Définition

Exemple : lancer de deux dés. On s'intéresse à la somme obtenue plutôt qu'au fait de savoir si c'est le couple $\{1,6\},~\{2,5\},~\{3,4\},~\{5,2\}$ ou plutôt $\{6,1\}$ qui est apparu.

Après avoir effectué une expérience aléatoire, on s'intéresse davantage à une fonction du résultat qu'au résultat lui-même—c'est une variable aléatoire.

Définition: Soit Ω un ensemble fondamental. Une variable aléatoire définie sur Ω est une fonction de Ω dans $\mathbb R$ (ou dans un sous-ensemble $H\subseteq \mathbb R$) :

$$X: \Omega \longrightarrow \mathbb{R}$$

$$\omega \longrightarrow X(\omega),$$

où ω est un événement élémentaire.

L'ensemble H des valeurs prises par la variable aléatoire X peut être discret ou continu. Par exemple:

- Nombre de piles obtenus en n lancers d'une pièce : $H = \{0, 1, \dots, n\}$.
- Nombre d'appels téléphoniques pendant une journée : $H = \{0, 1, \ldots\}$.
- Temps d'attente au M1 : $H = [0, T_{max}]$.
- Quantité de pluie demain : $H = \mathbb{R}_+$.

Variables aléatoires discrètes

Définition: Une variable aléatoire X est dite **discrète** si elle prend un nombre fini ou dénombrable de valeurs. Dénotons x_i , i = 1, 2, ..., les valeurs possibles de X. Alors la fonction

$$f_X(x_i) = \Pr(X = x_i)$$

est appelée fonction de masse (ou fonction des fréquences). Le comportement d'une variable aléatoire discrète X est complètement décrit par

- les valeurs x_1, \ldots, x_k (k pas nécessairement fini) que X peut prendre;
- les probabilités correspondantes

$$f_X(x_1) = \Pr(X = x_1), \dots, f_X(x_k) = \Pr(X = x_k).$$

86

Fonction de masse

La fonction de masse f_X satisfait :

- $0 \le f_X(x_i) \le 1$, pour i = 1, 2, ...
- $f_X(x) = 0$, pour toutes les autres valeurs de x.
- $\sum_{i=1}^{k} f_X(x_i) = 1.$

Exemple On lance deux dés équilibrés. Trouver :

(a) la fonction de masse de la somme; (b) la fonction de masse du maximum.

Solution (a)

85

87

88

Solution (b)

Fonction de répartition (cas discret ou continu)

Définition: La fonction de répartition F_X de la variable aléatoire (générale) X est

$$F_X(x)=\Pr(X\leq x),\quad x\in\mathbb{R}.$$

Elle a les propriétés suivantes :

- F_X prend des valeurs dans [0, 1]
- lacksquare F_X est continue à droite et monotone non décroissante, avec

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1$$

- $\Pr(a < X \le b) = F_X(b) F_X(a)$
- $Pr(X > x) = 1 F_X(x)$
- si X est discrète, alors

$$F_X(x) = \sum_{\{i: \ x_i \leq x\}} \Pr(X = x_i), x \in \mathbb{R}.$$

et (sauf certains cas pathologiques) F_X est une fonction en escalier avec des sauts de taille $f_X(x_i)$ en x_i

Exemple Donner la fonction de répartition pour le maximum des résultats de deux dés.

89

Solution			

Quelques notations (cas discret ou continu)

Par la suite, nous utilisons les notations suivantes :

- Les variables aléatoires sont notées en majuscules (X, Y, Z, W, T, \ldots) .
- Les valeurs possibles des variables aléatoires sont notées en minuscules $(x, y, z, w, t, ... \in \mathbb{R})$.
- La fonction de répartition d'une variable aléatoire X est notée F_X .
- La fonction de masse (ou de densité dans le cas continu, cf plus loin) d'une variable aléatoire X est notée f_X.
- Ces dernières sont notées F ou f s'il n'y pas de risque de confusion.
- X ~ F signifie "la variable aléatoire X suit la loi F, i.e., admet F pour fonction de répartition".
- $X \stackrel{\text{app}}{\sim} F$ signifie "la variable aléatoire X suit approximativement la loi F".

91

Loi de Bernoulli

Définition: Une variable aléatoire de Bernoulli satisfait

$$X = \left\{ egin{array}{ll} x_1 = 0 & ext{si \'echec} & ext{probabilit\'e} \ 1 - p, \ x_2 = 1 & ext{si succ\`es} & ext{probabilit\'e} \ p; \end{array}
ight.$$

on écrit $X \sim \mathcal{B}(p)$. Sa loi de probabilité est donc

où p est la probabilité de succès.

