GC – Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=14271

Cours 10b

- Géometrie de régression
- Logiciel R / interprétion des sorties R

Théorème de Pythagore



Géometrie de moindres carrés

- $lue{y}$ On considère $lue{y}$ comme un vecteur dans l'espace n-dim
- Les vecteurs des colonnes de X forment un sous-espace (de l'estimation ou du modèle) p-dim
 - Variation des valeurs estimées des coefficients de régression localise des points différents du sous-espace
- Les valeurs prédites $\hat{y} = X\hat{\beta}$ représentent le point du sous-espace le plus proche des observations : MCO est la projection orthogonale de y sur le sous-espace de X
- Le résidu $e = y \hat{y}$ est *orthogonal* aux vecteurs du sous-espace
- $SCE = \sum e_i^2 = \mathbf{e'e}$ est le carré de la distance du vecteur des obs. au point le plus proche dans le sous-espace
- Partition de **y** en deux composantes orthogonales :
 - \hat{y} (sous-space du modèle, p dims)
 - $\hat{y} y$ (sous-espace de l'erreur, n p dims)
- (degrés de liberté correspondent aux dims des sous-espaces)

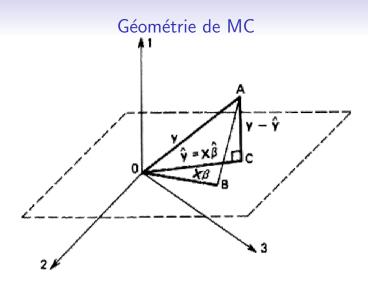


Figure 4.2 A geometrical interpretation of least squares.

Tableau de l'analyse de variance (ANOVA)

- Il s'agit d'une partition de la somme des carrés totaux (SCT)
- Théorème de Pythagore :

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} \hat{y}_i^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

également :

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Cette égalité présentée dans un tableau :

Tableau d'ANOVA

source	df	SC (SS)	CM (MS) (=SC/df)	F	<i>p</i> -valeur					
régression	р	$SCM = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$	SCM/p	CMM/CME	$P(F_{obs} > F_{p,n-p-1})$					
erreur	n – p – 1	$SCE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$SCE/(n-p-1)(=\hat{\sigma}^2)$							
total (corr.)	n-1	$SCT = \sum_{i=1}^{n} (y_i - \overline{y})^2$								

F-test - régression

- La statistique $F_{obs} = CM(\text{source})/CME$ teste l'hypothèse $H_0: \beta_1 = \ldots = \beta_p = 0$ vs. $A: \text{au moins } 1 \ \beta_i \neq 0$
- La distribution de F_{obs} si H est vraie est *la distribution* $F_{p,n-p-1}$ de Fisher
- Au numérateur de la statistique F_{obs} se trouve la variance expliquée par le modèle de régression
- Au dénominateur se trouve la variance résiduelle
- On REJETTE l'hypothèse nulle *H* pour *grandes valeurs de F*
- Lorsqu'on teste une seule pente $(H: \beta_i = 0)$, $F_{1,n} = t_n^2$

L'estimation de régression

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summarv(trees.fit)
Ca11:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min 10 Median
                          30
                                Max
-6 4065 -2 6493 -0 2876 2 2003 8 4847
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height
            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
                                                  p-valeur
```

Coefficient de détermination

- La valeur y_i d'une observation peut être décomposée en deux parties : une partie expliquée par le modèle et une partie résiduelle
- La dispersion de l'ensemble des observations se décompose donc en :
 - 1 variance expliquée par la régression, et
 - variance résiduelle, inexpliquée
- Le coefficient de détermination (ou corrélation multiple) R² se définit alors comme la part de variance expliquée par rapport à la variance totale
- Également, $R^2 = 1 SCE/SCT$
- Dans le cadre d'une régression linéaire simple, c'est le carré du coefficient de corrélation

Coefficient de détermination ajusté

- Le coefficient de détermination ajusté R²_{aj} tient compte du nombre de variables
- En effet, le défaut principal du R² est de *croître avec le* nombre de variables explicatives
- Un excès de variables produit des modèles peu robustes
- Donc on s'intéresse davantage à cet indicateur (R_{aj}^2) qu'au R^2
- Ce n'est pas vraiment un 'carré' il peut même être négatif

$$R_{aj}^2 = 1 - \frac{SCE/(n-p-1)}{SCT/(n-1)} = 1 - (1-R^2)\frac{n-1}{n-p-1}$$

L'estimation de régression

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summarv(trees.fit)
Ca11:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min
            10 Median
                           30
                                  Max
-6 4065 -2 6493 -0 2876 2 2003 8 4847
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
             Height
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic:
              255 on 2 and 28 DF, p-value: < 2.2e-16
                                                       R<sup>2</sup>-ajusté
              \mathbb{R}^2
```

