
I - Probability

Probability spaces
A probability space is an ordered triple (Ω,F, P ) in which

⋆ the universe Ω is a non-empty set containing elementary outcomes ω

⋆ F is a set of subsets of Ω that is (i) non-empty, (i) contains complements of its members,
and (iii) contains countable unions of its members

⋆ Probabilities P (A) ∈ [0, 1] are defined for all A ∈ F , (i) P (Ω) = 1 and (ii) the
probability of a countable union of pairwise disjoint elements of F equals the sum of their
individual probabilities.

⋆ If A ∈ F then P (Ac) = 1 − P (A), so P (∅) = 0 because P (Ω) = 1

⋆ inclusion-exclusion: P (A ∪ B) = P (A) + P (B) − P (A ∩ B), more generally

P (∪n
i=1Ai) =

n∑
r=1

(−1)
r+1

∑
1≤i1<···<ir≤n

P (Ai1 ∩ · · · ∩ Air )

⋆ Boole’s inequality: P (∪i∈NAi) ≤
∑
i∈N

P (Ai)

⋆ Continuity of P as a set function: lim
n→∞

P
(
∪n

i=1Ai

)
= P

(
lim

n→∞
∪n

i=1Ai

)
and

lim
n→∞

P
(
∩n

i=1Ai

)
= P

(
lim

n→∞
∩n

i=1Ai

)
Conditional probabilities and partitions of Ω

⋆ Conditional probability of A given B: P (A | B) =
P (A ∩ B)

P (B)

⋆ P (A ∩ B) = P (A)P (B) ⇐⇒ A and B are independent

⋆ If {Bi}i∈N partition Ω (i.e., Bi ∩ Bj = ∅ when i ̸= j and Ω = ∪iBi), then (law of
total probability) P (A) =

∑
i P (A | Bi)P (Bi), giving (Bayes’ theorem)

P (Bj | A) =
P (A | Bj)P (Bj)∑
i P (A | Bi)P (Bi)

.

Random variables
A random variable is a function X : Ω → R. The support of X is SX :=
{x ∈ R : ∃ω ∈ Ω s.t. X(ω) = x}. Then

⋆ FX(x) = P (X ≤ x)

⋆ FX ↗ on R

⋆ FX(b) − FX(a) = P (a < X ≤ b)

⋆ 1 − FX(x) = P (X > x)

⋆ The p quantile is xp = inf {x ∈ R : FX(x) ≥ p}, for p ∈ (0, 1).

Discrete random variables: SX is finite or countable
⋆ Probability mass function (PMF): fX(x) = P (X = x)

⋆ P (X ∈ B) =
∑

x∈B fX(x)

⋆ fX|X∈B(x | X ∈ B) = P (X = x | X ∈ B) =
P (X = x ∩ X ∈ B)

P (X ∈ B)

⋆ E {g(X)} =
∑

x∈SX

g(x)fX(x), Var(X) = E[{X − E(X)}2] = E(X2) − E(X)2

Continuous random variables: SX is uncountable

⋆ Probability density function (PDF): fX(x) =
dFX

dx
(x) ̸= P (X = x)

⋆ P (X ∈ B) =

∫
x∈R

fX(x)IB(x) dx =

∫
x∈B

fX(x) dx

⋆ fX|X∈B(x) =
fX(x)IB(x)

P (X ∈ B)

⋆ E {g(X)} =

∫
x∈R

g(x)fX(x) dx, Var(X) = E(X2) − E(X)2

Law of total expectation

E {g(X)} =
∑
i∈N

E {g(X) | Bi}P (Bi) where {Bi}i∈N partitions Ω

Generating functions

⋆ The moment generating function of X is MX(t) = E
(
e
tX

)
⋆ The cumulant generating function of X is KX(t) = lnMX(t)

Notable variables and properties
⋆ Bernoulli variable For A ∈ Ω we have IA(y) = 1 if y ∈ A and IA(y) = 0 if y /∈ A.

We have fX(x) = P (A)x(1 − P (A))1−x, E(IA) = P (A), Var(IA) =
P (A) (1 − P (A)) and SX = {0, 1}
Can also be defined with a probability p, Ip, with fX(x) = px(1 − p)1−x, E(Ip) = p
and Var(Ip) = p (1 − p).