Exemple du lancer d'une pièce de monnaie avec probabilité p fixée d'obtenir "Pile".

Loi binomiale

Définition: On effectue m fois indépendamment une expérience qui mène soit à un succès (avec probabilité p) soit à un échec (avec probabilité 1-p). Soit X le nombre de succès obtenus. Alors on écrit $X \sim \mathcal{B}(m,p)$, et

$$f_X(x) = \binom{m}{x} p^x (1-p)^{m-x}, \qquad x = 0, \dots, m.$$

Ceci est la **loi binomiale** avec nombre d'essais m et probabilité p. Dans le cas m=1, X est une variable de Bernoulli. m s'appelle **dénominateur** et p **probabilité de succès**.

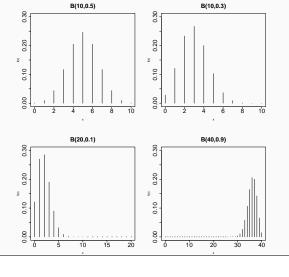
Exemple : m lancers indépendants d'une pièce de monnaie avec $\Pr(\text{``Pile''}) = p$ fixée

Exemple Trouver la loi du nombre X de personnes présentes à ce cours ayant leur anniversaire ce mois-ci.

93

95

Fonctions de masse binomiale



Solution Exemple 94

94

92

96

Variable aléatoire de Poisson

Définition: Une variable aléatoire X pouvant prendre pour valeurs $0, 1, 2, \ldots$ est dite de **Poisson** avec paramètre $\lambda > 0$ si

$$f_X(x) = \frac{\lambda^x}{x!}e^{-\lambda}, \quad x \in \{0, 1, 2, \ldots\}, \quad \lambda > 0.$$

On écrit $X \sim \mathsf{Poiss}(\lambda)$. λ représnte la "moyenne" (l'espérance, cf. plus tard)

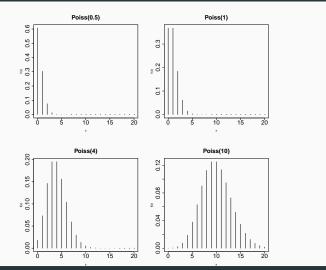
Applications:

- nombre d'appels téléphoniques par minute dans une centrale téléphonique
- nombre de fautes de frappe dans les notes de cours
- nombre d'avalanches mortelles en Suisse cet hiver

Exemple : E. coli Le niveau residuel des bactéries E. coli dans l'eau traitée est de 2/100 ml, en moyenne. (a) Trouver la probabilité qu'il y ait k=0,1,2,3présent dans un échantillon de 200 ml d'eau.

(b) Si on en trouve 10 dans un tel échantillon, l'eau est-elle bonne?

Fonctions de masse Poisson



Approximation poissonienne de la loi binomiale

Soit $X \sim \mathcal{B}(m,p)$ avec m grand et p petit. Alors

$$X \stackrel{\text{app}}{\sim} \text{Poiss}(\lambda = mp).$$

Ceci s'appelle parfois la loi des petits nombres.

Solution Exemple

99

101

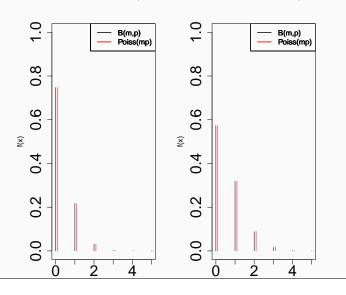
97

Exemple D'après IS-Academia, vous êtes *m* étudiant(e)s.

Soit X le nombre de personnes parmi vous dont l'anniversaire a lieu aujourd'hui. Calculer les probabilités que $X=0,\ X=1,\ {\rm et}\ X>1,\ {\rm sous}$ la loi binomiale et son approximation poissonienne. 100

m = 106, p = 1/365

$$m = 203, p = 1/365$$



Variables aléatoires continues

Définition: On dit qu'une variable aléatoire X est **continue** s'il existe une fonction $f_X:\mathbb{R} \to [0,\infty)$ appelée fonction de densité telle que

$$\Pr(X \in A) = \int_A f_X(u) du,$$

où $A\subseteq\mathbb{R}$ est un ensemble 'raisonnable'. Par exemple, pour A=(a,b],

$$\Pr(X \in A) = \Pr(a < X \le b) = \int_a^b f_X(x) dx.$$

 f_X n'est pas une probabilité, mais une limite

$$f_X(x) = \lim_{h \to 0} \frac{1}{2h} \Pr(x - h \le X \le x + h)$$

Une variable continue peut prendre une infinité des valeurs, souvent dans un intervalle (borné, demi-droite, ou tout \mathbb{R}).

102

98