GC – Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=14271

Cours 11b

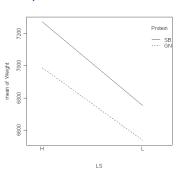
- Expériences factorielles
- 2-way ANOVA (anova à deux voies)
- Modèle général linéaire

Plan d'expérience factorielle et interaction

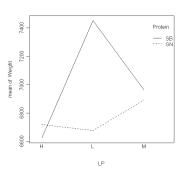
- Exemple : étude de hibernation
 - Question générale : Comment les changements dans l'environnement de l'animal provoquent l'animal de commencer à hiberner?
 - Question spécifique : Quel est l'effet du changement de la durée du jour sur la concentration de l'enzyme de la pompe sodium dans deux organes du hamster doré?
- Comparer deux (ou plus) ensembles de conditions dans la même expérience : long/ court <u>ET</u> coeur/cerveau
- Dans cet exemple, il y a 4 combinaisons de conditions :
 - Long/Coeur, Long/Cerveau, Court/Coeur, Court/Cerveau
- Interaction = 'différence des différences'
- Il y a une *interaction* quand l'effet de l'association des traitements n'est pas la somme des effets des traitements
- En cas d'interaction, l'effet d'un traitement *varie suivant qu'il* est ou pas associé à l'autre
- L'interpretation des effets est plus difficile en cas d'interaction

Interaction

pas d'interaction



interaction



Avantages des expériences factorielles

- Plus efficace (puissante) qu'une série des expériences étudiant un facteur à la fois
- Permet l'estimation d'interaction entre ensembles de conditions qui influence la réponse
- Toutes les données sont utilisées pour l'estimation des effets

ANOVA à deux voies - Introduction

- Étude simultanée d'un facteur A à I modalités et d'un facteur
 B à J modalités
- Pour chaque couple de modalités (A, B) :
 - on a un échantillon
 - tous les échantillons sont de mêmes tailles n (plan équilibré)
- Suppositions :
 - les populations étudiées suivent une distribution normale
 - les variances des populations sont toutes égales (homoscédasticité)
 - les échantillons sont prélevés aléatoirement et indépendamment dans les populations

Exemple 11b.1

- La durée de vie (heures) d'une pile pourrait dépendre sur le type de matière et la température de l'appareil utilisé
- n = 4 piles sont testées pour chaque combinaison de type et température
- Les 36 tests sont effectués dans un ordre aléatoire
- L'étude s'adresse les questions :
 - Quels sont les effets du type et temérature sur la durée de vie
 - Est-ce qu'il y a un type de matière qui prolonge la durée de vie uniformement, quel que soit la température

Exemple 11b.1, cont. : données

Material	Temperature (^{o}F)						
Type	15		70		12	125	
1	130	155	34	40	20	70	
	74	180	80	75	82	58	
2	150	188	136	122	25	70	
	159	126	106	115	58	45	
3	138	110	174	120	96	104	
	168	160	150	139	82	60	

Modèle complet

- Le *modèle complet* : avec interactions
- $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$
- $E[\epsilon_{ijk}] = 0$, $Var(\epsilon_{ijk}) = \sigma^2$, $Cov(\epsilon_{ijk}, \epsilon_{i'j'k'}) = 0$ si $(ijk) \neq (i'j'k')$

Tableau d'ANOVA

source	df	SC	СМ	F
A	I – 1	$nJ\sum_{i=1}^{I}(\overline{y}_{i}-\overline{y})^{2}$	SC_A/df_A	CM_A/CM_{err}
В	J-1	$nI \sum_{i=1}^{J} (\overline{y}_{.j.} - \overline{y}_{})^2$	SC_B/df_B	CM _B /CM _{err}
AB	(I-1)(J-1)	$n \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ij.} - \overline{y}_{i} - \overline{y}_{.j.} + \overline{y}_{})^2$	SC_{AB}/df_{AB}	CM _{AB} /CM _{err}
erreur	IJ(n-1)	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \overline{y}_{ij.})^{2}$	SC _{err} /df _{err}	
total (corr.)	nIJ – 1	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \overline{y})^2$		