⋆ Binomial For Z1, . . . , Zn
iid∼ Ip we define X = Z1 + · · · + Zn and write

X ∼ B(n, p), n ∈ N, p ∈ (0, 1). We have fX(x) =
(n
x

)
p
x
(1 − p)

n−x,

E(X) = np, Var(X) = np(1 − p) and SX = {0, 1, . . . , n}

⋆ Negative binomial If X ∼ NegBin(n, p), n ∈ N, p ∈ (0, 1). We have

fX(x) =
(x − 1

n − 1

)
p
n
(1 − p)

x−n, E(X) =
n

p
, Var(X) =

n(1 − p)

p2
and SX =

{n, n + 1, . . . ,∞}. If n = 1 we write X ∼ Geom(p).

⋆ Hypergeometric If X ∼ HypGeom(k, b, n), k, b, n ∈ N. We have

fX(x) =

(b
x

)( k
n−x

)(k+b
n

) , E(X) = n
b

b + k
, Var(X) = n

bk(b + k − n)

(b + k)2(b + k − 1)
and

SX = {max(0, b + k − n), . . . ,min(b, n)}

⋆ Poisson If X ∼ Poiss(λ), λ ∈ R+∗. We have fX(x) = e
−λ λx

x!
, E(X) = λ,

Var(X) = λ and SX = {0, 1, . . . ,∞}.
Note that for Xn ∼ B(n, pn) with lim

n→∞
npn = λ, then Xn

n→∞→ X ∼ Poiss(λ)

⋆ Discrete uniform If X ∼ Unif{1, .., n}, n ∈ N. We have fX(x) =
1

n
,

E(X) =
n + 1

2
, Var(X) =

n2 − 1

12
and SX = {1, . . . , n}

⋆ Continous Uniform If X ∼ U(a, b), a < b ∈ R. We have fX(x) =
1

b − a
,

FX(x) =
x − a

b − a
, E(X) =

b + a

2
, Var(X) =

(b − a)2

12
and SX = (a, b)

⋆ Exponential If X ∼ exp(λ), λ ∈ R+∗. We have fX(x) = λe
−λx,

FX(x) = 1 − e
−λx, E(X) =

1

λ
, Var(X) =

1

λ2
and SX = (0,+∞)

⋆ Pareto If X ∼ Pareto(α, β), α, β ∈ R+. We have fX(x) =
αβα

xα+1
,

FX(x) = 1 −
(

β

x

)α

, E(X) =
αβ

α − 1
defined only for α > 1,

Var(X) =
β2α

(α − 1)2(α − 2)
defined only for α > 2 and SX = (β,+∞)

⋆ Laplace If X ∼ Laplace(λ, η), λ ∈ R+, η ∈ R. We have fX(x) =
λ

2
e
−λ|x−η|,

FX(x) =
1

2
e
λ(x−η) for x ≤ η and FX(x) = 1 −

1

2
e
−λ(x−η) for x > η,

E(X) = η, Var(X) =
2

λ2
and SX = R

⋆ Gamma If X ∼ Gamma(α, β), α, β ∈ R+∗, then fX(x) =
βα

Γ(α)
x
α−1

e
−βx,

FX(x) =

∫ βx
0

tα−1e−t dt

Γ(α)
, E(X) =

α

β
, Var(X) =

α

β2
and SX = (0,+∞)

⋆ Gaussian If X ∼ N (µ, σ2), µ ∈ R, σ ∈ R+∗. We have fX(x) =
e
− 1

2

(
x−µ
σ

)2
√
2πσ2

,

FX(x) = Φ

(
x − µ

σ

)
, E(X) = µ, Var(X) = σ

2 and SX = R

⋆ χ2 For Z1, . . . , Zν
iid∼ N (0, 1) we define X = Z

2
1 + · · · + Z

2
ν and write X ∼ χ

2
ν

for ν ∈ N. We have fX(x) =
xν/2−1e−x/2

2ν/2Γ(ν/2)
, FX(x) =

∫ x/2
0 tν/2−1e−t dt

Γ(ν/2)
for

x > 0, and E(X) = ν, Var(X) = 2ν and SX = R+∗.

Random vectors
⋆ Rn ∋ X = (X1, . . . , Xn) is a random vector.

⋆ fX(x) = fX1,...,Xn (x) : Rn → R is its joint density function.

⋆ If A ⊂ {1, . . . , n} satisfies |A| = p, B is its complement, and we
write x = (xA, xB), then XA = Xi:i∈A has marginal density func-

tion fXA
(xA) =

∫
xB∈Rn−p

fX(x) dxB =

∫
xB∈Rn−p

fX(xA, xB) dxB and

the conditional density function of XB given that XA = xA is

fXB |XA
(xB | xA) =

fX(xA, xB)

fXA
(xA)

, xA ∈ Rp
, xB ∈ Rn−p

.

