I - Probability

Probability spaces

A probability space is an ordered triple (Ω, \mathcal{F}, P) in which

- \star the universe Ω is a non-empty set containing elementary outcomes ω
- * \mathcal{F} is a set of subsets of Ω that is (i) non-empty, (i) contains complements of its members, and (iii) contains countable unions of its members
- * Probabilities $P(A) \in [0,1]$ are defined for all $A \in \mathcal{F}$, (i) $P(\Omega) = 1$ and (ii) the probability of a countable union of pairwise disjoint elements of \mathcal{F} equals the sum of their individual probabilities.
- \star If $A \in \mathcal{F}$ then $P(A^c) = 1 P(A)$, so $P(\emptyset) = 0$ because $P(\Omega) = 1$
- * inclusion-exclusion: $P(A \cup B) = P(A) + P(B) P(A \cap B)$, more generally

$$P(\cup_{i=1}^{n} A_{i}) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{1 \leq i_{1} < \dots < i_{r} \leq n} P(A_{i_{1}} \cap \dots \cap A_{i_{r}})$$

- \star Boole's inequality: $P(\cup_{i\in\mathbb{N}}A_i)\leq \sum_{i\in\mathbb{N}}P(A_i)$
- $\star \text{ Continuity of } P \text{ as a set function: } \lim_{n \to \infty} P\left(\cup_{i=1}^n A_i\right) = P\left(\lim_{n \to \infty} \cup_{i=1}^n A_i\right) \text{ and } \lim_{n \to \infty} P\left(\cap_{i=1}^n A_i\right) = P\left(\lim_{n \to \infty} \cap_{i=1}^n A_i\right)$

Conditional probabilities and partitions of Ω

- * Conditional probability of A given B: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- $\star P(A \cap B) = P(A)P(B) \iff A \text{ and B are independent}$
- * If $\{B_i\}_{i\in\mathbb{N}}$ partition Ω (i.e., $B_i\cap B_j=\emptyset$ when $i\neq j$ and $\Omega=\cup_i B_i$), then (law of total probability) $P(A)=\sum_i P(A\mid B_i)P(B_i)$, giving (Bayes' theorem)

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_i P(A \mid B_i)P(B_i)}.$$

Random variable

A random variable is a function $X:\Omega\to\mathbb{R}$. The support of X is $S_X:=\{x\in\mathbb{R}:\exists\ \omega\in\Omega\ \text{s.t.}\ X(\omega)=x\}$. Then

- $\star F_X(x) = P(X \le x)$
- $\star F_X \nearrow \text{on } \mathbb{R}$
- $\star F_X(b) F_X(a) = P(a < X < b)$
- $\star 1 F_X(x) = P(X > x)$
- * The p quantile is $x_p = \inf \{x \in \mathbb{R} : F_X(x) \ge p\}$, for $p \in (0, 1)$.

Discrete random variables: S_X is finite or countable

- * Probability mass function (PMF): $f_X(x) = P(X = x)$
- $\star P(X \in B) = \sum_{x \in B} f_X(x)$
- * $f_{X|X \in B}(x \mid X \in B) = P(X = x \mid X \in B) = \frac{P(X = x \cap X \in B)}{P(X \in B)}$
- $\star \ \operatorname{E}\left\{g(X)\right\} = \sum_{x \in S_{|Y|}} g(x) f_X(x), \operatorname{Var}(X) = \operatorname{E}[\{X \operatorname{E}(X)\}^2] = \operatorname{E}(X^2) \operatorname{E}(X)^2$

Continuous random variables: S_X is uncountable

- * Probability density function (PDF): $f_X(x) = \frac{\mathrm{d}F_X}{\mathrm{d}x}(x) \neq P(X=x)$
- $\star P(X \in B) = \int_{x \in \mathbb{R}} f_X(x) I_B(x) \, \mathrm{d}x = \int_{x \in B} f_X(x) \, \mathrm{d}x$
- $\star f_{X|X \in B}(x) = \frac{f_X(x)I_B(x)}{P(X \in B)}$
- $\star \ \mathrm{E}\left\{g(X)\right\} = \int_{x \in \mathbb{R}} g(x) f_X(x) \ \mathrm{d}x, \mathrm{Var}(X) = \mathrm{E}(X^2) \mathrm{E}(X)^2$

