
Probability and Statistics for SIC

Exercises

Chapter 1

Solution 1 If the set of distinct characters is C, then the set of passwords is the Cartesian product
C × C × C × C × C × C × C × C, and this has size |C8| = |C|8 = 668.

Solution 2 With sets A = {A, . . . , Z} and D = {0, . . . , 9}, using the multiplication rule and Cartesian
products, the set of possibilities is A2 ×D3, which has size |A|2 × |D|3 = 262 × 103.

Solution 3 There are 23! distinct ways to order the maths books, and 9! distinct ways to order the
physics books, and 2! distinct orders for the types of books, so the answer is 23!× 9!× 2!.

Solution 4 Using the logic of the previous exercise, the answer is 4!× 3!× 5!× 3!.

Solution 5 We must take into account the permutations of A and B: 2! = 2, and that the k people
between A and B and n− k − 2 people around A and B are not to be taken independently. Thus, there
are (n − 2) permutations to place everyone except A and B, and 1 + (n − k − 2) = n − k − 1 ways of
placing the block “A . . . B” of length k + 2 in the queue. Therefore, there are 2(n− 2)!(n− k − 1) ways
of having k people between A and B.

Solution 6 A committee is an unordered 4-set of persons, and there are C4
23 distinct 4-sets that can be

made from 23 persons.

Solution 7 The logic of the previous solution gives C5
52.

Solution 8 a) There are C3
10 × C3

8 = 6720 ways of choosing a committee of 3 men and 3 women from
a group of 10 women and 8 men: the choices of men and women are independent, so the numbers of
possibilities can be multiplied, and within each group an unordered selection is made without replacement.

b) The number of committees of 3 men containing both men who refuse to be together is C1
6 = 6

(there are six ways to choose the other man). So, the number of committees of 3 men without these 2
men is C3

8 − 6 = 50. Therefore the answer sought is

C3
10 × (C3

8 − 6) = 120× 50 = 6000.

c) The reasoning here is similar to that in b), giving

(C3
10 − C1

8 )× C3
8 = (120− 8)× 56 = 6272.

d) The number of committees with the man and the woman who refuse to work together is C2
9C

2
7 = 756.

So the answer is
C3

10 × C3
8 − C2

9 × C2
7 = 6720− 756 = 5964.

Solution 9 There are 4×3×2 = 24 ways of placing the three pairs of twins in the 4 rooms. Furthermore,
for each allocation of twins to rooms there are 23 = 8 ways of distributing the three pairs of twins in the
beds. There are therefore 24× 23 = 192 ways of setting up the experiment.

Solution 10 A direct calculation gives

Ck−1
n−1 + Ck

n−1 =
(n− 1)!

(n− k)!(k − 1)!
+

(n− 1)!

(n− k − 1)!k!
=

(n− 1)!(k + n− k)

(n− k)!k!
= Ck

n.
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Chapter 2

Solution 11 a) The sample space for this experiment is Ω = Ω1 ∪ Ω2, where

Ω1 = {(D1, D2, . . .) : Di ∈ {1, 2, 3, 4, 5}, i = 1, 2, . . .}
represents the event ‘no 6 is cast’ and

Ω2 = {6} ∪
∞�

n=1

{(D1, D2, . . . , Dn, 6) : Di ∈ {1, 2, 3, 4, 5}, i = 1, 2, . . .}

represents the event ‘the experiment stops’.
It may seem puzzling why Ω1 is needed. Two reasons are: (i) no probabilities have been given for

the outcomes, and perhaps the probability of getting a ‘6’ is zero because the die is biased, in which case
only Ω1 could occur; (ii) any event space must contain infinite unions and complements, so if the possible
events include En ≡ ‘the first six occurs on throw n’ (n = 1, 2, . . .), then the event

�∞
n=1 En ≡ ‘the first

six occurs for some n ∈ N’ is in the event space, and so is its complement, Ω1.
b) The points of the sample space which are contained in En are of the form (D1, . . . , Dn−1, 6). The

set (∪∞
1 En)

c corresponds to the event “no 6 is cast”, that is Ω1.

Solution 12 a) The sample space Ω comprises all possible ordered arrangements of n people, so |Ω| = n!.
If we assume that the event space contains all subsets of Ω, then the number of events is 2|Ω| = 2n!.

b) Let the event Ek be “there are k people between A and B”. Let us determine #Ek =“number of
favourable cases of Ek”:

Consider first the block “A ←k→. . . B” of length k + 2. There are 1 + (n− k − 2) = (n− k − 1) ways to
place it in the line.

Then take into account the permutations

- of A and B: 2! = 2 permutations,

- of the (n− 2) people different to A and B: (n− 2)! different permutations.

