GC - Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=14271

Cours 'Minime'

Resumé du semestre

Principe fondamental de dénombrement généralisé (PFDG)

- Si r expériences doivent être réalisées et sont telles que :
 - la première peut produire l'un quelconque de n₁ résultats,
 - si pour *chacun d'entre eux* il y a n_2 résultats possibles pour la deuxième expérience,
 - si pour chaque résultat des deux premières expériences
 il y a n₃ résultats possibles pour la troisième expérience,
 - et ainsi de suite . . .
- Il y aura alors un total de $n_1 \times n_2 \times \cdots \times n_r$ résultats possibles pour les r expériences prises ensemble.

Permutations : arrangements ordonnés

- Un arrangement ordonné d'objets est appelé une permutation
- **Exemple :** Combien existe-t-il d'arrangements ordonnés des lettres *a*, *b* et *c* ?
- **L** Énumération directe : faire la liste de toutes les possibilités, puis compter
- 2 Principe fondamental :
 - la première lettre de la permutation peut être n'importe laquelle des 3,
 - la deuxième peut ensuite être choisie parmi les 2 restantes.
 - tandis que la troisième ne peut plus faire l'objet d'aucun choix (c.-à-d. 1 'choix')
- En utilisant le *principe fondamental généralisé*, on a que : le nombre de permutations de *n objets discernables* est n! $(n \text{ factorielle} = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1)$

Permutations: objets partiellement indiscernables

Exemple 2.4 Combien d'arrangements différents peut-on former avec les letters E R R E U R?

Solution

- D'abord, comptons le nombre de permutations quand les 3 R
 - et les 2 E sont distincts $(E_1R_1R_2E_2UR_3) =$ _____
- Cependant, considérons l'une quelconque des permutations, p. ex. E₁R₁E₂R₂UR₃. Si nous permutions les R entre eux et les E entre eux, l'arrangement résultant serait toujours de la même forme, soit : ERERUR
 - Il existe combien de permutations des *R* et des *E* : _____
 - Donc, combien de permutations (le total) : = _____
- Le nombre de permutations de n objets, parmi lesquels n_1 sont indiscernables entre eux, n_2 sont indiscernables entre eux,

..., n_r sont indiscernables entre eux :

$$\frac{n!}{n_1! n_2! \cdots n_r!} \rightarrow \mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$$

Combinaisons : séléction sans ordre

■ Ensuite, déterminons le nombre de groups de *r* objets qu'il est possible de former sans répétition à partir d'un total de *n* objets (quand *l'ordre des objets n'est pas significatif*)

Exemple 2.5 Combien de groupes de 3 batons peut-on construire en tirant parmi 5 souris (A, B, C, D, E)?

Solution) On utilise le raisonnement suivant :

Puisqu'il y a _____ façons de choisir le premier batons, puis _____ de choisir ensuite le deuxième et finalement _____ de choisir le dernier, il y a donc ______ en tenant compte de l'ordre dans lequel ces batons sont choisis.

Cependent, un triplé donné, p. ex. le triplé constitué des batons A,

B, D, apparaîtra _____ fois.

Donc, le nombre total de groupes pouvant être formés est

Coefficients binomiaux et multinomiaux

■ L'expression $\binom{n}{r}$ $\binom{r \ parmi \ n}{r}$ pour $r \le n$, le coefficient

binomial, est définie par : $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

- Tout sous-ensemble de r objets choisis sans répétition dans un ensemble en contenant n est appelé combinaison de r objets pris parmi n
- Le nombre $\binom{n}{r}$ est le nombre de combinaisons de r objets pris parmi n si l'ordre des objets est sans importance
- En utilisant *le principe fondamental généralisé*, on déduit que le nombre de répartitions possibles de n objets en r groupes distincts de tailles respectives n_1, n_2, \ldots, n_r est le **coefficient**

multinomial:
$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! \ n_2! \cdots n_r!}$$

Ensemble fondamental

- Considérons une 'expérience' dont l'issue n'est pas prévisible –
 p. ex., je lance un dé équilibré
- Bien que *l'issue de l'expérience* ne soit pas connue d'avance, admettons que *l'ensemble des issues possibles* est connu
- Cet ensemble des issues possibles de l'expérience est appelé l'ensemble fondamental de l'expérience, noté S (ou Ω dans quelques livres)
- L'ensemble fondamental pourrait être discret ou continu