Law of total expectation

 $\mathbb{E}\left\{g(X)\right\} = \sum_{i \in \mathbb{N}} \mathbb{E}\left\{g(X) \mid B_i\right\} P(B_i) \text{ where } \left\{B_i\right\}_{i \in \mathbb{N}} \text{ partitions } \Omega$

Generating functions

- \star The moment generating function of X is $M_X(t) = \mathrm{E}\left(e^{tX}\right)$
- * The cumulant generating function of X is $K_X(t) = \ln M_X(t)$

Notable variables and properties

- * **Bernoulli variable** For $A \in \Omega$ we have $I_A(y) = 1$ if $y \in A$ and $I_A(y) = 0$ if $y \notin A$. We have $f_X(x) = P(A)^x (1 P(A))^{1-x}$, $E(I_A) = P(A)$, $Var(I_A) = P(A) (1 P(A))$ and $S_X = \{0, 1\}$ Can also be defined with a probability p, I_p , with $f_X(x) = p^x (1 p)^{1-x}$, $E(I_p) = p$ and $Var(I_p) = p (1 p)$.
- * **Binomial** For $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} I_p$ we define $X = Z_1 + \cdots + Z_n$ and write $X \sim B(n,p), n \in \mathbb{N}, p \in (0,1).$ We have $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x},$ E(X) = np, Var(X) = np(1-p) and $S_X = \{0, 1, \ldots, n\}$
- * Negative binomial If $X \sim \text{NegBin}(n,p)$, $n \in \mathbb{N}$, $p \in (0,1)$. We have $f_X(x) = {x-1 \choose n-1} p^n (1-p)^{x-n}$, $E(X) = \frac{n}{p}$, $Var(X) = \frac{n(1-p)}{p^2}$ and $S_X = \{n, n+1, \ldots, \infty\}$. If n=1 we write $X \sim \text{Geom}(p)$.
- Hypergeometric If $X \sim \text{HypGeom}(k,b,n)$, $k,b,n \in \mathbb{N}$. We have $f_X(x) = \frac{\binom{b}{x}\binom{n}{n-x}}{\binom{k+b}{n}}$, $\mathrm{E}(X) = n\frac{b}{b+k}$, $\mathrm{Var}(X) = n\frac{bk(b+k-n)}{(b+k)^2(b+k-1)}$ and $S_X = \{\max(0,b+k-n),\ldots,\min(b,n)\}$
- * **Poisson** If $X \sim \operatorname{Poiss}(\lambda)$, $\lambda \in \mathbb{R}^{+*}$. We have $f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$, $\operatorname{E}(X) = \lambda$, $\operatorname{Var}(X) = \lambda$ and $S_X = \{0, 1, \dots, \infty\}$. Note that for $X_n \sim B(n, p_n)$ with $\lim_{n \to \infty} np_n = \lambda$, then $X_n \stackrel{n \to \infty}{\to} X \sim \operatorname{Poiss}(\lambda)$
- * Discrete uniform If $X \sim \text{Unif}\{1,..,n\}, n \in \mathbb{N}$. We have $f_X(x) = \frac{1}{n}$, $E(X) = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$ and $S_X = \{1,...,n\}$
- * Continous Uniform If $X \sim U(a,b)$, $a < b \in \mathbb{R}$. We have $f_X(x) = \frac{1}{b-a}$, $F_X(x) = \frac{x-a}{b-a}$, $E(X) = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$ and $S_X = (a,b)$
- * Exponential If $X \sim \exp(\lambda)$, $\lambda \in \mathbb{R}^{+*}$. We have $f_X(x) = \lambda e^{-\lambda x}$, $F_X(x) = 1 e^{-\lambda x}$, $E(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$ and $S_X = (0, +\infty)$
- $\star \text{ Pareto If } X \sim \operatorname{Pareto}(\alpha,\beta), \ \alpha,\beta \in \mathbb{R}^+. \quad \text{We have } f_X(x) = \frac{\alpha\beta^\alpha}{x^{\alpha+1}},$ $F_X(x) = 1 \left(\frac{\beta}{x}\right)^\alpha, \quad \operatorname{E}(X) = \frac{\alpha\beta}{\alpha-1} \quad \text{defined only for } \alpha > 1,$ $\operatorname{Var}(X) = \frac{\beta^2\alpha}{(\alpha-1)^2(\alpha-2)} \quad \text{defined only for } \alpha > 2 \text{ and } S_X = (\beta,+\infty)$
- $\begin{array}{l} \star \text{ Laplace If } X \sim \operatorname{Laplace}(\lambda,\eta), \, \lambda \in \mathbb{R}^+, \, \eta \in \mathbb{R}. \, \text{ We have } f_X(x) = \frac{\lambda}{2} e^{-\lambda |x-\eta|}, \\ F_X(x) = \frac{1}{2} e^{\lambda (x-\eta)} \, \text{ for } \, x \leq \, \, \eta \, \text{ and } \, F_X(x) = 1 \frac{1}{2} e^{-\lambda (x-\eta)} \, \text{ for } \, x \, > \, \eta, \\ \operatorname{E}(X) = \eta, \operatorname{Var}(X) = \frac{2}{\lambda^2} \, \operatorname{and} \, S_X = \mathbb{R} \end{array}$
- $\star \ \, \mathbf{Gamma} \ \, \mathbf{If} \ \, X \ \, \sim \ \, \mathbf{Gamma}(\alpha,\beta), \ \, \alpha,\beta \ \, \in \ \, \mathbb{R}^{+*}, \ \, \mathbf{then} \ \, f_X(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \\ F_X(x) = \frac{\int_0^{\beta x} t^{\alpha-1} e^{-t} \, \mathrm{d}t}{\Gamma(\alpha)}, \\ \mathbf{E}(X) = \frac{\alpha}{\beta}, \ \, \mathbf{Var}(X) = \frac{\alpha}{\beta^2} \ \, \mathbf{and} \ \, S_X = (0,+\infty)$