Thus
#Ek = 2× (n− k − 1)× (n− 2)!

and

Pr(Ek) =
#Ek

#Ω
=

2(n− k − 1)(n− 2)!

n!
=

2(n− k − 1)

n(n− 1)
.

NB: One can check that
�n−2

k=0 2(n− k − 1)/{n(n− 1)} = 1.
c) It is easy to establish the list of the 3! = 6 possible cases. We then obtain

Pr(k = 0) =
4

6
=

2

3
, Pr(k = 1) =

2

6
=

1

3
,

which corresponds to the expression found under b).

NB: We have Pr(k = 0) + Pr(k = 1) = 1.

Solution 13 a) Two signals S1 and S2 reach the receptor in the interval (0, t). Let X1 be the arrival
time of S1 and let X2 be the arrival time of S2. The sample space of possible results is therefore

Ω =
�
(x1, x2) ∈ R2 : 0 ≤ x1, x2 ≤ t

�
.

One element of this set (a pair (x1, x2)) represents a possible outcome of this experiment (that is an
elementary event of the sample space): “the signal S1 arrives at time x1 and the signal S2 arrives at time
x2”.

b) The event A which we are interested in (i.e. ,“the receptor blocks”) is a subset of Ω defined as

A = {(x1, x2) ∈ Ω : |x1 − x2| < θ} ;
for the next step it is helpful to sketch A, and note that its area is the area of the square Ω minus the
area of two triangles, each of which has area (t− θ)2/2, The fact that both signals “arrive independently
of each other and at random”’ tells us we are dealing with an equiprobable model. We can then obtain

Pr(A) =
area of A

area of Ω
=

t2 − 2× (t− θ)2/2

t2
=

2θt− θ2

t2
.

c) If θ � t, we can neglect (θ/t)2 relative to 2θ/t, giving Pr(A) � 2θ/t.
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Solution 14 a) The sample space of this experiment is Ω = {(y1, y2, y3) : y1, y2, y3 ∈ {1, . . . , 6}}.
b) Let X1 be the die which shows the smallest number, X3 the die which shows the greatest number

and X2 the die which shows a number between X1 and X3 (that is X1 ≤ X2 ≤ X3). We want to calculate
the probability of the event “X1 +X2 +X3 ≥ 15”. We will call this event E. The table below shows the
values X1, X2 and X3 which make their sum greater than or equal to 15.

X1 X2 X3 sum weight probability
3 6 6 15 3 1/216
4 5 6 15 3! 1/216
4 6 6 16 3 1/216
5 5 5 15 1 1/216
5 5 6 16 3 1/216
5 6 6 17 3 1/216
6 6 6 18 1 1/216

The fifth column represents the number of ways there are to obtain the given values of X1, X2 and X3.
The sixth column represents the probability of each configuration (that is 1/63 = 1/216). Thus, the
probability sought is

Pr(E) = (3+6+3+1+3+3+1)
216 = 20

216 � 0.0926.

Solution 15 a) and b) The answers are the same:

P =
15× 14× 13× 10× 9

25× 24× 23× 22× 21
= 0.03854.

c) We obtain

P =
15× 14× 10× 9× 8

25× 24× 23× 22× 21
= 0.0237.

Solution 16 First note that if Xavier and both his parents have brown eyes and his sister has blue eyes,
that must mean that both parents each have one gene for blue eyes, and the other for brown.

a) Xavier can have the genes (Br,Br), (Br,B) and (B,Br), so the probability that he has one gene
for blue eyes is 2/3.

b) Let GX , GW and GC respectively denote the eye genes belonging to Xavier, his wife, and his child.
So,

Pr(GC = (B,B)) = Pr(GX ∈ {(Br,B), (B,Br)})× 1
2 = 2

3 × 1
2 = 1

3 .

Solution 17 Here Ω = {(a, b) : a, b ∈ {1, . . . , 6}} is the collection of ordered pairs (because the dice can
be distinguished) of numbers between 1 and 6.

a) E ∩ F = {(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1)}.
b) E ∪ F is the event “the sum of the dice is odd or one of the dice shows a 1”.
c) F ∩G = {(1, 4), (4, 1)}.
d) E ∩F c is equal to the event “the sum of the dice is odd and each die shows a number greater than

or equal to 2”.
e) E ∩ F ∩G = F ∩G.