⋆ If fXB |XA
(xB | xA) = fXB

(xB) for all possible values of xA and xB , then XA

and XB are independent and we can write fX(x) = fXA
(xA)fXB

(xB).

⋆ We define E {g(X)} =

∫
x∈Rn

g(x)fX(x) dx, where g(x) : Rn → R.

⋆ We define the mean vector as E (X) = µ = (E(X1), . . . , E(Xn))
T ∈ Rn.

⋆ For 1 ≤ k, l < n, the covariance is Cov(Xk, Xl) = E(XkXl)− E(Xk)E(Xl). Note
that Xk ⊥⊥ Xl =⇒ Cov(Xk, Xl) = 0.

⋆ The correlation between Xk and Xl is Corr(Xk, Xl) :=
Cov(Xk, Xl)√

Var(Xk)Var(Xl)
. Note

that Corr(Xk, Xl) ∈ [−1, 1]

⋆ The covariance matrix of X is Cov(X) = Ω ∈ Rn×n, where Ωk,l = Cov(Xk, Xl).
As Cov(Xk, Xl) = Cov(Xl, Xk), Ω = ΩT , and Ω is symmetric positive semi-definite.

Multivariate Gaussian distribution
⋆ For X = (X1, . . . , Xn)

T ∈ Rn×1 with E(X) = µ and Cov(X) = Ω, if ∀u ∈ Rn,

u
T
X ∼ N

(
u
T
µ, u

T
Ωu

)
, we write X ∼ Nn (µ,Ω).

⋆ If Rank(Ω) = n then fX(x) = {(2π)n|Ω|}−1/2
e
−(x−µ)T Ω−1(x−µ)/2, x ∈ Rn.

⋆ With X ∼ Nn (µ,Ω) and A, B, XA ∈ Rp and XB ∈ Rn−p defined as
above, we define µA = E(XA), µB = E(XB), ΩAA = Cov(XA) ∈ Rp×p,
ΩBB = Cov(XB) ∈ R(n−p)×(n−p), Cov(XA, XB) = ΩAB ∈ Rp×(n−p)

and ΩBA = ΩT
AB .

Then XA ∼ Np (µA,ΩAA) and

XA | XB = xB ∼ Np

(
µA + ΩABΩ

−1
BB(xB − µB),ΩAA − ΩABΩ

−1
BBΩBA

)
.

Transformation of variables
For X = (X1, . . . , Xn) ∈ Rn and a function g(x) : Rn → R, the distribution of

Y := g(X) is P (Y ≤ y) = FY (y) =

∫
x:g(x)≤y

fX(x) dx.

The case n = 1 with g ↗ and g−1(y) = x bijective on SX gives
FX(x) = P (X ≤ x) = P (g(X) ≤ g(x)) = FY (g(x))

=⇒ FY (y) = FX(g
−1

(y)).
A similar calculation applies for g ↘ and g−1(y) = x bijective on SX .



II - Data fitting and statistics

Approximations and convergence
⋆ Below a > 0, h(x) > 0 for all x ∈ R and g(x) is a convex function on R.

⋆ Basic inequality: P{h(X) ≥ a} ≤ E{h(X)}/a.

⋆ Markov’s inequality P (|X| ≥ a) ≤ E(|X|)/a.

⋆ Chebyshev’s inequality: P (|X| ≥ a) ≤ E(X2
)/a

2 or P{|X − E(X)| ≥ a} ≤
Var(X)

a2
.

⋆ Jensen’s inequality: g{E(X)} ≤ E{g(X)}.

⋆ Quadratic mean convergence Xn
2→ X ⇐⇒ lim

n→∞
E
(
(Xn − X)

2
)

= 0 with

E(X2
n), E(X2) < ∞

⋆ Convergence in probability: Xn
P→ X ⇐⇒ ∀ε > 0, P

(
lim

n→∞
|Xn − X| > ε

)
= 0

⋆ Convergence in distribution/law: Xn
D→ X ⇐⇒ lim

n→∞
FXn (x) = FX(x) at all x

where F (x) is continuous.

⋆ Xn
2→ X =⇒ Xn

P→ X =⇒ Xn
D→ X

⋆ Xn
D→ x0 =⇒ Xn

P→ x0 for constant x0

⋆ Xn
P→ x0 =⇒ g(Xn)

P→ g(x0) with g(x) continuous at x0.

