Expériences aléatoires

La théorie des probabilités permet de décrire et modéliser les phénomènes aléatoires.

Les actions qui mènent à des résultats aléatoires sont appellées des expériences aléatoires. Plus précisément, une expérience est dite aléatoire s'il est impossible de prévoir son résultat. En principe, on admet qu'une expérience aléatoire peut être répétée (indéfiniment) dans des conditions identiques; son résultat peut donc varier d'une réalisation à l'autre.

Exemples:

- lancer d'un dé ou d'une pièce de monnaie;
- tirage d'une carte.

2.1. Probabilité d'événements

61

65

Modèles probabilistes d'une expérience aléatoire

- Ensemble fondamental Ω : tous les résultats possibles
- Événement élémentaire $\omega \in \Omega$: un résultat possible.
- Événement : un sous-ensemble (raisonnable) $A \subseteq \Omega$. Un événement peut réunir plusieurs événements élémentaires.
- On dit qu'un événement est **réalisé** si le résultat de l'expérience aléatoire (événement élémentaire) appartient à cet événement.

Exemple Lancer d'une pièce de monnaie :

$$\Omega = \{P, F\}.$$

 $A = \{P\} =$ "Pile" est un événement (élémentaire) **Exemple** Lancer d'un dé :

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

A = "obtenir 1" = {1} est un événement (élémentaire).

B = "obtenir un chiffre pair" = {2,4,6} est un événement (composé).

Diagramme de Venn et opérations entre événements

- $A \cup B = B \cup A$ union
- Ø ensemble vide
- $A \cap B = B \cap A$ intersection
- $A = \{2, 4, 6\}$ (pair)
- A^c complémentaire
- $B = \{2, 3, 5\}$ (premier)
- $A \setminus B = A \cap B^c$ différence; $A \setminus B \neq B \setminus A$

64

62

Fonction de probabilité

Définition: Les événements A et B sont **disjoints** si $A \cap B = \emptyset$.

Événements A_1, A_2, \dots, A_n sont disjoints si $A_i \cap A_i = \emptyset$ quand $i \neq j$.

Définition: Une fonction de probabilité, notée ici Pr, est une fonction telle que

- $0 \le \Pr(A) \le 1$ pour tout événement A;
- $Pr(\Omega) = 1$, (événement certain);
- Si A_1, \ldots, A_n est une collection disjointe d'événements, alors

$$\Pr\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \Pr(A_i)$$

De même pour une collection infinie dénombrable A_1, A_2, \ldots

Propriétés d'une fonction de probabilité

- $Pr(\emptyset) = 0$, (événement impossible);
- $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$;
- $Pr(A^c) = 1 Pr(A)$, (événement complémentaire de A);
- $A \subseteq B \Rightarrow \Pr(A) \leq \Pr(B)$.

Exemple Deux lancers d'une pièce de monnaie :

$$\Omega = \{PP, PF, FP, FF\}.$$

- (a) Expliciter les événements A = "au moins un P", B = "au moins un F", $A \cap B$,
- (b) Trouver les probabilités correspondantes si

$$\Pr\bigl(\{PP\}\bigr) = \dots = \Pr\bigl(\{FF\}\bigr) = 1/4.$$

66

) Solution (diapositive Evénements élémentaires équiprobables Sous l'hypothèse d'équiprobabilité des événements élémentaires, pour tout événement A de Ω , nombre d'événements élémentaires dans A Pr(A) =nombre total d'événements élémentaires dans Ω nombre de cas favorables à Anombre total de cas possibles Exemple Lancer d'un dé. Supposons que les six faces ont les mêmes chances d'apparaître (événements élémentaires équiprobables). Alors $\Pr(\{1\}) = \Pr(\{2\}) = \dots = \Pr(\{6\}) = \frac{1}{6},$ et $\Pr(\text{``obtenir un nombre pair''}) = \Pr(\{2,4,6\}) = \Pr(\{2\}) + \Pr(\{4\}) + \Pr(\{6\})$ $=\frac{3}{6}=\frac{1}{2}$. **Exemple** Lancers de deux dés. Trouver Pr("la somme des faces vaut 7"). 67 68 Solution (diapositive) Probabilité conditionnelle et indépendance La probabilité que l'événement A se réalise peut être influencée par la réalisation d'un autre événement B. Pour formaliser cette idée, on introduit les concepts de probabilité conditionnelle et d'indépendance : **Définition:** La **probabilité conditionnelle** de *A* sachant que *B* s'est réalisé est définie par $\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}, \text{ si } \Pr(B) > 0.$ **Définition:** Deux événements A et B sont dits **indépendants** si $\Pr(A \cap B) = \Pr(A) \times \Pr(B).$ **Intuition :** si Pr(B) > 0, c'est équivalent à $Pr(A \mid B) = Pr(A).$ 69 70 Solution diapositive **Exemples** Exemple Deux lancers d'une pièce de monnaie. Trouver la probabilité d'obtenir pile au 2ème lancer sachant qu'on a obtenu pile au 1er lancer. **Exemple** Lancer d'un dé Les événements $A = \{2,4\}$ et $B = \{2,4,6\}$ sont-ils indépendants? Ne pas confondre indépendance et incompatibilité (A et B disjoints)! Soient A, B disjoints tels que Pr(A), Pr(B) > 0. On a $\Pr(A \cap B) = \Pr(\emptyset) = 0$, mais $\Pr(A) \times \Pr(B) \neq 0$, donc A et B sont dépendants. Donc $A \cap B = \emptyset \Rightarrow A$ et B dépendants, et ainsi, A et B indépendants $\Rightarrow A \cap B \neq \emptyset$. Par ailleurs $A \cap B \neq \emptyset \Rightarrow A$ et B indépendants. 71 72