Solution 18 a) 000 . . . represents the event “no-one wins”. The other sequences correspond to the events
in which A,B or C wins.

b) (i) Those with the 1 in position 3n+ 1 for n ∈ {0, 1, . . .} correspond to the event ‘A wins’.
(ii) Those with the 1 in position 3n+ 2 for n ∈ {0, 1, . . .} correspond to the event ‘B wins’.
(iii) Those with the 1 in position 3n for n ∈ {0, 1, . . .} correspond to the event ‘C wins’.
Finally, (A ∪B)c is event in which either C wins or no-one wins.
Note: in i), for example, 3n+ 1 represents the sequence (3n) + the position the winner is in (+1).

Solution 19 No, because the configurations are not equiprobable. If we take into account the order
in which they appear, we must then take into account the possible permutations of each configuration.
Thus (3,3,3) “counts only once” whereas (5,2,2) “counts three times” and (5,3,1) “counts six times”. We
obtain Pr(S = 9) = 25

63 and Pr(S = 10) = 27
63 .

Solution 20 The probability of obtaining at least one 6 equals unity minus the probability of casting
no 6s: Pr(at least one 6) = 1− Pr(no 6s). The probability of obtaining no 6s is (5/6)

4 � 0.4822, so the
probability of casting at least one 6 is 1− (5/6)4 � 0.5177.
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Solution 21 The probability that the 6 appears at least once is 1− (5/6)2n. In order for this probability
to reach 1/2, we must have 1− (5/6)2n ≥ 1/2, or equivalently

1−1/2 ≥ (5/6)2n ⇔ log(1/2) ≥ 2n log(5/6) ⇔ − log 2 ≥ 2n×{− log(6/5)} ⇔ n ≥ 1
2 log 2/ log(6/5) ≈ 1.9.

Thus we must have n ≥ 2.

Solution 22 The probability that the birthdays of n people are in different months is

12× 11× · · · × (12− n+ 1)

12n

So the probability that at least two of the n people have their birthdays the same month is

1− 12× 11× · · · × (12− n+ 1)

12n

You need at least 5 people for this probability to exceed 1/2.

Solution 23 The probability that neither of the two coins shows tails is the probability of the outcome
(H,H), i.e., 1/4, so the answer is 1− 1/4 = 3/4.

Solution 24 We use the fact that the event “have at least one success” complements the event “have
no success”. The probability of obtaining at least one 6 with 4 dice is therefore

1− (1− 1
6 )

4 � 0.518,

and the probability of obtaining at least one double 6 in 24 casts of two dice is

1− (1− 1
36 )

24 � 0.491.

Solution 25 Pr{“At least one ball ≥ 17”} = 1− Pr{“All balls < 17”} = 1− 16×15×14
20×19×18 .

Solution 26 The sample space of this experiment is the set of four ordered pairs Ω = {(E1, E2)} where
E1 is the sex of the first child and E2 is the sex of the second. The event “both children are girls” is
A = {(G,G)}, and “the eldest is a girl” is B = {(G,G), (G,B)}. The required probability is

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

Pr(A)

Pr(B)
=

1/4

1/2
= 1

2 .

Solution 27 The sample space of this experiment is Ω = {(D1, D2) : 1 ≤ Di ≤ 6, i = 1, 2}. Let us call A
the event “at least one die shows a 6”, and B the event “both results are different”. We want to calculate

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

But
Pr(B) = 6×5

6×6 = 5
6 , Pr(A ∩B) = Pr(B)− Pr(Ac ∩B) = 5

6 − 5×4
6×6 = 5

6 − 5
9 ,

so the required probability is
Pr(A | B) = 1− 6

9 = 1/3.

Solution 28 Let A denote the event “the first card is a spade” and B the event “the other two are
spades”. Since

Pr(A ∩B) = 13
52

12
51

11
50 , Pr(B) = Pr(A ∩B) + Pr(Ac ∩B) = 13

52
12
51

11
50 + 39

52
13
51

12
50 ,

the required probability is

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

13× 12× 11

13× 12× 11 + 39× 13× 12
= 11

50 .
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Solution 29 Let Sn denote the event “the nth day is sunny” and Nn the event “the nth day is cloudy”.
Then

sn = Pr(Sn) = Pr(Sn | Sn−1)Pr(Sn−1) + Pr(Sn | Nn−1)Pr(Nn−1)

= psn−1 + q(1− sn−1)

= (p− q)sn−1 + q

We show that sn = 1
2 (1 + (p − q)n), n ≥ 0, by induction on n. If n = 0 this is clearly true. Let us

now suppose that this formula is valid for m. Then, since p+ q = 1,

sm+1 = (p− q)sm + q

= (p− q)
�
1
2 + 1

2 (p− q)m
�
+ q

=
p+ q

2
+ 1

2 (p− q)m+1

= 1
2

�
1 + (p− q)m+1

�
,

so the result is true for m+ 1. Thus sn = 1
2 (1 + (p− q)n) for all n ≥ 0.