*: n = nombre PAR cellule (pas la taille de l'échantillon)

Exemple 11b.1, cont. : sorties

Analysis of Variance Table

```
Response: y

Df Sum Sq Mean Sq F value Pr(>F)

type 2 10684 5342 7.9114 0.001976 **

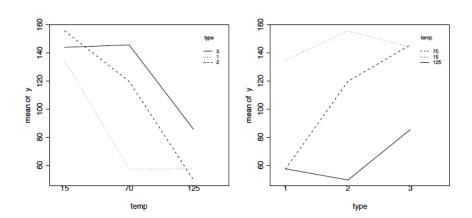
temp 2 39119 19559 28.9677 1.909e-07 ***

type:temp 4 9614 2403 3.5595 0.018611 *

Residuals 27 18231 675
```

Quelles sont vos conclusions ??

Exemple 11b.1, cont. : interaction plot, 2 vues



Tests d'hypothèses

■ Test d'interaction $H: \gamma_{ij} = 0, i = 1, ..., I-1; j = 1, ..., J-1$

Statistique de test :

$$F_{AB} = CM_{AB}/CM_{erreur} \sim F_{(I-1)(J-1),IJ(n-1)}$$
 sous H

- Test d'effet du facteur A $H: \alpha_i = 0, i = 1, ..., I-1$
- Statistique de test : $F_A = CM_A/CM_{erreur} \sim F_{I-1,IJ(n-1)}$ sous H
- Test d'effet du facteur B $H: \beta_j = 0, j = 1, ..., J - 1$
- Statistique de test : $F_B = CM_B/CM_{erreur} \sim F_{J-1,IJ(n-1)}$ sous H

Modèle additif

- Le modèle additif : sans interactions
- $y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- $E[\epsilon_{ijk}] = 0$, $Var(\epsilon_{ijk}) = \sigma^2$, $Cov(\epsilon_{ijk}, \epsilon_{i'j'k'}) = 0$ si $(ijk) \neq (i'j'k')$

Tableau d'ANOVA

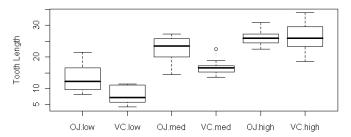
source	df	SC	СМ	F
Α	I – 1	$nJ\sum_{i=1}^{I}(\overline{y}_{i}-\overline{y})^{2}$	SC_A/df_A	CM_A/CM_{err}
В	J-1	$nI \sum_{i=1}^{J} (\overline{y}_{.j} - \overline{y}_{})^2$	SC_B/df_B	CM _B /CM _{err}
erreur	nIJ - I - J + 1	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{J^{3}} (y_{ijk} - \overline{y}_{i} - \overline{y}_{.j.} + \overline{y}_{})^{2}$	SC _{err} /df _{err}	
total (corr.)	nIJ – 1	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \overline{y}_{})^2$		

- *: n = nombre PAR cellule (pas la taille de l'échantillon)
 - Quels sont les hypothèses et STs??

Exemple 11b.2: ToothGrowth

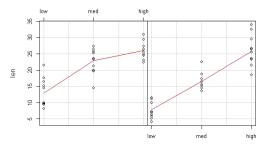
"The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid)."

Boxplots of Tooth Growth Data



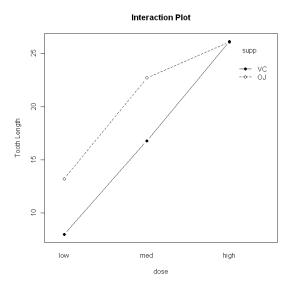
Exemple 11b.2, cont : Graphiques

Given: supp



ToothGrowth data: length vs dose, given type of supplement

Exemple 11b.2, cont. : Interaction plot



Exemple 11b.2, cont : Tableau d'anova sorties

Tailles des échantillons non équilibrées

- Dans le cas équilibré, les effets et les interactions pourrait être estimés indépendamment
- C'est grâce à l'orthogonalité des sous-espaces qui correspondent aux différents effets du modèle
- Ce n'est plus le cas si les tailles des échantillons sont différentes (cas non équilibré) :
 SCModèle ± SCA + SCB + SCAB
- Pour un plan non équilibré, les estimations des effets doivent être ajustées (pour les autres effets dans le modèle)
- On ne peut plus faire des tests $F = \frac{CMx}{CMerreur}$
- Il faut faire des tests d'un sous-modèle