Événements

- Tout sous-ensemble $E \subset S$ est appelé un **événement**
- Pour toute paire d'événements E et F, le nouvel événement E∪F (l'union de E et F) contient chaque élément se trouvant dans E, dans F OU dans les deux à la fois
- De même pour toute paire d'événements E et F, le nouvel événement E ∩ F (l'intersection de E et F) est défini comme l'ensemble des réalisations qui sont à la fois dans E ET dans F
 - Si $E \cap F = \emptyset$ (l'événement vide), alors E et F sont dits mutuellement exclusifs (ME)
- Le nouvel événement E^c , le **complément** de E, contient tous les éléments de S *qui* **ne sont pas** *dans* E

La probabilité

■ Théorie fréquenciste des probabilités : $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$

Axiomes de probabilité

- 1 $0 \le P(E) \le 1$
- P(S) = 1
- 3 Pour chaque séquence d'événements mutuellement exclusifs $E_1, E_2, \ldots, P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$.
- Événements élémentaires équiprobables : il y a un nombre fini d'éléments élémentaires de l'ensemble fondamental à la même

probabilité d'apparaître :
$$P(E) = \frac{\text{nombre de points dans } E}{\text{nombre de points dans } S}$$

Probabilité conditionnelle et P(E et F)

On considère la définition de la probabilité conditionnelle :

$$P(E \mid F) = \frac{P(E \text{ et } F)}{P(F)}$$

On a également :

$$P(F \mid E) = \frac{P(E \text{ et } F)}{P(E)}$$

■ Donc on a **deux façons** d'exprimer P(E et F) :

1
$$P(E \text{ et } F) = P(F)P(E | F)$$

2
$$P(E \text{ et } F) = P(E)P(F \mid E)$$

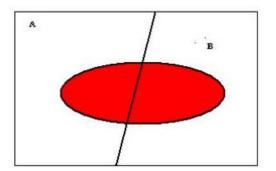
■ Ceci pourrait être généralisé :

■
$$P(E_1 \text{ et } E_2 \text{ et } \dots \text{ et } E_n)$$

= $P(E_1) \times P(E_2 \mid E_1) \times P(E_3 \mid E_1, E_2)$
 $\times \dots \times P(E_n \mid E_1, E_2, \dots, E_{n-1})$

Partition

- Une **partition** (cloison) divise l'ensemble fondamental en des *sous-ensembles disjoints* :
 - sans trou (en anglais 'no gaps')
 - sans superflue (en anglais 'no overlaps')

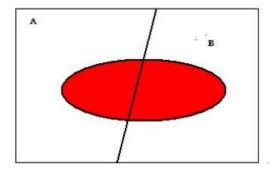


Formule des probabilités totales

 Soit A, B une partition de l'ensemble fondamental et soit R un événement; alors,

$$P(R) = P(R \text{ et } A) + P(R \text{ et } B)$$
$$= P(R \mid A)P(A) + P(R \mid B)P(B)$$

■ La partition pourrait être composée de plus que deux événements / sous-ensembles



Formule de Bayes

■ Pour une partition $F_1, F_2, ..., F_n$ de l'espace fondamental S:

$$\frac{P(F_j \mid E)}{P(E)} = \frac{P(E \text{ et } F_j)}{P(E)}$$

$$= \frac{P(E \mid F_j)P(F_j)}{\sum_{i=1}^n P(E \mid F_i)P(F_i)}$$

$$= \frac{P(E \mid F_j)P(F_j)}{P(E \mid F_1)P(F_1) + P(E \mid F_2)P(F_2) + \dots + P(E \mid F_n)P(F_n)}$$

 La formule de Bayes utilise les deux expressions pour P(E et F)

Indépendance

- En générale, $P(E | F) \neq P(E)$; c.-à-d., le fait de savoir que F est survenu *influe sur* la **probabilité de** E
- Dans le cas particulier où $P(E \mid F) = P(E)$, on dit que les événements E et F sont indépendants
- Les événements sont indépendants lorsque le fait de savoir que l'un est survenu ne modifie pas la probabilité que l'autre se produit
- Pour les événements indépendants (mais PAS en général!),

$$P(E \text{ et } F) = P(E) \times P(F)$$

 Deux événements sont dépendants s'ils ne sont pas indépendants

Epreuves (aléatoires)