Solution 30 a) Let Sn be the outcome (either H or T , for ‘heads’ or ‘tails’) for toss n and let En be the
event “two successive tails don’t appear”. Write Pn = Pr(En) and note that

Pr(En) = Pr(En ∩ {Sn = T}) + Pr(En ∩ {Sn = H}).

Now
Pr(En ∩ {Sn = H}) = Pr(En−1 ∩ {Sn = H}) = 1

2Pr(En−1)

as if the last throw is an H, then the sequence ends with HH or TH and thus the last toss is independent
of En−1. By a similar argument,

Pr(En ∩ {Sn = T}) = Pr(En−2 ∩ {Sn−1 = H} ∩ {Sn = T}) = 1
4Pr(En−2),

because Pr(En ∩ {Sn−1 = T} ∩ {Sn = T}) = 0. Hence

Pn = 1
2Pn−1 +

1
4Pn−2. (1)

b) Since Pn is a decreasing function of n, i.e., 0 ≤ Pn+1 ≤ Pn, the limit limn→∞ Pn exists. Let us call
it P∞ ≥ 0. In taking the limit n → ∞ in (1) we deduce that

P∞ = 3
4P∞,

which is possible only if P∞ = 0.
c) Let Gn,i denote the event “{S8i = T, S8i+1 = H,S8i+2 = T, S8i+3 = T, S8i+4 = T, S8i+5 =

H,S8i+6 = T, S8(i+1)−1 = T}”, and let Rn,i = Gc
n,i (that is the event “the series Sj , 8i ≤ j ≤ 8(i+1)− 1,

is different from T,H, T, T, T,H,H, T”). Let Rn = ∩n/8−8
i=1 Rn,i. Through the independence of the events

Rn,i, for i = 1, . . . , , n/8, we have

Pr(Rn) =

n/8�

i=1

Pr(Rn,i) =

�
1− 1

28

�n/8

(2)

where in the last equality we have used the fact that Pr(Rn,i) = 1 − 1/28. From (2), we deduce that
limn→∞ Pr(Rn) = 0. But clearly Pr(Qn) ≤ Pr(Rn) (because Qn ⊂ Rn). Thus, limn→∞ Pr(Qn) = 0.

Solution 31 Let RR, NN and RN respectively represent the events “the chosen card is entirely red”,
“entirely black” and “bicoloured”. Let R denote the event “the visible side of the chosen card is red”.
Then

Pr(RN | R) =
Pr(R | RN)Pr(RN)

Pr(R | RR)Pr(RR) + Pr(R | RN)Pr(RN) + Pr(R | NN)Pr(NN)

=
1
2
1
3

1× 1
3 + 1

2
1
3 + 0× 1

3

= 1
3 .
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Solution 32 Let C denote the event “the selected person is colour-blind”, M the event “that person is
a man” and F the event “that person is a woman”. Bayes’ formula gives

Pr(M | C) =
Pr(C | M)Pr(M)

Pr(C | M)Pr(M) + Pr(C | F )Pr(F )

If we say that there are as many men as women, then Pr(M) = Pr(F ) = 1/2 and

Pr(M | C) =
5

100 × 1
2

5
100 × 1

2 + 0.25
100 × 1

2

= 5
5.25 = 20

21 .

If on the other hand there were twice as many woman as men, we would have

Pr(M | C) =
5

100 × 1
3

5
100 × 1

3 + 0.25
100 × 2

3

= 5
5.5 = 10

11 .

Solution 33 Let M denote the event “the patient is infected”, B the event “the patient is healthy”, and
+ the event “the result of the test is positive”. Bayes’ formula gives

Pr(M | +) =
Pr(+ | M)Pr(M)

Pr(+ | M)Pr(M) + Pr(+ | B)Pr(B)

=
99
100

1
1000

99
100

1
1000 + 2

100
999
1000

=
99

2097
� 0.0472.

This isn’t very helpful. For a better result, the test would have to be repeated on the same individual.

Solution 34 Let A denote the event that a piece is accepted, and B denote the event that it is good.
Then Pr(A | B) = 0.9 and Pr(Ac | Bc) = 0.8.

a) All 4 pieces are accepted, therefore 3 good pieces are checked correctly and there is an error in the
checking of the defective piece. The probability of this event is:

Pr(A | B)3 × Pr(A | Bc) = (0.9)3 × 0.2 � 0.146.

b) Let the event E = denote “there is an error during the checking of a piece”. Then

Pr(E) = Pr(Ac | B)× Pr(B) + Pr(A | Bc)× Pr(Bc),

so, since Pr(Bc) = 0.2, Pr(E) = 0.1× 0.8 + 0.2× 0.2 = 0.12.
c) Bayes’ theorem gives

Pr(Bc | A) = Pr(A | Bc)× Pr(Bc)

Pr(A)
=

Pr(A | Bc)× Pr(Bc)

Pr(A | B)× Pr(B) + Pr(A | Bc)× Pr(Bc)
� 0.053.

