I - Probability

Probability spaces

A probability space is an ordered triple (€2, F, P) in which
* the universe €2 is a non-empty set containing elementary outcomes w

* F is a set of subsets of 2 that is (i) non-empty, (i) contains complements of its members,
and (iii) contains countable unions of its members

% Probabilities P(A) € [0, 1] are defined for all A € F, (i) P(Q2) = 1 and (ii) the
probability of a countable union of pairwise disjoint elements of F equals the sum of their
individual probabilities.

* If A € Fthen P(A°) =1 — P(A),so P(0) = 0because P(2) =1
* inclusion-exclusion: P (A o] B) = P(A) + P(B) — P(A N B), more generally

PU A) = (1) > P(A;; N N Ay
r=1 1<iy) <---<ip<n

* Boole’s inequality: P(U;enA;) < Z P(A;)
ieN

* Continuity of P as a set function:  lim P (Ui, 4) =P < lim U;L:IA,;> and

Jim P (MI_,A) = P (nlgmm n;;IAi>

Conditional probabilities and partitions of 2

P(AN B)
P(B)

* P(AN B) = P(A)P(B) <= A and B are independent

* If {Bi}ieN partition  (i.e., B; N B; = () when # j and Q = U; B;), then (law of
total probability) P(A) = >, P(A | B;)P(B;), giving (Bayes’ theorem)

* Conditional probability of A given B: P(A | B) =

_ P(A| B;)P(By)
PO = Pl BoP(BY

Random variables

A random variable is a function X

{z €R: 3w € Qs.t. X(w) = x}. Then
* Fx(z) = P(X <x)

* Fx /onR
* Fx(b) — Fx(a) = Pla< X <)
* 1—Fx(z) =P(X >x)

€ — R. The support of X is Sx :=

* The p quantile is x;, = inf {x € R : Fx(x) > p},forp € (0,1).

Discrete random variables: S x is finite or countable

* Probability mass function (PMF): fx (z) = P(X = )

* P(X € B)=3,cp fx ()

P(X=xznX € B)
P(X € B)

* E{g(X)} = > g(2)fx (). Var(X) = E[{X — E(X)}?] = E(X?) — E(X)?
r€Sx

* fx|xep(z| X €B)=P(X=z|X€B)=

Continuous random variables: S x is uncountable

dF
* Probability density function (PDF): fx (z) = Tx(m) # P(X =x)
z

* P(X € B) = /'GR fx(x)Ipg(x)de = /EB fx(z)dz
« Fxixen(a) = f;((;)IeBg)
*x E{g(X)} = /ER g(x) fx (x) dz, Var(X) = B(X?) — E(X)?

Law of total expectation
E{g(X)} = > E{g(X) | Bi} P(B;) where { B;}, partitions 2
ieN
Generating functions

* The moment generating function of X is M x (t) = E (etx)

* The cumulant generating function of X is K x (t) = In Mx (t)

Notable variables and properties

* Bernoulli variable For A € Q wehave J4(y) = 1ify € AandIa(y) = 0ify ¢ A.
We have fx(z) = P(A)*(1 — P(A)'~%, E(Ia) = P(A), Var(In) =
P(A)(1 — P(A))and Sx = {0,1}
Can also be defined with a probability p, I, with fx () = p™(1 — p)' "*,E(I,) = p
and Var(I,) = p (1 — p).

Zn BT, we define X =214+ Z, and write
n
xr

* Binomial For Zi,..
X~ B(phn € Np € (0,1). We have fx ()= (")p"(1—p)" ",

E(X) = np, Var(X) = np(1l — p)and Sx = {0,1,...,n}
* Negative binomial If X ~ NegBin(n,p), n € N,p € (0,1). We have
r—1\ , z—n n n(l—p
fx(z) = ( )p (1—p)* ™ E(X) = 2, Var(X) = % and Sx =
n—1 p p
{n,n+1,...,00}. Ifn = 1 we write X ~ Geom(p).
* Hypergeometric If X ~ HypGeom(k,b,n), k,b,n € N.  We have
(=) .E) b bk(b + k — n)
z) = 2"~ E(X)=n ,Var( X) =n—————— and
Fx () = SRR E(X) = np e Var(X) = m e S

Sx = {max(0,b+k —n),...,min(b,n)}
)\l
* Poisson If X ~ Poiss(A), A € RT*. We have fx () = * =, E(X) = A,
x:
Var(X) = Xand Sx = {0,1,...,00}.
Note that for X,, ~ B(n,p,) with lim np, = X, then X,, "=°° X ~ Poiss(\)
n— oo

1
* Discrete uniform If X ~ Unif{l,..,n}, n € N. We have fx(z)= —

)
n
n? -1

1
E(X) = %,Var(x) - and Sx = {1,...,n}

* Continous Uniform If X ~ U(a,b), a < b € R. We have fx(z) =

b+a’VM(X): ®b—a)?