- Il arrive parfois que l'expérience étudiée consiste à effectuer une suite d'expériences partielles – p. ex. plusieurs lancements d'une pièce
- Il est peut-être raisonnable d'admettre que l'issue de tout groupe d'expériences partielles sont totalement indépendantes
 encore, lancements d'une pièce
- Si toutes ces expériences partielles sont identiques (le même ensemble fondamental, la même fonction de probabilité), elles sont appelées épreuves

VAs discrètes

- Variable Aléatoire (VA) : une fonction réelle définie sur l'ensemble fondamental
 - VA : MAJUSCULES ; valeur spécifique : miniscules
- VA discrète :
 - 1 loi de probabilité : p(x) = P(X = x)
 - 2 fonction de répartition : $F(x) = P(X \le x) = \sum_{i \le x} p(i)$
- Resolution des problèmes avec VAs
 - 1 Identifier la VA
 - 2 Déterminer la *distribution* (loi) de la VA
 - 3 Traduire la question
 - 4 Répondre à la question

Espérance (VA discrète)

■ Pour une VA discrète X de loi p(x), on définit l'espérance (ou la moyenne) par :

$$E[X] = \sum_{\substack{\text{toutes} \\ \text{valeurs } x}} x p(x)$$

- Donc c'est la moyenne pondérée des valeurs possibles de X, où les poids sont P(X = x)
- C'est également possible à calculer l'espérance d'une fonction de la VA (discrète) X (disons g(X)) dans la même manière
- **g**(X) elle aussi est une VA discrète, donc pour calculer E[g(X)] il suffira de trouver sa loi (distribution) p(g(x))
- On devrait pouvoir déduire la distribution de celle de X

■ **Théorème**: Si X est une VA discrète pouvant prendre ses valeurs parmi les valeurs x_i , $i \ge 1$, avec des probabilités respectives $p(x_i)$, alors pour toute fonction réelle g on a

$$E[g(X)] = \sum_{i} g(x_i) p(x_i)$$

■ Pour toute paire (a, b) de constantes, E[aX + b] = aE[X] + b

Variance et écart-type

- Comme on s'attend à voir toute variable X prendre ses valeurs autour de son espérance E[X], il paraît raisonnable de mesurer les variations en considérant l'écart moyen entre X et E[X], $E[|X \mu|]$, où $\mu = E[X]$
- Il est plus facile techniquement (en maths) de considerer le moyen du carré de l'écart entre X et sa espérance E[X]
- Pour la VA X avec espérance μ , on définit la variance de X :

$$Var(X) = E[(X - \mu)^2]$$

• On peut établir une *formule alternative* pour le calcul de Var(X) (plus commode dans la pratique) :

$$Var(X) = E[X^2] - (E[X])^2$$

L'écart-type de X (σ) est la racine carré de Var(X) :

$$\sigma = \sqrt{Var(X)}$$

Variance d'une fonction linéaire d'une VA X

■ Pour toute paire (a, b) de constantes,

$$Var(aX + b) = a^2 Var(X)$$

■ Facile à démontrer :

$$Var(aX + b) = E[(aX + b) - E(aX + b)]^{2}$$

$$= E[aX + b - (aE[X] + b)]^{2}$$

$$= E[aX - aE[X]]^{2}$$

$$= E[a^{2}(X - E[X])^{2}]]$$

$$= a^{2}E[(X - \mu)^{2}]$$

$$= a^{2}Var(X)$$

■ Donc pour une fonction linéaire de X, on a :

$$SD(aX + b) = |a| SD(X)$$

■ ('SD' = 'écart-type' = 'standard deviation' en anglais)

VA de Bernoulli

- Une VA de *Bernoulli* prend les valeurs 0 et 1
- Sa loi de probabilité est :

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline p(x) & (1-p) & p \end{array}$$