Exemple 11b.2, cont : Sous-ensemble non équilibré

	Ш	М	Н
VC	4.2 11.5 7.3	16.5 16.5 15.2 17.3	23.6 18.5
	15.2		25.5
OJ	21.5	19.7	26.4
O ₃	17.6	23.3	22.4
	9.7		24.5

Exemple 11b.2, cont. : supp 1er

```
> # full interaction model with
> # supp entering first
>
> fit1 <-
  lm(len ~ supp + doselev + supp:doselev,
    data=toothun)
> anova(fit1)
Analysis of Variance Table
Response: len
            Df Sum Sq Mean Sq F value Pr(>F)
            1 174.46 174.46 17.3664 0.0011049
supp
doselev 2 375.75 187.87 18.7012 0.0001495
supp:doselev 2 17.70 8.85 0.8808 0.4377931
Residuals 13 130.60 10.05
```

Exemple 11b.2, cont : doselev 1er

```
> # full interaction model with doselev
> # entering first
>
> fit2 <-
  lm(len ~ doselev + supp + supp:doselev,
    data=toothun)
> anova(fit2)
Analysis of Variance Table
Response: len
            Df Sum Sq Mean Sq F value Pr(>F)
doselev
           2 396.08 198.04 19.7131 0.0001158
           1 154.13 154.13 15.3428 0.0017685
supp
doselev:supp 2 17.70 8.85 0.8808 0.4377931
Residuals 13 130.60 10.05
```

Modèles linéaires

- Le modèle de régression et le modèle d'ANOVA sont modèles linéaires
- Un modèle linéaire est linéaire dans les paramétres
- Exemples linéaire ou non?

$$y = \beta_0 + e^{\beta_1 x_1^2} + \beta_2 \log x_2 + \epsilon$$

$$v = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon}$$

- Régression : X quantitative(s) continue(s), Y continue
- ANOVA : X qualitative(s), Y continue

Modèle linéaire général

- Le modèle : $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$
- Y un vecteur (ou une matrice) des mesures (multivariées)
- **X** une matrice des variables explicatives
- lacksquare un vecteur (ou une matrice) des paramètres
- ullet un vecteur (ou une matrice) des erreurs/bruit
- $\epsilon \sim MVN(0, \Sigma)$
- Normalement, l'estimation des paramètres est fait par la méthode de moindres carrés (autres méthodes possibles)

Exemples

- Régression (simple ou multiple) : la variable réponse et les variables prédictrices sont continues (quantitatives)
- *ANOVA* (un ou plusieurs facteurs) : la variable réponse est *continue*, les variables explicatives sont *qualitatives*
- ANCOVA : la fusion d'ANOVA et de la régression
 - la variable réponse continue (quantitative) est modelisée en fonction de deux (ou plus) variables prédictrices dont l'une au moins est qualitative
 - ANCOVA teste si certains facteurs ont un effet sur la variable de réponse après avoir enlevé la variance dont les prédicteurs quantitatifs (les covariables) sont responsables
- MANOVA, MANCOVA : la réponse est multivariée

Variables indicatrices pour le modèle

La forme matricielle pour le modele lineaire :

$$Y = X\beta + \epsilon$$

- Selon la forme de la matrice X, on est dans le cas :
 - de la régression linéaire (X est alors composée de la variable constante 1 et des p variables explicatives), ou
 - du modèle factoriel (X est composée des variables indicatrices associées aux niveaux du (ou des) facteur(s))
 - de ancova (X est composée des variables continue(s) et indicatrice(s))
- En general, le mod'ele pourrait contenir des variables de types différents (modele linéaire gènèrale)