B

b—a

Fx(z) = 2% B(X) =

and Sx = (a,b)
b—a

* Exponential It X ~ exp(A), A € RT*. We have fx(z)=Ae 7,

1 1
Fx(z)=1—e * E(X) = 1 Var(X) = 55 and Sx = (0, +00)

afB®

* Pareto If X ~ Pareto(c,f3), a,8 € Rt. _
:EO‘+1

Ba
(@-12(a—2)

We have fx(z)=

defined only for « > 1,

Var(X) = defined only for « > 2 and Sx = (3, +00)

A Ne—
x Laplace If X ~ Laplace()\,7), A € RT,n € R. We have fx (z) = Se AMz=nl

1 1
Fx(z) == for z < pand Fx(z)=1— e & for z > n,

2
E(X) =mn, Var(X) = Fands’x =R

5a afle—ﬁz

* Gamma If X ~ Gamma(a, 8), o, 8 € RT*, then fx(z) = T )m s
a
f(] x ta—le—t dt a -
F =20 ° " " E(X)= -, Var(X) = — and Sx = (0,
x (@) Fray B = 5 Var(X) = 25 and Sx = (0, +00)

* Gaussian If X ~ N(u,0%), u € R,0 € RT*. We have fx (z) =

Fx(z):q>(‘T*“),E(X):u,VaI(X):azandSX:JR

o

*x x2For Zy,...,2, ii\d/N(O,l) wedeﬁneX:le—i-u‘-&-Zf andwritemez
v/2—1_—ax /2 v/2—1_—
v/ lemw/2 Fx(z):fo/ /2 et gt for
2v/2T(v/2) ’ I'(v/2)

w>0,andE(X):y,Var(X):21/andSX=R+*‘
Random vectors
*R" 3 X = (Xq,..

forv € N. We have fx (z) =

., X,,) is a random vector.

* fx(x) = fxq,....xp (x) : R" — Ris its joint density function.

*If A C A{1,...,n} satisfies |A] = p, B is its complement, and we
write © = (xa,zB), then Xa = X;;ca has marginal density func-
tion fXA(xA): fx(x)dIB: fx(IA,IB)dZB and

g ERN—P g €RN—P

the conditional density function of X 5 giventhat X 4 = x 4 is

fx(za,zB)

, TA E]Rp,
fx,(za)

fXB\XA(‘TB |za) = zp € R"7P,

*x If fxpix,(zB | za) = fxp (zp) for all possible values of x4 and zp, then X 4
and X g are independent and we can write fx (z) = fx , (za)fx 5 (zB).

*

We define E {g(X)} = / g(z) fx (z) do, where g(x) : R™ — R.
zER™

*

We define the mean vector as E (X) = p = (E(X1),...,E(X,))T € R™.

For1 < k,1 < n, the covariance is Cov(X, X;) = E(X1X;) — E(X%)E(X;). Note
that X, 1L X; — COV(Xk,Xl) =0.

*

. . Cov(Xg, X1)
The correlation between X, and X is Corr( Xy, X;) := ——————. Note

/Var(X ) Var(X;)

*

that Corr( Xy, X;) € [—1,1]

* The covariance matrix of X is Cov(X) = Q@ € R™*", where Qj,; = Cov(Xk, X;).
As Cov(Xg, X)) = Cov(X;, Xi), Q = Q7 and Q is symmetric positive semi-definite.

Multivariate Gaussian distribution

x For X = (X1,...,Xn)T € R"X! with E(X) = pand Cov(X) = Q, if Vu € R™,
WX ~ N (uTu, uTQu), we write X ~ N, (i, ).

" Tao—1,
« IfRank(©2) = n then fx (z) = {(2m)"[Q} "/ 2e~(==m QT @=m/2 4 c g,

* With X ~ N, (p,Q) and A, B, X4 € RP and Xp
above, we define g = E(Xa), up = E(XB), Qaa
Qpp = Cov(Xp) € R=PX("=P) Coy(X 4, Xp) =
and Qpa = QﬁB.