Solution diapositive 71	Indépendance : généralisation
	Définition: Les événements A_1, \ldots, A_n sont indépendants si, pour tout sous-ensemble d'indices $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, on a
	$\Pr\left(igcap_{j=1}^k A_{i_j} ight) = \prod_{j=1}^k \Pr(A_{i_j}).$
	Exemple Un système de <i>n</i> composants est appelé système en parallèle s'il fonctionne dès qu'au moins un de ses composants fonctionne. Un système en série fonctionne si et seulement si tous ses composants fonctionnent.
	(a) Si le i ème composant fonctionne indépendamment de tous les autres et avec une probabilité $p_i,\ i=1,\ldots,n,$ quelle est la probabilité de fonctionnement d'un système en parallèle ?
	(b) Même question pour un système en série.
	(c) Même question pour un système composé .
73	74
Solution diapositive 74	Formule des probabilités totales
	Définition: Soit A un événement quelconque de Ω , et $\{B_i\}_{i=1,,n}$ une partition de Ω , c'est-à-dire,
	$B_i\cap B_j=\emptyset, i eq j, \qquad igcup_{i=1}^n B_i=\Omega.$
	La formule des probabilités totales
	$\Pr(A) = \sum_{i=1}^n \Pr(A \cap B_i) = \sum_{i=1}^n \Pr(A \mid B_i) \Pr(B_i).$
	Elle est également valide pour une partition infinie dénombrable.
	Exemple Trois machines M_1 , M_2 et M_3 fabriquent des pièces dans les proportions respectives 25%, 35% et 40%. On sait que respectivement 5%, 4% et 2% des pièces produites par M_1 , M_2 et M_3 sont défectueuses. On choisit une pièce aléatoirement. Calculer $\Pr(\text{``la pièce est défectueuse''}).$
75	76
Formule des probabilités totales : diagramme de Venn	Solution diapositive 76
	Définissons les événements : $D=$ "la pièce est défectueuse" et pour $i=1,2,3,\ A_i=$ "la pièce a été fabriquée par M_i ".
77	78

Théorème de Bayes

Théorème de Bayes Soient $A\subseteq\Omega$ et $\{B_i\}_{i=1,\dots,n}$ une partition (éventuellement infinie dénombrable) de Ω . Si $\Pr(A)>0$ alors on a, pour tout $i=1,\dots,n$,

$$\Pr(B_i \mid A) = \frac{\Pr(B_i \cap A)}{\Pr(A)} = \frac{\Pr(A \mid B_i)\Pr(B_i)}{\sum_{j=1}^n \Pr(A \mid B_j)\Pr(B_j)}.$$

■ La formule de Bayes est très simple mais très utile, car elle permet une 'inversion du point de vue' dont on a souvent besoin en pratique.

Exemple Pour dépister une maladie, on applique un test. Si la maladie est présente, le test le découvre avec probabilité 0.99. Si la personne est saine, le test le trouve malade avec probabilité 0.02. Sachant qu'en moyenne un patient sur 1000 est atteint de la maladie, calculer la probabilité qu'un patient soit atteint sachant que son test a été positif. Comment améliorer ce resultat?

Solution exemple Bayes

Soit M l'événement "le patient est atteint de la maladie", M^c l'événement complémentaire, et A l'événement "le résultat du test est positif".

Types d'indépendance

Les événements A_1,\ldots,A_n sont **indépendants** si pour tout ensemble fini d'indices $F\subseteq\{1,\ldots,n\}$ qui est non-vide, on a

$$\Pr\left(\bigcap_{i\in F}A_i\right)=\prod_{i\in F}\Pr(A_i).$$

Définition: Les événements A_1, \ldots, A_n sont **conditionnellement indépendants sachant** B si pour tout ensemble fini d'indices $F \subseteq \{1, \ldots, n\}$ qui est non-vide, on a

$$\Pr\left(\bigcap_{i\in F}A_i\mid B\right)=\prod_{i\in F}\Pr(A_i\mid B).$$

Exemples : indépendance conditionnelle

Exemple Une année donnée, la probabilité qu'un conducteur fasse une déclaration de sinistre à son assurance est μ , indépendamment des autres années. La probabilité pour une conductrice est de $\lambda < \mu$. Un assureur a le même nombre de conducteurs que de conductrices, et sélectionne une personne au hasard.

80

- (a) Donner la probabilité que la personne déclare un sinistre cette année
- (b) Donner la probabilité que la personne déclare des sinistres durant 2 années consécutives
- (c) Si la compagnie sélectionne au hasard une personne ayant fait une déclaration, quelle est la probabilité que cette personne fasse une déclaration l'année suivante?
- (d) Montrer que la connaissance qu'une déclaration de sinistre ait été faite une année augmente la probabilité de déclarer un autre l'année suivante 82

Solution 82

2.2 Variables aléatoires

81