⋆ Slutsky’s lemma: Xn
D→ X,Yn

P→ y0 =⇒ Xn + Yn
D→ X + y0 and

XnYn
D→ Xy0

⋆ Law of small numbers: If Xn ∼ B(n, pn) with lim
n→∞

npn = λ, then Xn
D→ X

where X ∼ Poiss(λ).

⋆ Weak law of large numbers: X1, . . . , Xn
iid∼ F where E(Xi) = µ < ∞

=⇒ Xn =
1

n

n∑
i=1

Xi
P→ µ

(
⇐⇒ ∀ε > 0, P

(
lim

n→∞
|Xn − µ| > ε

)
= 0

)

⋆ Strong law of large numbers: X1, . . . , Xn
iid∼ F where E(Xi) = µ < ∞

=⇒ P

(
lim

n→∞
Xn = µ

)
= 1

Central limit theorem

⋆ CLT: X1, . . . , Xn
iid∼ F such that E(Xi) = µ and 0 < Var(Xi) = σ2 < ∞

=⇒ Zn =
Xn − µ√

σ2/n

D→ Z ∼ N (0, 1)

⋆ Delta method: X1, . . . , Xn
iid∼ F such that E(Xi) = µ and 0 < Var(Xi) = σ2 < ∞

with g(x) such as g′(µ) ̸= 0 =⇒ Zn =
g
(
Xn

)
− g(µ)√

g′(µ)2σ2/n

D→ Z ∼ N (0, 1)

⋆ Quantiles: X1, . . . , Xn
iid∼ F , p ∈ (0, 1) where xp = F−1(p) and f(xp) > 0

=⇒ Zn =
X(⌈np⌉) − xp√

p(1 − p)/nf(xp)2
D→ Z ∼ N (0, 1)

Statistics
⋆ A statistic G is a function that depends only on the data y = (y1, . . . , yn): G = g(y)

⋆ A random sample is a set of independent identically distributed data Y1, . . . , Yn
iid∼ F

⋆ From the order statstics y(i)≤y(j)
, 1 ≤ i ≤ j ≤ n, the empirical quantiles/quantiles of

the sample y(⌈np⌉) for p ∈ (0, 1) can be defined

⋆ The breakdown point of a statistic is p × 100%, where p ∈ (0, 1) is the (asymptotically
as n → ∞) smallest value such that sending x1, . . . , x⌈np⌉ → ±∞ sends the statistic
to ±∞.

Notable statistics

⋆ Summaries of location: the average (arithmetic mean) y := n
−1

n∑
i=1

yi and the sample

median y(⌈n/2⌉).

⋆ Summaries of scale / dispersion: the inter-quartile range IQR := y(⌈3n/4⌉) − y(⌈n/4⌉),
the range y(n) − y(1), and the sample standard deviation

s(y) :=

√√√√ 1

n − 1

n∑
i=1

(yi − y)2 =

√√√√ 1

n − 1

n∑
i=1

(yi
2 − ny2)

⋆ Summary of dependence for (x1, y1), . . . , (xn, yn): the sample correlation coefficient

rxy =

∑n
i=1 (xi − x) (yi − y){∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
}1/2

Useful plots
⋆ Boxplot: defined by five numbers, the central line y(⌈n/2⌉)), the limits of the box

y(⌈n/4⌉)) and y(⌈3n/4⌉)), the limits of the “whiskers”, at the yi that are most extreme
but inside y(⌈n/4⌉)) − 1.5 IQR and y(⌈3n/4⌉)) + 1.5 IQR. Points outside the whiskers
are shown individually.

⋆ Q-Q plot: Assuming that y1, . . . , yn
iid∼ F , the order statistics are plotted against the cor-

responding quantiles of F , i.e., we plot
(
F−1 (i/(n + 1)) , y(i)

)
. A line close to x = y

suggests that the data come from F . If F is parametric, a modified plot (depending on F )
can be used to estimate some parameters.

Hypothesis testing
⋆ Hypothesis testing is ‘proof by stochastic contradiction’: we suppose that a null hypothesis

H0 about reality is true and attempt to disprove H0 using data. Distributions of data Y
under H0 are denoted by subscript 0; these are ‘null distributions’.

⋆ A test requires a test statistic T = t(Y ), large values of which suggest that H0 is false.

⋆ The observed value of T , tobs, is used to compute a p-value pobs = P0 (T ≥ tobs), small
values of which cast doubt on H0.