Thel’lXA NNp (NA,QAA)aI’ld

€ R" 7P defined as
Cov(Xa) € RPXP,
Qap € RPX(n—p)

Xa|Xp=2z5~Np (MA + QapQpp(zs — puB), Raa — QABQEéQBA>~

Transformation of variables
For X = (X1,...,X,) € R" and a function g(z) : R™ — R, the distribution of
Y = g(X)is P(Y < y) = Fy(y) = fx (x) da.
z:g(x)<y
The case = 1 with ¢ " and g~ *(y) = x bijective on Sx gives
Fx(z) = P(X <) :1P(g(X) < g(=)) = Fy (g9(x))
= Fy(y) =Fx(g " (¥).
A similar calculation applies for g N\ and g ~* () = z bijective on Sx.



II - Data fitting and statistics

Approximations and convergence
% Below a > 0, h(x) > Oforall z € Rand g(x) is a convex function on R.

* Basic inequality: P{h(X) > a} < E{h(X)}/a.
* Markov’s inequality P(|X| > a) < E(|X|)/a.

* Chebyshev’s inequality: P(|X| > a) < E(X?)/a® or P{|X — E(X)| > a} <
* Jensen’s inequality: g{E(X)} < E{g(X)}.
* Quadratic mean convergence X, 32X < lim E ((Xn - X)Q) =0 with
n— oo
E(X2), E(X?) < o

* Convergence in probability: X, EX = ve> 0, P ( ILm | X — X| > 5) =0

* Convergence in distribution/law: X, 2 X «— lim Fx, () = Fx (x) at all =
n— oo

where F'(z) is continuous.

*FXn 323X = X, 25X = X, 2 X

D P
* Xy = x9g = X, — x0 for constant z¢

* Xy, Eil zo = 9(Xn) EiY g(xzo) with g(z) continuous at x.

* Slutsky’s lemma: X,, g X,Y, 5 yo — Xn + Yn 3 X + yo and

XnYn 3 Xyo
* Law of small numbers: If X,, ~ B(n,p,) with lim np, = A, then X,, 2 x
n—oo
where X ~ Poiss().
iid

* Weak law of large numbers: y Xn o~

_ 1 &
= X, == Xi£#<<:> v5>o,P(nm \an,u\>s>:0)
n£=1 n— o0

X1,... F where E(X;) =p < oo

* Strong law of large numbers: X,...,X, I F where E(X;) =p < oo
= P nli_}mocfn = u) =1

Central limit theorem

% CLT: X1,...,Xn % Fsuchthat E(X;) = pand 0 < Var(X;) = 02 < oo

X, —
— g, =2n "k

Vo?/n

* Deltamethod: X, ...

B Z ~N(0,1)

, X B FsuchthatE(X;) = pand 0 < Var(X;) = 02 < oo

g (Yn) —g(n) |,

with g(x) suchas ¢’ (p) 20 = Z,, = = Z ~N(0,1)

g’ (k)2e?/n
* Quantiles: X4,...,X, i F,p € (0,1) where z,, = Ffl(p) and f(xp) > 0
X(rn —x
= Z,=——mPD T2 Bz A0, 1)
p(1 —p)/nf(zp)?
Statistics
* A statistic G is a function that depends only on the data y = (y1,...,yn): G = g(y)
* A random sample is a set of independent identically distributed data Y7, ...,Y, iy

« From the order statstics Y(@)<y(jy 1 < ¢ < j < n, the empirical quantiles/quantiles of
the sample y([,p1) for p € (0, 1) can be defined
* The breakdown point of a statistic is p X 100%, where p € (0, 1) is the (asymptotically

as n — oo) smallest value such that sending 1, . .., T[] — d-00 sends the statistic
to +o0.

Var(X)

Notable statistics

n
* Summaries of location: the average (arithmetic mean) j := no? Z y; and the sample
i=1
median Y([n/2])-

* Summaries of scale / dispersion: the inter-quartile range IQR := y(13n/47) — Y([n/47)>
the range Y(n) — y(1). and the sample standard deviation

1 & ‘ 1 & ‘
- 72 = 2 — ny?
s(y) n71;(y’ 7) n71;(y ny?)
* Summary of dependence for (z1,y1), ..., (@n,yn): the sample correlation coefficient
_ ic1 (T — %) (i —7)
Toy = n —\2 xn —\211/2

{Zi:l (z; — @) Zizl (y: — ) }

Useful plots

* Boxplot: defined by five numbers, the central line y([n/27)), the limits of the box
Y([ny/41)) and Y([3n/47)). the limits of the “whiskers”, at the y; that are most extreme
but inside Y(1,/47)) — 1.5 IQR and y([3,/47)) + 1.5 IQR. Points outside the whiskers
are shown individually.

