; ✓) < 0, then on average ✓̂ underestimates ✓.

– If b(✓̂; ✓) > 0, then on average ✓̂ overestimates ✓.

– If b(✓̂; ✓) = 0, then ✓̂ is unbiased.

• A quality indicator of ✓̂ is the absence of systematic deviation from ✓: b(✓̂; ✓) ⇡ 0.

• An even more important indicator is MSE(✓̂; ✓), which also measures the variabil-

ity of ✓̂.

Note to Example 157.
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• We’ve already seen that

E(Xn) =
1

n
E(X1 + · · ·+Xn) =

1

n
(E(X1) + · · ·+ E(Xn)) = µ,

so this mean estimator is unbiased.

Also, the sample variance

S
2
n =

1

n� 1

nX

j=1

(Xj �Xn)
2
.

is unbiased because

E(S2
n) = �

2
.

.

However, had we rather made an alternative variance estimator

R
2
n =

1

n

nX

j=1

(Xj �Xn)
2
.

we would have bias downwards because E(Rn) < E(Sn).

E�ciency.

Definition 158. Let ✓̃1 and ✓̃2 be two unbiased estimators of the same parameter ✓. Then

MSE(✓̃1; ✓) = var(✓̃1), MSE(✓̃2; ✓) = var(✓̃2),

and we say that ✓̃1 is more e�cient than ✓̃2 if

var(✓̃1)  var(✓̃2), ✓ 2 ⇥.

We prefer ✓̃1.

Example 159. Let Y1, . . . , Yn
iid⇠ N (µ, �2), with large n. Find the properties of the sample

median Mn and the sample mean Ȳn. Which is preferable? And what if outliers are

present?
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Example of unbiasedness.

• We’ve already seen that

E(Ȳ ) = µ, var(Ȳ ) = �
2
/n,

so the bias of Ȳ as an estimator of µ is E(Ȳ )� µ = 0.

• One can also show that for large n,

E(M) ⇡ µ, var(M) ⇡ ⇡�
2

2n
,

so both estimators are (approximately) unbiased (in fact exactly unbiased), but

var(M)

var(Ȳ )
=

⇡

2
> 1,

which means M is less e�cient than Ȳ ; its variance is larger. However, if there

are outliers, the median M is little a↵ected, while the mean Ȳ can be significantly

impacted. Our choice between these estimators will depend on how much we fear

that our data will be contaminated by outliers.