- * Gaussian If $X \sim \mathcal{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^{+*}$. We have $f_X(x) = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma^2}\right)^2}}{\sqrt{2\pi\sigma^2}}$, $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$, $E(X) = \mu$, $Var(X) = \sigma^2$ and $S_X = \mathbb{R}$
- $\star \ \chi^2 \ \text{For} \ Z_1, \dots, Z_{\nu} \overset{\text{iid}}{\sim} \mathcal{N}(0,1) \ \text{we define} \ X = Z_1^2 + \dots + Z_{\nu}^2 \ \text{and write} \ X \sim \chi_{\nu}^2$ for $\nu \in \mathbb{N}$. We have $f_X(x) = \frac{x^{\nu/2-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}, \ F_X(x) = \frac{\int_0^{x/2} t^{\nu/2-1}e^{-t} \ \text{d}t}{\Gamma(\nu/2)}$ for x > 0, and $\operatorname{E}(X) = \nu$, $\operatorname{Var}(X) = 2\nu$ and $S_X = \mathbb{R}^{+*}$.

Random vectors

- $\star \mathbb{R}^n \ni X = (X_1, \dots, X_n)$ is a random vector.
- $\star f_X(x) = f_{X_1, \dots, X_n}(x) : \mathbb{R}^n \to \mathbb{R}$ is its joint density function.
- * If $A\subset\{1,\ldots,n\}$ satisfies |A|=p, B is its complement, and we write $x=(x_A,x_B)$, then $X_A=X_{i:i\in A}$ has **marginal density function** $f_{X_A}(x_A)=\int_{x_B\in\mathbb{R}^{n-p}}f_X(x)\,\mathrm{d}x_B=\int_{x_B\in\mathbb{R}^{n-p}}f_X(x_A,x_B)\,\mathrm{d}x_B$ and the **conditional density function** of X_B given that $X_A=x_A$ is

$$f_{X_B\mid X_A}(x_B\mid x_A) = \frac{f_X(x_A,x_B)}{f_{X_A}(x_A)}, \quad x_A\in\mathbb{R}^p, \quad x_B\in\mathbb{R}^{n-p}.$$