R^2 ou R^2 -ajusté?

UTILISEZ LE R² AJUSTÉ!

MARRE DUR²? Comme monsieur Statos, optez pour une qualité de régression plus sûre !!!

« Avant, j'utilisais un R² normal, j'étais fatigué et ça se voyait sur mon visage ; depuis que j'ai découvert le R² ajusté, ma vie a complètement changé ! »

SATISFAIT ou REMBOURSÉ (*)

VU SUR INTERNET !!!

(*) voir conditions au verso

Dernière minute :

Pour vous souhaiter la bienvenue, la somme des carrés des résidus vous est offerte!

Tester un sous-modèle

- Modèle complet (Ω) : $y = \beta_0 + \beta_1 + \ldots + \beta_p$
- Sous-modèle (ω) : $y = \beta_0 + \beta_1 + \ldots + \beta_q$, q < p
- $H: \beta_{q+1} = \cdots = \beta_p = 0$ vs. A: au moins $1 \beta_i \neq 0$, $q+1 \leq i \leq p$

Tableau d'ANOVA

source	df	SC (SS)	CM (MS) (=SC/df)		
$\begin{array}{c c} \omega & q \\ \text{termes suppl.} & p-q \end{array}$		$SCM(\omega)$	SCM/q		
		$SCE(\omega)$ – $SCE(\Omega)$			
erreur	n-p-1	$SCE(\Omega)$	$SCE(\Omega)/(n-p-1)$		
total (corr.)	n – 1	SCT			

■ La statistique F pour tester la signification des termes supplémentaires dans Ω est :

$$F_{obs} = \frac{(SCE(\omega) - SCE(\Omega))/(p-q)}{SCE(\Omega)/(n-p-1)} \sim F_{p-q,n-p-1} \text{ sous } H$$

■ Donc on REJETTE H lorsque $F_{obs} > F_{p-q,n-p-1}(1-\alpha)$

Exemple 10b.1

Pour un échantillon aléatoire de communes, on a les données suivants :

- Y = pourcentage des adultes qui votent
- X_1 = pourcentage des adultes proprietaires
- X_2 = pourcentage des adultes personnes de couleur
- X_3 = revenu médiane de la famille (milliers CHF)
- $X_4 = \hat{a}ge \text{ médiane}$
- ullet $X_5 = {\sf pourcentage des adultes résident au moins 10 années}$

Exemple 10b.1, cont.

		Sum of	DF	Mean	F	Sig	R-Square
		Squares		Square			
	Regression						
	Residual	2940.0					Root MSE
	Total	3753.3					
		Parameter		Standard			
Variable		Estimate		Error t		Sig	
	Intercept	70.0000					
	x1	0.1000		0.0450			
	x2	-0.1500		0.0750			
	х3	0.1000		0.2000			
	x4	-0.0400		0.0500			
	x 5	0.1200		0.0500			

Exemple 10b.1, cont. - Activité

Semble-t-il nécessaire d'inclure toute ces variables explicatrices dans le modèle? Expliquer.

■ La valeur *F* est utilisée pour quel test? Interpreter le résultat de ce test.

■ La valeur t de la variable X_1 est utilisée pour quel test? Interpreter le résultat de ce test.

Exemple 10b.1, cont. – Activité

Donner un IC à 95% pour le changement de la moyenne d'Y quand le pourcentage de proprietaires augmente par 1, en contrôlant pour les effets des autres variables; l'interpreter.

Donner un IC à 95% pour le changement de la moyenne d'Y quand le pourcentage de proprietaires augmente par 50, en contrôlant pour les effets des autres variables; l'interpreter.