Problem Sheet 12¹

Based on Chapters 10.2 and 10.3 in the course book. Introduction to Statistics.

Optional Revision Problems

Exercise 1. Let X and Y be positive random variables, not necessarily independent. Assume that the various expressions below exist. Write the most appropriate of \leq , \geq , =, or ? in the blank for each part (where "?" means that no relation holds in general).

1.
$$P(X + Y > 2) = \frac{E(X) + E(Y)}{2}$$

2.
$$P(X + Y > 3) \longrightarrow P(X > 3)$$

3.
$$E(\cos(X)) = \cos(E(X))$$

4.
$$E(X^{1/3}) = (E(X))^{1/3}$$

5.
$$E(X^c)$$
 ____ $(E(X))^c$ for some constant $c \in \mathbb{R}$

6.
$$E(E(X|Y) + E(Y|X)) = E(X) + E(Y)$$

Exercise 2. Let X and Y be i.i.d. positive random variables. Assume that the various expressions below exist. Write the most appropriate of \leq , \geq , =, or ? in the blank for each part (where "?" means that no relation holds in general).

1.
$$E(e^{X+Y}) = e^{2E(X)}$$

2.
$$E(X^2e^X) = \sqrt{E(X^4)E(e^{2X})}$$

3.
$$E(X|3X) = E(X|2X)$$

4.
$$E(X^7Y) = E(X^7)E(Y|X)$$

5.
$$E\left(\frac{X}{Y} + \frac{Y}{X}\right) = 2$$

6.
$$P(|X - Y| > 2) = \frac{Var(X)}{2}$$

¹Exercises are based on the coursebook Statistics 110: Probability by Joe Blitzstein

Week 12 Exercises

Exercise 3. Let U_1, U_2, \dots, U_{60} be i.i.d. Unif(0, 1) and $X = U_1 + U_2 + \dots + U_{60}$.

- 1. Which **important distribution** is the distribution of X very close to? Specify what the parameters are, and state which theorem justifies your choice.
- 2. Give a simple but accurate approximation for P(X > 17). Justify briefly.

Exercise 4. 1. Let $Y = e^X$, with $X \sim \text{Expo}(3)$. Find the mean and variance of Y.

2. For Y_1, \ldots, Y_n i.i.d. with the same distribution as Y from part 1., what is the approximate distribution of the sample mean $\bar{Y}_n = \frac{1}{n} \sum_{j=1}^n Y_j$ when n is large?

Exercise 5. Let X_1, X_2, \ldots be i.i.d. positive r.v.s. with mean μ , and let $W_n = \frac{X_1}{X_1 + \cdots + X_n}$.

1. Find $\mathbb{E}(W_n)$.

Hint: Consider

$$\frac{X_1}{X_1 + \dots + X_n} + \frac{X_2}{X_1 + \dots + X_n} + \dots + \frac{X_n}{X_1 + \dots + X_n}.$$

2. What random variable does nW_n converge to (with probability 1) as $n \to \infty$?

Exercise 6. Suppose that the random variables X_1 and X_2 have means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , with $\operatorname{corr}(X_1, X_2) = \rho$.

1. If a_1, a_2, b_1, b_2 are constants, prove that

$$Cov(a_1X_1 + a_2X_2, b_1X_1 + b_2X_2) = \sum_{i=1}^{2} \sum_{j=1}^{2} a_ib_jCov(X_i, X_j).$$

2. Prove the statement below, with or without using part 1.:

$$Var(a_1X_1 + a_2X_2) = a_1^2\sigma_1^2 + a_2^2\sigma_2^2 + 2a_1a_2\rho\sigma_1\sigma_2.$$

3. What is the distribution of $\overline{X}_1 - \overline{X}_2$, for two independent averages $\overline{X}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$ and $\overline{X}_2 = \frac{1}{n_2} \sum_{j=1}^{n_2} X_j$ for iid X_i , X_j ; satisfying

$$\overline{X}_1 \sim \mathcal{N}\left(\mu_1, \frac{\sigma_1^2}{n_1}\right), \quad \overline{X}_2 \sim \mathcal{N}\left(\mu_2, \frac{\sigma_2^2}{n_2}\right)?$$

Hint: Remember that the sum of two normally distributed random variables is still normally distributed.

For the rest of the exercise suppose that $n_1 = n_2 = n$, $\mu_1 = \mu_2 = \mu$, and $\sigma_1 = \sigma_2 = \sigma$.

4. Using the Chebyshev's inequality give a bound B as a function of n, that ensures that the probability of the sample difference $(\overline{X}_1 - \overline{X}_2)$ being further than B away from the true mean of the difference $(\mu - \mu = 0)$ is less than 0.05. That is, find B such that

$$P(|(\overline{X}_1 - \overline{X}_2)| > B) \le 0.05$$

5. Find the same B_N but instead using the Chebyshev's inequality, use the fact that $\overline{X}_1 - \overline{X}_2$ is normally distributed.

Hint: $\Phi(-1.96) \approx 0.025$

6. Which theorem/result would imply that the $\overline{X}_1 - \overline{X}_2$ is indeed normally distributed, without knowing anything about the distribution of the X_i , X_j -s