- $\text{ If } f_{X_B \mid X_A}(x_B \mid x_A) = f_{X_B}(x_B) \text{ for all possible values of } x_A \text{ and } x_B, \text{ then } X_A \text{ and } X_B \text{ are independent and we can write } f_X(x) = f_{X_A}(x_A) f_{X_B}(x_B).$
- * We define $\mathbb{E}\left\{g(X)\right\} = \int_{\mathbb{R}^n} g(x) f_X(x) \, \mathrm{d}x$, where $g(x) : \mathbb{R}^n \to \mathbb{R}$.
- \star We define the **mean vector** as $E(X) = \mu = (E(X_1), \dots, E(X_n))^T \in \mathbb{R}^n$.
- * For $1 \leq k, l < n$, the covariance is $Cov(X_k, X_l) = E(X_k X_l) E(X_k)E(X_l)$. Note that $X_k \perp \!\!\! \perp X_l \implies Cov(X_k, X_l) = 0$.
- * The **correlation** between X_k and X_l is $\operatorname{Corr}(X_k, X_l) := \frac{\operatorname{Cov}(X_k, X_l)}{\sqrt{\operatorname{Var}(X_k)\operatorname{Var}(X_l)}}$. Note that $\operatorname{Corr}(X_k, X_l) \in [-1, 1]$
- * The covariance matrix of X is $Cov(X) = \Omega \in \mathbf{R}^{n \times n}$, where $\Omega_{k,l} = Cov(X_k, X_l)$. As $Cov(X_k, X_l) = Cov(X_l, X_k)$, $\Omega = \Omega^T$, and Ω is symmetric positive semi-definite.

Multivariate Gaussian distribution

- $\text{* For } X = (X_1, \dots, X_n)^T \in \mathbb{R}^{n \times 1} \text{ with } \mathbf{E}(X) = \mu \text{ and } \mathbf{Cov}(X) = \Omega, \text{ if } \forall u \in \mathbb{R}^n, \\ u^T X \sim \mathcal{N}\left(u^T \mu, u^T \Omega u\right), \text{ we write } X \sim \mathcal{N}_n\left(\mu, \Omega\right).$
- * If Rank(Ω) = n then $f_X(x) = \{(2\pi)^n |\Omega|\}^{-1/2} e^{-(x-\mu)^T \Omega^{-1} (x-\mu)/2}, x \in \mathbb{R}^n$.
- * With $X \sim \mathcal{N}_n(\mu,\Omega)$ and $A, B, X_A \in \mathbb{R}^p$ and $X_B \in \mathbb{R}^{n-p}$ defined as above, we define $\mu_A = \mathrm{E}(X_A), \, \mu_B = \mathrm{E}(X_B), \, \Omega_{AA} = \mathrm{Cov}(X_A) \in \mathbb{R}^{p \times p}, \, \Omega_{BB} = \mathrm{Cov}(X_B) \in \mathbb{R}^{(n-p) \times (n-p)}, \, \mathrm{Cov}(X_A, X_B) = \Omega_{AB} \in \mathbb{R}^{p \times (n-p)}$ and $\Omega_{BA} = \Omega_{AB}^T$. Then $X_A \sim \mathcal{N}_p(\mu_A, \Omega_{AA})$ and

$$X_{\mathcal{A}} \mid X_{\mathcal{B}} = x_{\mathcal{B}} \sim \mathcal{N}_{p} \left(\mu_{\mathcal{A}} + \Omega_{\mathcal{A}\mathcal{B}} \Omega_{\mathcal{B}\mathcal{B}}^{-1} (x_{\mathcal{B}} - \mu_{\mathcal{B}}), \Omega_{\mathcal{A}\mathcal{A}} - \Omega_{\mathcal{A}\mathcal{B}} \Omega_{\mathcal{B}\mathcal{B}}^{-1} \Omega_{\mathcal{B}\mathcal{A}} \right).$$

Transformation of variables

For $X=(X_1,\ldots,X_n)\in\mathbb{R}^n$ and a function $g(x):\mathbb{R}^n\to\mathbb{R}$, the distribution of Y:=g(X) is $P(Y\leq y)=F_Y(y)=\int_{x:g(x)\leq y}f_X(x)\,\mathrm{d}x$.

The case n=1 with $g \nearrow$ and $g^{-1}(y)=x$ bijective on S_X gives $F_X(x)=P(X \le x)=P(g(X) \le g(x))=F_Y(g(x))$ $\Longrightarrow F_Y(y)=F_X(g^{-1}(y)).$

A similar calculation applies for $g \searrow \text{ and } g^{-1}(y) = x \text{ bijective on } S_X$.