⋆ If a clear decision is required, a ‘significance level’ α ∈ (0, 1) is chosen (e.g., α =
0.05, 0.01, 0.001), and H0 is rejected iff pobs < α, or equivalently if tobs > t1−α,
where t1−α is the 1 − α quantile of the null distribution of T .
In a decision setting the possible outcomes of a statistical test are:

State of nature
Decision on H0 H0 is true H0 is false
Not rejected (negative) True negative False negative (type II error)
Rejected (positive) False positive (type I error) True positive

⋆ We may have a clearly-specified alternative/counter hypothesis H1 that is true when H0 is
false.

⋆ With H1 and α specified, the probability of a true positive is
P (rejecting H0 at significance level α when H1 is true) = P1(T ≥ t1−α), where
α = P0(T ≥ t1−α) is the probability of a false positive.

⋆ α is called the size and P1(T ≥ t1−α) =: β(α) the power of the test.

⋆ A test is said to be optimal if it maximizes β(α) for all α ∈ (0, 1).

⋆ Pearson’s statistic When data follow a multinomial distribution (under a certain hypothesis)
with denominator n and k categories (it models an experiment with k possible outcomes
repeated independently n times, generalising the binomial law), then Pearson’s statistic

T =

k∑
i=1

(Oi − Ei)
2

Ei

follows a χ2
k−1 if

∑
Ei/k ≥ 5. This is widely used for tests of

fit.

Point estimation
⋆ An estimator of the parameter θ of a parametric model is a function of the data T = t(Y )

that estimates θ. An estimate is a specific value t = t(y) of T = t(Y ).

⋆ The bias of an estimator θ̃ is bθ̃(θ) = E(θ̃) − θ.

⋆ The mean square error of an estimator θ̃ is MSEθ̃(θ) = E
(
θ̃ − θ

)2
= b2

θ̃(θ)
+ Var(θ̃)

⋆ For two unbiased estimators of θ, θ̃1 and θ̃2, we say that θ̃1 is more efficient than θ̃2 if
Var(θ̃1) ≤ Var(θ̃2)

Types of estimators

⋆ Moment estimator: For Y1, . . . , Yn
iid∼ fY1

(θ) where θ ∈ Rp, and moments E(Y r
j ) =

µr(θ) for r ≤ p:
1

n

n∑
i=1

Y
r
i

n→∞→ µr(θ). This gives a set of p equations in θ whose

solution gives an estimator for θ.

⋆ Maximum likelihood: For Y1, . . . , Yn
iid∼ fY1

(θ) where θ ∈ Rp, and Y =

(Y1, . . . , Yn) ∼ fY (θ) the likelihood function L(θ) = fY (y, θ) =

n∏
i=1

f(yi, θ) and

the log-likelihood l(θ) = logL(θ) functions can be defined.
The value θ̂ such that L(θ̂) ≥ L(θ) (or l(θ̂) ≥ l(θ)) ∀θ is the maximum likelihood

estimator. From this, the observed information J(θ) = −
d2l(θ)

dθ2
and expected / Fisher

information I(θ) = E(J(θ)) can be defined for later use.

Interval estimation

⋆ If Y1, . . . , Yn
iid∼ fY1

(θ) where θ ∈ Rp, a confidence interval for θ is a statistic in the
form of an interval that contains θ with a given probability (called the confidence level of
the interval).

⋆ An interval of the form (L,U) is called bilateral and an interval of the form (−∞, U) or
(L,+∞) is called unilateral.

⋆ If Y1, . . . , Yn
iid∼ fY1

(θ) where θ ∈ Rp and θ̃ is an estimator of θ with V an estimator
of Var(θ̃). Then V 1/2 is called a standard deviation of θ̃

Construction of an interval

⋆ Using the CLT: If Y1, . . . , Yn
iid∼ fY1

(θ) where θ ∈ Rp and if θ̃ is an esti-
mator of θ with a standard deviation V 1/2 with θ̃

.∼ N (θ, V ), then (L,U) =(
θ̃ − V 1/2z1−αL

, θ̃ − V 1/2zαU

)
is a confidence interval with approximate confi-

dence level 1 − αL − αU .
For a bilateral interval we usually chose αL = αU = α/2 to have a symmetrical interval.
For a unilateral interval we chose αL = αU = α and replace the unwanted limit by ±∞.

⋆ Limit law of the MLE: If Y1, . . . , Yn
iid∼ fY1

(θ) where θ ∈ Rp and if
θ̂ is the maximum likelihood estimator of θ, then under mild regularity conditions,

J(θ̂)
1/2

(θ̂ − θ)
D→ Np(0, Ip). We then use the method above.
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