GC – Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=14271

Cours 9

- Modélisation statistique
- Distribution t de Student, t-test

Modèles statistiques

- Un modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, qui tient compte des erreurs aléatoires et imprévisibles :
 - donne une représentation idéalisée de la réalité
 - fait des suppositions explicites (qui peuvent être fausses!!) sur les processus étudiés
 - permet un raisonnement abstrait
- Le modéle s'exprime par une famille de distributions théorique qui contient des cas 'idéaux' pour les VAs inclues
 - p. ex. : jets d'une pièce ...
- Un modèle utile offert un bon compromis entre
 - description juste de la réalité (paramètres nombreux, suppositions correctes)
 - facilité de manipulation mathématique
 - production de solutions/prévisions proches de l'observation(s)

Un modèle simple

Un cas simple : on effectue plusieurs mesures d'une quantité physique μ , p. ex. longueur d'un champ, taille d'une personne ...

- De telles mesures possèdent en général une composante aléatoire due aux erreurs de mesure
- Un mécanisme d'erreur possible :

- c.-à-d. : des mesures avec des *erreurs additives*
- S'il n'y a pas d'erreur systématique (biais), l'erreur aléatoire doit être 'centrée' $(E[\epsilon] = 0)$
- Souvent raisonnable de penser que *la précision* de chaque mesure est *la même* ($Var(\epsilon) = \sigma^2$ pour chaque mesure)
- Une spécification possible pour la distribution de l'erreur est la loi normale $N(0, \sigma^2)$
- All models are wrong; some are useful

Estimation des paramètres inconnus

- Une fois un modèle est choisi, l'interêt se tourne vers l'estimation des inconnus : les paramètres du modèle
- On observe des réalisations d'une VA dont on connaît la distribution (sauf les valeurs des paramètres)
- Donc, on doit *estimer* les paramètres à l'aide des observations X_1, \ldots, X_n
- $\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$
- L'estimateur S^2 est *nonbiaisé* pour σ^2 , et est *indépendant* de celui de $\mu(\overline{X})$

Révision : Théorème Central Limite (TCL)

Théorème (TCL): Soient $X_1, X_2,...$ des variables aléatoires indépendantes et identiquement distribuées (iid), et telles que $E[X_i] = \mu$ et $Var(X_i) = \sigma^2 < \infty$ existent. Alors, la distribution de

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

se rapproche d'une distribution normale lorsque $n \to \infty$.

C.-à-d. : Plus n est grand ('suffisament grand'), plus la loi de la somme (ou la moyenne) se rapproche d'une distribution normale.

$$\Rightarrow$$
 Donc, $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$; $\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$

À propos des échantillons petits...

- Le *z*-test que nous avons étudié suppose que la distribution d'échantillonnage de la statistique de test *T* est *normale*
 - soit exactement
 - soit approximativement, par le TCL
- Toutefois, si l'écart-type de la population σ est inconnu et la taille de l'échantillon est faible (moins de 30-40, p. ex.), alors la vraie distribution d'échantillonnage de T possède des queues qui s'étendent plus loin que la distribution normale
- Dans ce cas, on utilise le *t-test*

'Student' (= William Sealy Gosset)

W. S. Gosset

Distribution de T quand σ^2 est inconnue

- Rappelons la statistique de test $T = (\overline{X} \mu_H)/(\sigma/\sqrt{n})$
- Si la taille de l'echantillon n est 'suffisament grande', alors sous H, $T \sim N(0,1)$ quelle que soit la distribution de X (TCL)
- Si les observations $X_1, \ldots, X_n \sim N(\mu_H, \sigma^2)$, alors $T \sim N(0, 1)$ pour σ^2 connue, quelle que soit la taille de l'echantillon n
- MAIS : Si la taille de l'echantillon n est petite, et la variance σ^2 est inconnue, la vraie distribution de T a davantage de variabilité que la distribution normale (due à l'estimation *imprécise* de σ basée sur peu d'obs)
- Dans le cas (1) $X_1, \ldots, X_n \sim N(\mu_0, \sigma^2)$; (2) n est petite; et (3) σ^2 est inconnue : alors $T = \frac{X - \mu_H}{s/\sqrt{n}} \sim t_{n-1}$, la distribution t de Student, avec n-1 degrés de liberté (df; 'degrees of freedom')
- (La distribution de T dépend du nombre d'observations n)

Distribution t de Student

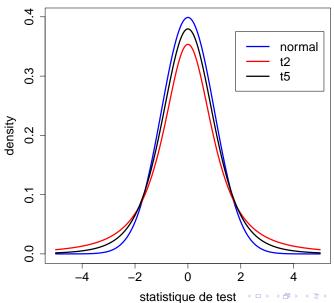


Table de la distribution t de Student

t Table											
cum. prob	t.50	t.75	t.80	t.85	t .90	t.95	t .975	t.29	t.995	t.999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df	1.00	0.50	0.40	0.50	0.20	0.10	0.03	0.02	0.01	0.002	0.001
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14 15	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
16	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
17	0.000	0.689	0.863	1.069	1.333	1.740	2.120	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.069	1.330	1.734	2.110	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.532	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80 100	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195 3.174	3.416
100	0.000	0.677 0.675	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
Z	0.000	0.674	0.842	1.037	1.282	1.645	1.962	2.326	2.576	3.090	3.291