- Utilisée dans la modelisation des problèmes ayant 2 résultats possibles : pile/face ; oui/non ; succès/échec ; etc.
- Pour une VA de Bernoulli X :

■
$$E(X) = 0 \times (1 - p) + 1 \times p = p$$

■
$$Var(X) = E[X^2] - (E[X])^2$$

= $[0^2 \times (1-p) + 1^2 \times p] - p^2 = p - p^2 = \mathbf{p}(1-\mathbf{p})$

VA binomiale et VA de Poisson

binomiale : $X \sim Bin(n, p)$

- échantillonage AVEC remise
 - $\mathbf{1}$ nombre fixe n
 - 2 épreuves de Bernoulli
 - 3 épreuves indépendantes
 - 4 chacune a la même probabilité p de 'succès'

■ loi:
$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
; $x = 0, 1, ..., n$

$$E[X] = np, Var(X) = np(1-p)$$

Poisson : $X \sim Pois(\lambda)$

- approximation de la loi binomiale pour n grand, p petit,
 np (= λ) moyen
- loi : $p(i) = e^{-\lambda} \lambda^i / i!$; i = 0, 1, 2, ...
- $\blacksquare E[X] = \lambda, Var(X) = \lambda$

VAs continues

■ VA continue : densité de probabilité :

$$P(X \in B) = \int_B f(x) dx$$

■ $f(x) \ge 0$ pour chaque x

■ VA continue : fonction de répartition :

$$F(x) = P(X \le x) = \int_0^x f(u) du$$

$$F(-\infty) = 0$$

$$F(\infty) = 1$$

Relation entre densité et répartition

La relation entre la fonction de répartition F et la densité f d'une VA continue X est donnée par

$$F(a) = P(X \in (-\infty, a]) = \int_{-\infty}^{a} f(x) dx$$

 La dérivation des deux membres dans l'équation ci-dessus donne

$$\frac{d}{da}F(a) = f(a)$$

 c.-à-d., la densité d'une VA continue est la dérivée de la fonction de répartition

Espérance, variance d'une VA continue

■ Si X est une VA *continue* ayant pour densité f(x), la définition analogue de **l'espérance** de X est simplement :

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

- Pour toute fonction réelle g, $E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
- Facile de montrer que pour toute paire a et b de constantes,

$$E[aX + b] = aE[X] + b$$

- La variance d'une VA continue est définie exactement comme celle d'un VA discrète : $Var(X) = E[(X E[X])^2]$
- On a aussi l'autre formule : $Var(X) = E[X^2] (E[X])^2$
- Pour les constantes a et b, on a $Var[aX + b] = a^2 Var(X)$

VA uniforme et VA normale

Uniforme:

- densité : $\frac{1}{\beta \alpha}$, $\alpha < x < \beta$ (= 0 sinon)
- $E[X] = \frac{\beta + \alpha}{2}, \ Var(X) = \frac{(\beta \alpha)^2}{12}$

Normale:

- densité : $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \quad -\infty < x < \infty$
- $\blacksquare E[X] = \mu, Var(X) = \sigma^2$

Distribution de Y = aX + b

Une propriété importante de la famille des variables normales (ce qui NE TIENT PAS pour toutes VAs) est que :

$$si X \sim N(\mu, \sigma^2)$$
, alors $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$

- Pour démontrer ce résultat, on peut trouver la fonction de répartition F de la VA Y = aX + b; $X \sim N(\mu, \sigma^2)$, et a, b constantes
- La dérivation de *F* donne la densité de *Y*, qui est de la forme d'une densité normale

VA normale centrée réduite

- L'application la plus utile du résultat précédent consiste à déterminer les probabilités des VAs normalement distribuées
- Si $X \sim N(\mu, \sigma^2)$, la VA $Z = (X \mu)/\sigma \sim N(0, 1)$
- La distribution de Z est normale centrée réduite (ou standard)
- On note la fonction de densité f(z) d'une variable normale centrée réduite par le symbole ϕ , et la fonction de répartion par Φ :

$$\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-z^2/2} dz$$

 Cette intégrale n'a pas de forme simple, donc on utilise un table des valeurs calculées (ou un logiciel) pour trouver l'aire sous la courbe