II - Data fitting and statistics

Approximations and convergence

- * Below a > 0, h(x) > 0 for all $x \in \mathbb{R}$ and g(x) is a convex function on \mathbb{R} .
- * Basic inequality: $P\{h(X) \ge a\} \le E\{h(X)\}/a$.
- * Markov's inequality $P(|X| \ge a) \le E(|X|)/a$.
- * Chebyshev's inequality: $P(|X| \ge a) \le E(X^2)/a^2$ or $P\{|X E(X)| \ge a\} \le \frac{\text{Var}(X)}{a^2}$
- \star Jensen's inequality: $g\{E(X)\} \leq E\{g(X)\}.$
- * Quadratic mean convergence $X_n \stackrel{2}{\to} X \iff \lim_{n \to \infty} \mathbb{E}\left((X_n X)^2\right) = 0$ with $E(X_n^2), E(X^2) < \infty$
- $\star \ \, \text{Convergence in probability:} \ \, X_n \overset{P}{\to} X \ \iff \forall \varepsilon > 0, P\left(\lim_{n \to \infty} |X_n X| > \varepsilon\right) = 0$
- $\star \text{ Convergence in distribution/law: } X_n \overset{D}{\to} X \iff \lim_{n \to \infty} F_{X_n}(x) = F_X(x) \text{ at all } x$ where F(x) is continuous.
- $\star \ X_n \stackrel{2}{\to} X \implies X_n \stackrel{P}{\to} X \implies X_n \stackrel{D}{\to} X$
- $\star \ X_n \overset{D}{\to} x_0 \implies X_n \overset{P}{\to} x_0 \text{ for constant } x_0$
- $\star \ X_n \overset{P}{\to} x_0 \implies g(X_n) \overset{P}{\to} g(x_0)$ with g(x) continuous at x_0 .
- * Slutsky's lemma: $X_n \stackrel{D}{\to} X, Y_n \stackrel{P}{\to} y_0 \implies X_n + Y_n \stackrel{D}{\to} X + y_0$ and $X_n Y_n \stackrel{D}{\to} X y_0$
- * Law of small numbers: If $X_n \sim B(n, p_n)$ with $\lim_{n \to \infty} np_n = \lambda$, then $X_n \stackrel{D}{\to} X$ where $X \sim \text{Poiss}(\lambda)$.
- * Weak law of large numbers: $X_1, \ldots, X_n \overset{\text{iid}}{\sim} F$ where $E(X_i) = \mu < \infty$ $\Longrightarrow \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \overset{P}{\rightarrow} \mu \left(\Longleftrightarrow \forall \varepsilon > 0, P\left(\lim_{n \to \infty} |X_n \mu| > \varepsilon \right) = 0 \right)$
- * Strong law of large numbers: $X_1,\ldots,X_n \overset{\text{iid}}{\sim} F$ where $E(X_i)=\mu<\infty$ $\Longrightarrow P\left(\lim_{n\to\infty}\overline{X}_n=\mu\right)=1$

Central limit theorem

- * CLT: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ such that $\mathrm{E}(X_i) = \mu$ and $0 < \mathrm{Var}(X_i) = \sigma^2 < \infty$ $\implies Z_n = \frac{\overline{X}_n \mu}{\sqrt{\sigma^2/n}} \stackrel{D}{\rightarrow} Z \sim \mathcal{N}(0, 1)$
- $\star \ \, \text{ Delta method: } X_1, \dots, X_n \overset{\text{iid}}{\sim} F \text{ such that } \\ E(X_i) = \mu \text{ and } \\ 0 < \text{Var}(X_i) = \sigma^2 < \infty \\ \text{with } g(x) \text{ such as } g'(\mu) \neq 0 \implies Z_n = \frac{g\left(\overline{X}_n\right) g(\mu)}{\sqrt{g'(\mu)^2\sigma^2/n}} \overset{D}{\rightarrow} Z \sim \mathcal{N}(0,1)$
- * Quantiles: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F, p \in (0, 1)$ where $x_p = F^{-1}(p)$ and $f(x_p) > 0$ $\implies Z_n = \frac{X_{(\lceil np \rceil)} x_p}{\sqrt{p(1-p)/n} f(x_p)^2} \stackrel{D}{\rightarrow} Z \sim \mathcal{N}(0, 1)$

Statistics

- * A statistic G is a function that depends only on the data $y = (y_1, \dots, y_n)$: G = g(y)
- \star A random sample is a set of independent identically distributed data $Y_1,\ldots,Y_n\stackrel{\mathrm{iid}}{\sim} F$
- * From the order statistics $y_{(i) \leq y_{(j)}}$, $1 \leq i \leq j \leq n$, the empirical quantiles/quantiles of the sample $y_{(\lceil np \rceil)}$ for $p \in (0,1)$ can be defined
- \star The breakdown point of a statistic is $p\times 100\%$, where $p\in (0,1)$ is the (asymptotically as $n\to\infty)$ smallest value such that sending $x_1,\dots,x_{\lceil np\rceil}\to\pm\infty$ sends the statistic to $\pm\infty.$