Confidence Level

0% 50% 60% 70% 80% 90% 95% 98%

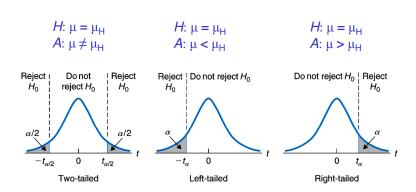
99% 99.8% 99.9%

Intervalle de confiance

Dans le cas

- $X_1,\ldots,X_n \sim N(\mu,\sigma^2)$
- 2 n est petite; et
- σ^2 est inconnue :
- on peut faire un intervalle de confiance (IC) comme avant,
 mais en utilisant la distribution t au lieu de la normale (z)
- IC pour la *moyenne* de la population : $\overline{x} \pm \boxed{\mathbf{t}_{\mathbf{n-1},\mathbf{1}-\alpha/2}} \boxed{\mathbf{s}} / \sqrt{n}$

Test d'hypothèses : trouver la région de rejet



Exemple

Exemple 9.1) Prise quotidienne d'énergie (kJ) pour 11 femmes :

5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

- Faire un IC de 95% pour la moyenne prise (kJ) de la population des femmes ...
- Tester l'hypothèse que la moyenne est égale à la valeur recommandée (7725 kJ) ...

Test

Test de comparaison de 2 moyennes : variances égales

- On veut comparer les moyennes de deux suites de mesures :
 - Groupe 1 (p. ex. 'contrôle') : x_1, \ldots, x_n
 - Groupe 2 (p. ex. 'traitement') : $y_1, ..., y_m$
- On peut *modeliser* de telles données comme :

$$x_i = \mu + \epsilon_i; i = 1, \dots, n;$$

 $y_j = \mu + \Delta + \tau_i; j = 1, \dots, m,$

où Δ signifie l'effet du traitement (par rapport au groupe 'contrôle')

■ $H: \Delta = 0$ vs. $A: \Delta \neq 0$ ou $A: \Delta > 0$ ou $A: \Delta < 0$

Variances égales, cont.

■
$$T = \text{diff. observ\'ee.} / \text{ES(diff. observ\'ee.}) = \frac{\Delta}{\sqrt{Var(\hat{\Delta})}};$$

$$\hat{\Delta} = \bar{y} - \bar{x}; Var(\hat{\Delta}) = \frac{\sigma^2}{n} + \frac{\sigma^2}{m} = \frac{n+m}{nm}\sigma^2$$

- On suppose que :
 - les variances des 2 échantillons sont égales : $Var(\epsilon) = Var(\tau)$
 - les observations sont *indépendantes*
 - les 2 échantillons sont indépendants
- On peux estimer les variances séparement :

$$s_x^2 = ((x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2)/(n-1)$$

$$s_y^2 = ((y_1 - \bar{y})^2 + \dots + (y_m - \bar{y})^2)/(m-1)$$

Quand les variances sont *égales*, on peut combiner les deux estimateurs : $s_p^2 = ((n-1)s_x^2 + (m-1)s_y^2)/(n+m-2)$

$$\Rightarrow t_{obs} = \frac{\overline{y} - \overline{x}}{\sqrt{s_p^2(n+m)/(nm)}} \sim t_{n+m-2} \text{ sous } H$$

Test de comparaison de 2 moyennes : variances inégales

■ Si $\sigma_x^2 \neq \sigma_y^2$, on peut utiliser

$$T_{Welch} = \frac{\overline{Y} - \overline{X}}{\sqrt{S_x^2/n + S_y^2/m}}$$

- La distribution de cette statistique T_{Welch} n'est qu'approximativement t, avec un nombre de degrés de liberté calculé à la base de s_x , s_y , n et m
- Welch test
- Dans la pratique, si les variances sont assez différentes (rapport plus de 3), on utilise cette statistique (au lieu de celle avec la variance s_p^2)

Exemple

Exemple 9.2 Dépenses d'énergie dans les groupes de femmes minces et obèses :

```
mince 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11 obese 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19
```

 Tester l'hypothèse que les moyennes des deux populations sont égales ...

Test

Expériences appariées

- Pour une expérience effectuée en *blocs de deux unités*, la *puissance* du *t*-test pourrait être augmentée
- Cette idée permet d'éliminer les influences d'autres variables (p. ex. l'àge, le sexe, etc.), en leur donnant des 'traitements' différents
- Ainsi, on a une comparaison des deux conditions plus précise

t-test pour une expérience appariée

Les données sont de forme :

- Chaque bloc nous permet d'évaluer l'effet du traitement
- En effet, on considère les différences

$$d_1 = y_1 - x_1, \ldots, d_n = y_n - x_n$$

comme un échantillon de mesures provenant d'une distribution d'espérance Δ

- $H: \Delta = 0$ vs. $A: \Delta \neq 0$ ou $A: \Delta > 0$ ou $A: \Delta < 0$
- T = t-apparié $= \frac{\overline{d}}{s_d/\sqrt{n}}$, où $s_d^2 = ((d_1 \overline{d})^2 + \dots + (d_n \overline{d})^2)/(n-1)$
- Sous H, t-apparié $\sim t_{n-1}$

Exemple 9.1, cont.

Prise quotidienne d'énergie des 11 femmes pré- et post-menstruel :

```
pré 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770 post 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335
```

Tester l'hypothèse qu'il n'y a pas de différence de prise quotidienne pré et post ...

Test