Résoudre les problèmes en utilisant la table normale

- Étapes à suivre pour résoudre les problèmes impliquant VAs normalement distribuées (c.-à-d. étape 4 : "Répondre à la question" pour $X \sim N(\mu, \sigma^2)$) :
- 1 Centrer et Réduire ('standardiser') la VA
- 2 ** DESSINER L'IMAGE **
- 3 Utiliser la table normale afin de trouver la probabilité
- (Faire le calcul)

L'approximation normale d'une VA binomiale

- Il s'avère que si n est suffisament $grand^*$, $S_n \sim Bin(n,p)$ est approximativement normalement distribuée, ayant la même moyenne et la même variance que la VA binomiale
- Théorème limite de DeMoivre-Laplace Soit S_n le nombre de 'succès' lors de la réalisation de népreuves indépendantes, la probabilité de réussite pour chaque épreuve étant p. Alors pour tout a < b,

$$P\left\{a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right\} \to \Phi(b) - \Phi(a) \quad \text{lorsque } n \to \infty$$

 C.-à-d. la distribution d'une VA binomiale standardisée converge vers la distribution normale standard lorsque le nombre d'épreuves n → ∞

*
$$np \ge 10$$
 et $n(1-p) \ge 10$

Fonction de répartition conjointe

- On n'a traité jusqu'ici que des distributions de VAs isolées
- Dans la pratique, il est souvent nécessaire de considérer des événements relatifs à deux (ou même plus) variables simultanément
- Pour traiter de tels problèmes on définit une fonction F de répartition simultanée (ou conjointe) pour toute paire de VAs X et Y :

$$F(a,b) = P(X \le a, Y \le b)$$
 $-\infty < a, b < \infty$

■ Tout comme avant, en sachant la fonction de répartion des ensembles de VAs (également la loi ou la densité), on pourrait répondre aux questions concernant les probabilités

Densité conjointe

■ Les VAs X et Y sont dites conjointement continues s'il existe une fonction f(x, y) pour toute paire x et y réels ayant pour tout sous-ensemble C du plan

$$P((X,Y) \in C) = \int \int_{(x,y) \in C} f(x,y) \, dx \, dy$$

- La fonction f(x,y) est appelée densité conjointe ou simultanée de X et Y (également pdf)
- Notons par A et B deux ensembles de nombres réels. $C = \{(x, y) : x \in A, y \in B\}$; on a :

$$P(X \in A, Y \in B) = \int_{B} \int_{A} f(x, y) dx dy$$

La fonction de densité conjointe peut être obtenue à partir de la fonction de répartition conjointe :

$$f(a,b) = \frac{\partial^2}{\partial a \partial b} F(a,b)$$

(pour autant que les dérivées partielles soient définies)

Densité marginale

- Si X et Y sont des VAs conjointement continues, elles sont également *individuellement continues*
- On obtient la densité marginale de chaque VA ainsi :

$$P(X \in A) = P(X \in A, Y \in (-\infty, \infty))$$

$$= \int_{A} \left[\int_{-\infty}^{\infty} f(x, y) \, \underline{dy} \right] dx = \int_{A} f_{X}(x) \, dx,$$

où $f_X(x) = \int_{-\infty}^{\infty} f(x, y) \underline{dy}$ est la densité (marginale) de X

 On obtient de même l'expression de la densité (marginale) de Y :

$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx$$

Variables aléatoires indépendantes – Pratique

Théorème: Les VAs X et Y sont indépendantes si et seulement si la loi conjointe (VAs discrètes) ou la densité conjointe (VAs continues) se factorise :

$$p_{X,Y}(x,y) = g(x) h(y)$$
 pour tout x et tout y ;
 $f_{X,Y}(x,y) = g(x) h(y)$, $-\infty < x < \infty, -\infty < y < \infty$

■ En général, les VAs $X_1, X_2, ..., X_n$ sont dites **indépendantes** si pour tout choix de n ensembles de nombres réels $A_1, A_2, ..., A_n$,

$$P(X_1 \in A_1, X_2 \in A_2, \dots, X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i)$$

Distribution de la somme des VAs normales indépendantes

Pour VAs X_1, \ldots, X_n :

$$E[X_1 + \dots + X_n] = E[X_1] + \dots + E[X_n]$$

■ Pour VAs $X_1, ..., X_n$ indépendantes :

$$Var[X_1 + \cdots + X_n] = Var[X_1] + \cdots + Var[X_n]$$

- Théorème : Soient $X_1, ..., X_n$ les variables aléatoires indépendantes normales de paramètres $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, ..., n
- Alors,

$$\sum_{i=1}^{n} X_i \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Théorème Central Limite (TCL)

Le **Théorème Central Limite (TCL)** est l'un des *résultats les plus importants* de la probabilité et la statistique, et est largement utilisé comme un *outil* pour la résolution de problèmes.