Chapter 3

Solution 35 Xn can only take the values 0 and 1. There cannot be more than one broken-down machine
at the start of a day’s work. Let Bn be the random variable equal to the number of machines that fail
on the nth day. Then

Pr(Xn+1 = 0 | Xn = 0) = Pr(Bn = 0 ∪Bn = 1)

= Pr(Bn = 0 | Xn = 0) + Pr(Bn = 1|Xn = 0)

= p2 + p(1− p) + p(1− p) = p(2− p)

(neither machine fails,

one machine fails and is repaired,

the other machine fails and is repaired)

Pr(Xn+1 = 0 | Xn = 1) = Pr(Bn = 0 | Xn = 1)

= Pr(the only machine that is not broken doesn’t fail) = p,

Pr(Xn+1 = 1 | Xn = 0) = Pr(Bn = 2|Xn = 0) = (1− p)2,

Pr(Xn+1 = 1 | Xn = 1) = Pr(the machine that is not yet broken fails) = 1− p.
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Solution 36 The space of the possible values taken by X1 is S = {1, 2, 3, 4, 5, 6}. The enumeration of
different possible cases gives us:

Pr(X1 = 1) = 1/36, Pr(X1 = 2) = 1/12,

Pr(X1 = 3) = 5/36, Pr(X1 = 4) = 7/36,

Pr(X1 = 5) = 9/36, Pr(X1 = 6) = 11/36.

Similarly, for X2,

Pr(X2 = 1) = 11/36, Pr(X2 = 2) = 9/36,

Pr(X2 = 3) = 7/36, Pr(X2 = 4) = 5/36,

Pr(X2 = 5) = 3/36, Pr(X2 = 6) = 1/36.

We get the following graphs:
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0
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Solution 37 We suppose that birthdays are evenly spread over the year and, to simplify, that a year
comprises 365 days.

a) The probability that a random person was born on a January 1st is therefore 1/365. The probability
that both partners were born on a January 1st is, supposing independence, 1/3652. Among the 42800
couples married in 2010, the number of those in which both partners were born on a January 1st, X,
follows binomial distribution of parameters n = 42800 and p = 1/3652. Thus

Pr(X = 2) = C2
42800

1
3654

�
1− 1

3652

�42798
= 0.0374.

b) The probability that both partners were born on the same day is 365 times higher than the
probability that they were both born on a January 1st. The number Y of couples married having their
birthdays the same day therefore follows a binomial distribution of parameters n = 42800 and p = 1/365.
We then have

Pr(X = 2) = C2
42800

1
3652

�
1− 1

365

�42798 � 0.

Solution 38 a) Here we are dealing with a draw with replacement, since the same animal can be seen
twice. The probability that any given sighting is of a lion is L/(L + T ). The number of lions noted in
the report follows a binomial distribution of parameters n and p = L/(L + T ). The probability that k
lions have been noted is therefore

�
n

k

��
L

L+ T

�k �
T

L+ T

�n−k

, k = 0, . . . , n.

b) Here we have a draw without replacement. The number of lions captured follows a hypergeometric
distribution of parameters L, T and n. The probability that k lions have been captured is

�
L
k

��
T

n−k

�
�
L+T
n

� , k = max(0, n− T ), . . . ,min(L, n).

Solution 39 a) Arnaud bets the amount 100× 2n−1 CHF at turn n.
b) Since each turn is a Bernoulli experiment of parameter p, the number of turns N until the first

win follows a geometric distribution of parameter p. Its mass function is therefore

Pr(N = n) = p(1− p)n−1, n = 1, 2, . . . .
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The event {N = n} happens if the (n− 1) first turns have been lost and the nth has been won.
c) Let Y denote the amount invested during the last turn, that is to say when Arnaud wins for the

first time. We have Y = 100 × 2N−1 where N is the random variable of the number of turns until the
first win. We have

E(Y ) = E(100× 2N−1) =
∞�

n=1

(100× 2n−1)Pr(N = n) =
∞�

n=1

(100× 2n−1)p(1− p)n−1

= 100p
∞�

n=1

{2(1− p)}n−1 =

� 100p
1−2(1−p) , p > 1/2,

∞, p ≤ 1/2.