Notable statistics

- * Summaries of location: the average (arithmetic mean) $\overline{y} := n^{-1} \sum_{i=1}^{n} y_i$ and the sample median $y_{(\lceil n/2 \rceil)}$.
- * Summaries of scale / dispersion: the inter-quartile range $\ \mathrm{IQR} := y_{\lceil \lceil 3n/4 \rceil)} y_{\lceil \lceil n/4 \rceil)}$, the range $y_{(n)} y_{(1)}$, and the sample standard deviation

$$s(y) := \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i^2 - n\overline{y}^2)}$$

* Summary of dependence for $(x_1, y_1), \ldots, (x_n, y_n)$: the sample correlation coefficient

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\left\{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2\right\}^{1/2}}$$

Useful plots

- *** Boxplot**: defined by five numbers, the central line $y(\lceil n/2 \rceil)$, the limits of the box $y(\lceil n/4 \rceil)$ and $y(\lceil 3n/4 \rceil)$, the limits of the "whiskers", at the y_i that are most extreme but inside $y(\lceil n/4 \rceil) 1.5$ IQR and $y(\lceil 3n/4 \rceil) + 1.5$ IQR. Points outside the whiskers are shown individually.
- **Q-Q plot**: Assuming that $y_1,\ldots,y_n \stackrel{\text{iid}}{\sim} F$, the order statistics are plotted against the corresponding quantiles of F, i.e., we plot $(F^{-1}(i/(n+1)),y_{(i)})$. A line close to x=y suggests that the data come from F. If F is parametric, a modified plot (depending on F) can be used to estimate some parameters.

Hypothesis testing

- * Hypothesis testing is 'proof by stochastic contradiction': we suppose that a null hypothesis H₀ about reality is true and attempt to disprove H₀ using data. Distributions of data Y under H₀ are denoted by subscript 0; these are 'null distributions'.
- * A test requires a test statistic T = t(Y), large values of which suggest that H_0 is false.
- \star The observed value of $T,t_{\rm obs},$ is used to compute a p-value $p_{\rm obs}=P_0$ $(T\geq t_{\rm obs}),$ small values of which cast doubt on $H_0.$
- If a clear decision is required, a 'significance level' $\alpha \in (0,1)$ is chosen (e.g., $\alpha = 0.05, 0.01, 0.001$), and H_0 is rejected iff $p_{\rm obs} < \alpha$, or equivalently if $t_{\rm obs} > t_{1-\alpha}$, where $t_{1-\alpha}$ is the $1-\alpha$ quantile of the null distribution of T.

In a decision setting the possible outcomes of a statistical test are:

	State of nature	
Decision on H_0	H_0 is true	H_0 is false
Not rejected (negative)	True negative	False negative (type II error)
Rejected (positive)	False positive (type I error)	True positive

- \star We may have a clearly-specified alternative/counter hypothesis H_1 that is true when H_0 is false.
- * With H_1 and α specified, the probability of a true positive is $P(\text{rejecting } H_0 \text{ at significance level } \alpha \text{ when } H_1 \text{ is true}) = P_1(T \geq t_{1-\alpha}), \text{ where } \alpha = P_0(T \geq t_{1-\alpha}) \text{ is the probability of a false positive.}$
- $\star \alpha$ is called the size and $P_1(T \geq t_{1-\alpha}) =: \beta(\alpha)$ the power of the test.
- \star A test is said to be optimal if it maximizes $\beta(\alpha)$ for all $\alpha \in (0,1)$
- * Pearson's statistic When data follow a multinomial distribution (under a certain hypothesis) with denominator n and k categories (it models an experiment with k possible outcomes repeated independently n times, generalising the binomial law), then Pearson's statistic

$$T=\sum_{i=1}^k\frac{(O_i-E_i)^2}{E_i} \text{ follows a } \chi^2_{k-1} \text{ if } \sum E_i/k \geq 5. \text{ This is widely used for tests of fit.}$$