Théorème (TCL) : Soient X_1, X_2, \ldots des variables aléatoires indépendantes et identiquement distribués (iid), et telles que $E[X_i] = \mu$ et $Var(X_i) = \sigma^2 < \infty$ existent. Alors, la distribution de

$$\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}$$

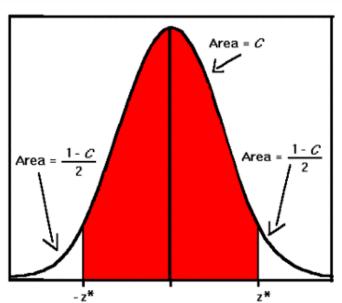
se rapproche d'une distribution normale lorsque $n \to \infty$.

C.-à-d. : Plus *n* est grand ('suffisament grand'), plus *la loi de la somme (ou la moyenne)* se rapproche d'une distribution normale.

IC – Suppositions

- Il y a un paramètre de la population dont la valeur est inconnue
- 2 Il y a un échantillon aléatoire (observations independantes ou EAS d'une population nombreuse, où la taille de l'échantillon est petite par rapport à celle de la population)
- 3 TCL s'appliquent

Illustration



Qualité d'un estimateur : Biais / Variance

Le biais d'un estimateur T d'un paramètre θ est définit par :

$$b(T) = E[T] - \theta,$$

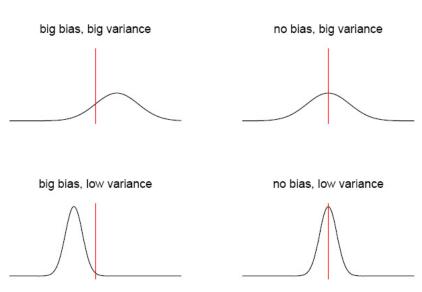
(c.-à-d. la différence entre *l'espérance* de la distribution d'échantillonnage de l'estimateur T et *la vraie valeur* du paramètre θ)

- Un estimateur est sans biais (ou non biaisé) si le biais égale à 0
- Une autre qualité on peut considérer est le variance de l'estimateur :

$$Var(T) = E[(T - E[T])^2]$$

Parmi deux estimateurs sans biais de θ , l'un sera plus efficace que l'autre si sa variance est plus petite

Biais et variance d'un estimateur T



Qualité d'un estimateur : Erreur Quadratique Moyenne (EQM)

 Une autre qualité que nous pouvons considérer est le erreur quadratique moyenne (EQM) d'un estimateur

$$EQM(T) = E[(T - \theta)^2]$$

- Ceci est différent de la variance lorsque l'estimateur T est biaisé
- Parfois, nous pourrions utiliser un estimateur qui a un peu de biais s'il a une variance beaucoup plus petite que la meilleure estimateur sans biais (compromis biais-variance)
- Il est simple à démontrer que l'EQM peut être exprimée comme une combinaison de biais et la variance :

$$EQM(T) = Var(T) + [b(T)^2]$$

Vraisemblance

- Pour une valeur p connue, on peut exprimer la probabilité de n'importe quelles données possibles
- En revanche, on peut considérer les observations comme connues et considérer la probabilité en fonction du paramètre inconnu p
- La fonction de probabilité vue de cette façon est appelée la vraisemblance

Définition de la vraisemblance

■ **Définition** : Soit $x \sim f(x; \theta)$. La **vraisemblance** et **log vraisemblance** sont :

$$L(\theta) = f(x; \theta), \quad \ell(\theta) = \log L(\theta),$$

considérés comme des fonctions du paramètre θ .