If p ≤ 1/2, it is best to be infinitely rich to be able to follow this strategy! If p > 1/2, a finite fortune
should be sufficient, at least on average—but if a casino sees that you are playing this strategy, they will
throw you out!

Solution 40 a) Let Xi denote the sum of two dice at the ith throw: Xi ∈ {2, . . . , 12}. We have
Pr(Xi = 5) = 1/9 and Pr(Xi = 7) = 1/6. The time of end of play is called τ , τ = 1, 2, . . ., and
Fj = {τ = j} is the event in which the game ends at the jth throw. Note that we can write the event Fj

as
{Xj = 5 or Xj = 7} ∩

�
∩j−1
i=1 {Xi �= 5 and Xi �= 7}

�
.

By using this and the independence of the variables Xi we get that for every j

Pr(Xj = 5|Fj) = P ({Xj = 5}|{Xj = 5} ∪ {Xj = 7}) = 1/9

1/9 + 1/6
=

2

5
.

b) Since the game is almost sure to end (that is
�∞

j=1 Pr(Fj) = 1), by the formula of total probability
we reach

Pr(the game ends with a 5) =
∞�

j=1

Pr(Xj = 5|Fj)Pr(Fj) =

�
2

5

� ∞�

j=1

Pr(Fj) =
2

5
.

c) By definition of τ and Fj we have

E(τ) =
∞�

j=1

jPr(Fj).

Since Pr(Xi = 5 or Xi = 7) = 5/18,

Pr(Fj) =

�
1− 5

18

�j−1�
5

18

�
.

We are therefore trying to calculate the expectation of geometric distribution of parameter 5/18, i.e.,

E(τ) =
18

5
= 3.6.

Solution 41 a) Number the white balls i = 1, . . . , N . Let Xi = 1 if the white ball numbered i has been
chosen, and otherwise let Xi = 0. Then

Pr(Xi = 0) =
M +N − 1

M +N
×M +N − 2

M +N − 1
× . . .× M +N − n

M +N − n+ 1
=

M +N − n

M +N
, Pr(Xi = 1) =

n

M +N
.

Since X =
�N

i=1 Xi, we deduce that

E(X) =
N�

i=1

E(Xi) = NPr(Xi = 1) =
Nn

M +N
.

b) Number the black balls j = 1, . . . ,M and let Yj = 1 if the black ball numbered j is chosen before
the first white ball and Yj = 0 otherwise. Then consider any possible sequence (of length N + M) in
which all the balls might be drawn, such as

B · · ·BW2B · · ·BBjB · · ·BWNW1B · · ·B,
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where B denotes any black ball except Bj and W1, . . . ,WN denote the N white balls. Suppose we
condition on the configuration, meaning the length of the sequence and the positioning of all the Bs
except Bj . Then the only thing that can vary is the positioning of the balls Bj ,W1, . . . ,WN . Clearly the
probability that Bj appears first in these N +1 positions is 1/(N +1), by symmetry, and since this does
not depend on the configuration, then it must be true that Pr(Yj = 1) = 1/(N + 1). (If you are nervous
about this, note that

Pr(Yj = 1) =
�

C∈all possible configurations

Pr(Yj = 1 | C)Pr(C) =
�

C∈all possible configurations

1

N + 1
Pr(C) =

1

N + 1
,

as required.) Then, since X = 1 +
�M

j=1 Yj , we have

E(X) = 1 +
M�

j=1

E(Yj) = 1 +
M�

j=1

Pr(Yj = 1) = 1 +
M

N + 1
.

For an alternative solution, suppose for greater generality that we remove the balls one by one until
w whites have appeared, and let X be the total number of balls then drawn. Then

Pr(X = r) =

�
N

w−1

��
M

r−1−(w−1)

�
�
N+M
r−1

� × N − w + 1

N +M − (r − 1)
, r = w, . . . , w +M,

where to avoid trivial cases we assume that w ∈ {1, . . . , N}. The argument for this expression is that just
before we take the wth white ball out on the rth trial, we have drawn w − 1 white balls from among N
and (r− 1)− (w− 1) black balls from M in r− 1 trials (corresponding to the hypergeometric probability
given), and then we must choose a white ball with probability (N − w + 1)/(N +M − r + 1). It is then
possible to check algebraically that

Pr(X = r) =
N

N +M

�
N−1
w−1

��
M

r−w

�
�
N+M−1

r−1

� =
w

r

�
N
w

��
M

r−w

�
�
N+M

r

� , r = w, . . . , w +M,

or to argue by symmetry. For example, to obtain the first expression, note that the probability of first
getting a white and then any configuration of w− 1 whites among the remaining N − 1 and r−w blacks
among the remaining M is as given, but by symmetry this probability must be the same as that of getting
the sequence in the opposite order, which is the sequence we want. Note also that the sum of any of
the three expressions for the probabilities must equal unity. This is called the negative hypergeometric
distribution, by analogy with the negative binomial distribution.