Point estimation

- * An estimator of the parameter θ of a parametric model is a function of the data T=t(Y) that estimates θ . An estimate is a specific value t=t(y) of T=t(Y).
- * The bias of an estimator $\tilde{\theta}$ is $b_{\tilde{\theta}(\theta)} = E(\tilde{\theta}) \theta$.
- * The mean square error of an estimator $\tilde{\theta}$ is $MSE_{\tilde{\theta}(\theta)} = E\left(\tilde{\theta} \theta\right)^2 = b_{\tilde{\theta}(\theta)}^2 + Var(\tilde{\theta})$
- \star For two unbiased estimators of θ , $\tilde{\theta}_1$ and $\tilde{\theta}_2$, we say that $\tilde{\theta}_1$ is more efficient than $\tilde{\theta}_2$ if $Var(\tilde{\theta}_1) \leq Var(\tilde{\theta}_2)$

Types of estimators

- * Moment estimator: For $Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} f_{Y_1}(\theta)$ where $\theta \in \mathbb{R}^p$, and moments $\mathrm{E}(Y_j^r) = \mu_r(\theta)$ for $r \leq p$: $\frac{1}{n} \sum_{i=1}^n Y_i^r \stackrel{n \to \infty}{\to} \mu_r(\theta)$. This gives a set of p equations in θ whose solution gives an estimator for θ .
- * Maximum likelihood: For $Y_1, \ldots, Y_n \overset{\text{iid}}{\sim} f_{Y_1}(\theta)$ where $\theta \in \mathbb{R}^p$, and $Y = (Y_1, \ldots, Y_n) \sim f_Y(\theta)$ the likelihood function $L(\theta) = f_Y(y, \theta) = \prod_{i=1}^n f(y_i, \theta)$ and the log-likelihood $l(\theta) = \log L(\theta)$ functions can be defined.

The value $\hat{\theta}$ such that $L(\hat{\theta}) \geq L(\theta)$ (or $l(\hat{\theta}) \geq l(\theta)$) $\forall \theta$ is the maximum likelihood estimator. From this, the observed information $J(\theta) = -\frac{\mathrm{d}^2 l(\theta)}{\mathrm{d}\theta^2}$ and expected / Fisher information $I(\theta) = \mathrm{E}(J(\theta))$ can be defined for later use.

Interval estimation

- * If $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} f_{Y_1}(\theta)$ where $\theta \in \mathbb{R}^p$, a confidence interval for θ is a statistic in the form of an interval that contains θ with a given probability (called the confidence level of the interval).
- * An interval of the form (L,U) is called bilateral and an interval of the form $(-\infty,U)$ or $(L,+\infty)$ is called unilateral.
- * If $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} f_{Y_1}(\theta)$ where $\theta \in \mathbb{R}^p$ and $\tilde{\theta}$ is an estimator of θ with V an estimator of $\text{Var}(\tilde{\theta})$. Then $V^{1/2}$ is called a standard deviation of $\tilde{\theta}$

Construction of an interval

- * Using the CLT: If $Y_1,\ldots,Y_n\stackrel{\text{iid}}{\sim} f_{Y_1}(\theta)$ where $\theta\in\mathbb{R}^p$ and if $\tilde{\theta}$ is an estimator of θ with a standard deviation $V^{1/2}$ with $\tilde{\theta}\sim\mathcal{N}(\theta,V)$, then $(L,U)=\left(\tilde{\theta}-V^{1/2}z_{1-\alpha_L},\tilde{\theta}-V^{1/2}z_{\alpha_U}\right)$ is a confidence interval with approximate confidence level $1-\alpha_L-\alpha_U$.
 - For a bilateral interval we usually chose $\alpha_L=\alpha_U=\alpha/2$ to have a symmetrical interval. For a unilateral interval we chose $\alpha_L=\alpha_U=\alpha$ and replace the unwanted limit by $\pm\infty$.
- **Limit law of the MLE**: If $Y_1, \ldots, Y_n \overset{\text{iid}}{\sim} f_{Y_1}(\theta)$ where $\theta \in \mathbb{R}^p$ and if $\hat{\theta}$ is the maximum likelihood estimator of θ , then under mild regularity conditions, $J(\hat{\theta})^{1/2}(\hat{\theta}-\theta) \overset{D}{\to} \mathcal{N}_p(0,I_p)$. We then use the method above.

By Adam Avedissian Content based on the lecture slides of Professor Anthony Davison Format based on the template added by Fingal Mychkine Nagel Persoud