Soient $x = (x_1, ..., x_n)$ une réalisation des VAs $X_1, ..., X_n$. Alors

$$L(\theta) = f(x; \theta) = \prod_{j=1}^{n} f(x_j; \theta), \quad \ell(\theta) = \sum_{j=1}^{n} \log f(x_j; \theta),$$

où $f(x_j; \theta)$ est la loi de x_j .

■ $\grave{\textbf{A}}$ **NOTER** : log = log base $e = \log$ naturel

Estimation par maximum de vraisemblance

- Une méthode d'estimation intuitive est l'estimation par maximum de vraisemblance
- Par exemple, l'estimateur le plus 'évident' p est $\hat{p} = X/n$ se révèle être l'estimateur du maximum de vraisemblance (EMV / MLE)
- En général, l'EMV est la valeur qui rend la probabilité aussi grande que possible – c'est la valeur qui rend les données observées le plus probable
- La manière habituelle de trouver l'EMV : le calcul trouver la dérivée de la fonction de (log) vraisemblance, annuler et résoudre :

$$\frac{d \log L(\hat{\theta})}{d \theta} = 0, \quad \frac{d^2 \log L(\hat{\theta})}{d \theta^2} < 0$$

- (Cette méthode ne fonctionne pas dans tous les cas)
- Nous supposons que la première équation a une solution unique (ce n'est pas toujours vrai dans la réalité)

EMV, cont

L'EMV $\hat{\theta}$ remplit la condition

$$L(\hat{\theta}) \ge L(\theta)$$
 pour toute θ ,

ce qui équivaut à $\log L(\hat{\theta}) \ge \log L(\theta)$, car les valeurs maximales de $L(\theta)$ et $\log L(\theta)$ sont obtenues à la même valeur θ

- L'EMV peut :
 - exister et être unique,
 - ne pas être unique, ou
 - ne pas exister
- Dans la pratique, il est normalement nécessaire d'utiliser des algorithmes numériques pour obtenir $\hat{\theta}$ et $d^2 \log L(\hat{\theta})/d\theta^2$

Avantages/désavantages de la méthode

- Pour un échantillon 'suffisamment grand', l'EMV est :
 - non-biaisé
 - consistent
 - efficace (EQM minimal; donc au moins puissant que l'estimateur EMM)
 - normalement distribué
 - donc, pratique pour l'inférence statistique
- En revanche, l'EMV :
 - pourrait être très biaisé si la taille de l'échantillon est petite
 - pourrait être très compliqué d'évaluer (il faut le faire numériquement)

Information (statistique)

L'information observée $J(\theta)$ et l'information espérée (aussi appelée Fisher information) $I(\theta)$ sont :

$$J(\theta) = \frac{-d^2\ell(\theta)}{d\theta^2}$$

$$I(\theta) = E\{J(\theta)\} = E\left\{\frac{-d^2\ell(\theta)}{d\theta^2}\right\}$$

■ Elles sont des mesures de la *courbature* de $-\ell(\theta)$:

plus les valeurs de $J(\theta)$ et $I(\theta)$ sont *grandes*, plus $\ell(\theta)$ et $L(\theta)$ sont *concentratés*

Propriétés de l'EMV

- Convergent : $\lim_{n\to\infty} P(|\hat{\theta}_n \theta| < \epsilon) = 1, \forall \epsilon > 0$
- Invariance : si $\hat{\theta}$ est l'EMV pour le paramètre θ , alors $h(\hat{\theta})$ est l'EMV pour le paramètre $h(\theta)$
- Asymptotiquement sans biais : $b(\theta) \to 0$ lorsque $n \to \infty$ (pour les échantillons 'petits' l'EMV pourrait être biaisé)
- Efficacité asymptotique optimale : aucun estimateur asymptotiquement sans biais peut avoir une variance plus petite que celle de l'EMV
- Normalité asymptotique : la distribution de $\hat{\theta}_n$ lorsque $n \to \infty$ est la distribution normale; cela nous donne une base pour la statistique inferentielle à partir de l'EMV (p. ex. IC)
- IC approximatif (niveau $1-\alpha$) pour θ : $\hat{\theta} \pm z_{1-\alpha/2} / \sqrt{J(\hat{\theta})}$