Now

E(X) =
w+M�

r=w

rPr(X + r) =
w+M�

r=w

r
w

r

�
N
w

��
M

r−w

�
�
N+M

r

� =
w(M +N + 1)

N + 1

w+M�

r=w

N + 1

M +N + 1

�
N
w

��
M

r−w

�
�
N+M

r

� .

By setting r = w + s we can write the sum on the right as

M�

s=0

N + 1

M +N + 1

�
N
w

��
M
s

�
�
N+M
w+s

� =
M�

s=0

N �

M +N �

�
N �−1
w�−1

��
M
s

�
�
N �+M−1
w�+s−1

� =
w�+M�

r�=w�

N �

M +N �

�
N �−1
w�−1

��
M

r�−w�
�

�
N �+M−1

r�−1

� = 1,

where we put N � = N + 1, w� = w + 1 and r� = w� + s, and note that the sum contains the probabilities
Pr(X = r) for the same problem, stopping after having selected w� white balls from a bag with N � white
balls and M black ones. Hence

E(X) =
w(M +N + 1)

N + 1
= w +

wM

N + 1
,

which gives the result above when w = 1.
Yet another solution is as follows. Suppose all N + M balls are taken successively at random, and

let Z0 be the number of black balls before the first white, Z1 the number of black balls between the first
and second whites, and so on, with ZN the number of black balls after the last white one. Obviously
Z0 + · · · + ZN = M , and, almost as obviously, E(Z0) = · · · = E(ZN ) by symmetry. Hence E(Zi) =
M/(N +1), and therefore the expected number of balls drawn (including whites) up to and including the
wth white one is w + wE(Zi) = w + wM/(N + 1), as above.
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Solution 42 a) X has the binomial distribution with parameters n and p, so Pr{X = k} =
�
n
k

�
pk(1 −

p)n−k, for k ∈ {0, . . . , n}.
b) See the lecture notes: E(X) = np and var(X) = np(1− p).

Note: To show that X has as expectation np and variance np(1 − p), we can write X =
�n

i=1 Yi where
Yi are independent Bernouilli random variables with parameter p. Then

E(Yi) = 0× Pr(Yi = 0) + 1× Pr(Yi = 1) = 0× (1− p) + 1× p = p,

and

var(Yi) = E(Y 2
i )− E(Yi)

2 = {02 × Pr(Yi = 0) + 12 × Pr(Yi = 1)}− p2 = p− p2 = p(1− p),

so by the independence of the Yi, we have

E(X) = E

�
n�

i=1

Yi

�
=

n�

i=1

E(Yi) =
n�

i=1

p = np,

var(X) = var

�
n�

i=1

Yi

�
=

n�

i=1

var(Yi) =
n�

i=1

{p(1− p)} = np(1− p).

NB: Here var(
�n

i=1 Yi) =
�n

i=1 var(Yi) because the Yi are independent, but this is not true in general.
It is however always true that E(

�n
i=1 Yi) =

�n
i=1 E(Yi).

Solution 43 T is a geometric random variable, and

Pr(T = n) = p(1− p)n−1 n ≥ 1.

We have

E(T ) =
∞�

n=1

n Pr(T = n) =
∞�

n=1

n p(1−p)n−1 = p
∞�

n=1

n(1−p)n−1 = −p d
dp

∞�

n=1

(1−p)n = −p d
dp

1
p = p× 1

p2 = 1
p .

Furthermore,

E(T 2) =
∞�

n=1

n2 Pr(T = n) =
∞�

n=1

n2 p(1− p)n−1 = p
∞�

n=1

n2(1− p)n−1 = −p d
dp

� ∞�

n=1

n(1− p)n

�

= −p d
dp

�
(1− p)

∞�

n=1

n(1− p)n−1

�
= −p d

dp

�
(1− p) 1

p2

�
= −p

�
− 2

p3 + 1
p2

�
= 2

p2 − 1
p .

T ’s variance is therefore:

var(T ) = E(T 2)− E(T )2 = 2
p2 − 1

p − 1
p2 = 1

p2 − 1
p , p ∈ (0, 1].

Solution 44 a) Since
∞�

i=0

Pr{X = i} = 1 = c
∞�

i=0

λi

i!
= ceλ,

we must have c = e−λ. This is a Poisson distribution of parameter λ.
b) Pr{X = 0} = cλ

o

0! = e−λ.

c) Pr{X > 2} = 1− (Pr(X = 0) + Pr(X = 1) + Pr(X = 2)) = 1− e−λ(1 + λ+ λ2

2 ) = e−λ
�∞

i=3
λi

i! .
d) See lecture notes. E(X) = var(X) = λ.