*

Q-Q plot: Assuming that y1, ..., yn i F, the order statistics are plotted against the cor-
responding quantiles of F', i.e., we plot (F ™' (i/(n + 1)), y(;)). Alineclosetox = y
suggests that the data come from F. If F' is parametric, a modified plot (depending on F')
can be used to estimate some parameters.

Hypothesis testing

* Hypothesis testing is ‘proof by stochastic contradiction’: we suppose that a null hypothesis
Hy about reality is true and attempt to disprove Hg using data. Distributions of data Y
under Hy are denoted by subscript O; these are ‘null distributions’.

* A test requires a test statistic T" = t(Y"), large values of which suggest that H is false.

* The observed value of T', tobs, is used to compute a p-value pors = Po (T > tops), small
values of which cast doubt on Hg.

*

If a clear decision is required, a ‘significance level’ @ € (0, 1) is chosen (e.g., & =
0.05,0.01,0.001), and Hy is rejected iff pons < c, or equivalently if tohs > t1—q,
where t1_ is the 1 — « quantile of the null distribution of 7".

In a decision setting the possible outcomes of a statistical test are:

State of nature

Decision on Hg Hy is true Hy is false

Not rejected (negative) True negative False negative (type II error)

Rejected (positive) False positive (type I error) True positive
* We may have a clearly-specified alternative/counter hypothesis H; that is true when Hy is

false.

* With  H; and « specified, the
P(rejecting Hy at significance level o« when H is true) =
a = Py(T > t1—q) is the probability of a false positive.

probability of a true positive s
Pi(T > ti—o), where
* «is called the size and Py (T > t1_) =: () the power of the test.

* A test is said to be optimal if it maximizes 3(«) forall o € (0, 1).

* Pearson’s statistic When data follow a multinomial distribution (under a certain hypothesis)
with denominator n and k categories (it models an experiment with k possible outcomes
repeated independently n times, generalising the binomial law), then Pearson’s statistic

k 2
0. — E;
T = Z % follows a X27 L if > E;/k > 5. This is widely used for tests of
i=1 i

fit.

Point estimation

* An estimator of the parameter 6 of a parametric model is a function of the data T' = ¢(Y")
that estimates 6. An estimate is a specific value t = t(y) of T = t(Y").

* The bias of an estimator 6 is b0y = E(6) — 6.

=02+ Var(9)

- - 2
* The mean square error of an estimator 6 is MSEé(G) =E (0 — 0) 30

* For two unbiased estimators of 0, 51 and ég, we say that él is more efficient than 92 if
Var(61) < Var(02)
Types of estimators

* Moment estimator: For Y7, ...,Y, IS fyy (8) where 6 € R”, and moments E(YJ”) =

1
pr(0) forr < pr — Z Y, ne pr(0). This gives a set of p equations in 6 whose
n
i=1
solution gives an estimator for 6.

iid

* Maximum likelihood: For Y1,...,Y, ~ fy,(0) where 6 € RP, and Y =

(Y1,...,Y,) ~ fy(0) the likelihood function L(0) = fy (y,0) = H f(yi,0) and
i=1

the log-likelihood I(6) = log L(0) functions can be defined.

The value  such that L(9) > L() (or [(§) > 1(6)) V6 is the maximum likelihood

d21(0)

doz

estimator. From this, the observed information J(6) = —
information I(0) = E(J(0)) can be defined for later use.
Interval estimation

* IfYy,...,Y, i fyq (0) where 6 € RP, a confidence interval for 6 is a statistic in the

form of an interval that contains 6 with a given probability (called the confidence level of
the interval).

and expected / Fisher

* An interval of the form (L, U) is called bilateral and an interval of the form (—oo, U) or
(L, +00) is called unilateral.

*IfYy,...,Y, i Sy (0) where 0 € RP and 6 is an estimator of @ with V an estimator
of Var(6). Then V'*/2 is called a standard deviation of 6

Construction of an interval

* Using the CLT: If Y3,...,Y, kG fy,(0) where 6 € RP and if 0 is an esti-
mator of 6 with a standard deviation V*/2 with § ~ N(6,V), then (L,U) =
(é — Vl/zzlfaL s 6— Vl/zzau) is a confidence interval with approximate confi-
dence level 1 — ay, — ay.
For a bilateral interval we usually chose oy, = oy = /2 to have a symmetrical interval.
For a unilateral interval we chose o, = avy = « and replace the unwanted limit by +oo.

* Limit law of the MLE: If Y3,...,Y, s fy,(0) where 6 € RP and if
6 is the maximum likelihood estimator of 6, then under mild regularity conditions,

J(O)2(0 - 0) S Np(0, I,). We then use the method above.
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