Solution 45 Consider the first page. A given error will appear on this page with a probability of 1/350,
since the errors are uniformly distributed (i.e., distributed at random) and there are 350 pages in total.
The number of printing errors X on the first page therefore has a Binomial distribution B(n = 450, p =
1/350), so

Pr(X ≥ 3) = 1− Pr(X ≤ 2) = 1−
2�

i=0

Ci
450

�
1

350

�i�
349

350

�450−i

� 0.14.

Since n is large and p is small, we can also approximate the binomial variable X by a Poisson variable Y
of parameter λ = np � 1.29 and we then obtain

Pr(Y ≥ 3) = 1− Pr(Y ≤ 2) = 1− e−λ
�
1 + λ+ λ2/2

�
� 0.14.
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Solution 46 a) We check that the sum of the lines is 1.
b) Addition gives FX1(0) = 0.5, FX1(1) = 0.7, FX1(2) = 0.9, FX1(3) = 1, and FX2(0) = 0.7,

FX2(1) = 0.9, FX2(2) = 1.
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c) We find that Pr(Y = 0) = Pr(X1 = 0)Pr(X2 = 0) = 0.35, Pr(Y = 1) = Pr(X1 = 0)Pr(X2 = 1) +
Pr(X1 = 1)Pr(X2 = 0) = 0.24, and by similar calculations, Pr(Y = 2) = 0.23, Pr(Y = 3) = 0.13, Pr(Y =
4) = 0.04, and Pr(Y = 5) = 0.01. As a check, the total mass is 0.35+0.24+0.23+0.13+0.04+0.01 = 1.

d) In c) we found that FY (0) = 0.35, FY (1) = 0.59, FY (2) = 0.82, FY (3) = 0.95, FY (4) = 0.99,
FY (5) = 1, so the sketch is
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Chapter 4

Solution 47 First calculate c. For f to be a density we must have
� +∞
−∞ f(x)dx = 1, that is to say

c =
1�∞

0
x exp(−x/2)dx

.

Integration by parts gives:
� ∞

0

x exp(−x/2)dx = −2x exp(−x/2)
��∞
0

+ 2

� ∞

0

exp(−x/2)dx = 4,

so c=1/4. Consequently the probability that the system functions for at least 5 months is
� ∞

5

x

4
exp(−x/2)dx = − exp(−x/2)

��∞
5

− 1

2
x exp(−x/2)

��∞
5

= e−5/2 +
5

2
e−5/2 � 0.287.

Solution 48 a) Integration by parts yields

Γ(α) =

� ∞

0

e−yyα−1dx = −e−yyα−1 |∞0 +(α− 1)Γ(α− 1) = (α− 1)Γ(α− 1), (α > 1).

Since Γ(1) = 1, we deduce that, for n a positive integer, Γ(n) = (n− 1)!.
b) We have

E(X) = λα

Γ(α)

� ∞

0

xαe−λxdx = λα

Γ(α)

� ∞

0

yα

λα e
−y 1

λdy = Γ(α+1)
λΓ(α) = α

λ .
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Solution 49 Since

E(|X|) =
� ∞

−∞

|x|
π(1 + x2)

dx = 2

� ∞

0

x

π(1 + x2)
dx =

1

π

�
ln
�
1 + x2

��∞
0

= ∞,

E(X) is undefined.

Solution 50 a) We have f(t) = c(10000t2 − 200t3 + t4) in the set 0 < t < 100. By integrating we get
1010 × c× 1

30 = 1 or c = 3× 10−9.
b) The expected lifetime in years is

E(T ) =

� 100

0

tf(t)dt = c[10000t4/4− 40t5 + t6/6]1000 = 3× 10−9 × 1012 × (1/4− 2/5 + 1/6) = 50.

c) We have

Pr(50 ≤ T ≤ 80) =

� 80

50

f(t)dt = c[10000t3/3− 50t4 + t5/5]8050 � 0.4421.

Solution 51 a) f being a density, we must have
�∞
−∞ f(x) dx = 1. But

� ∞

−∞
f(x) dx =

� ∞

1

f(x) dx =

� ∞

1

k

x4
dx =

�
− k

3x3

�∞

1

=
k

3
,

so k = 3.
b) To find the distribution function, we have to integrate the density function f(x). We find

F (x) =

� x

−∞
f(x) dx =

�
1− 1/x3, x ≥ 1,

0, x < 1.

c) The required probability is Pr(X > 3) = 1− F (3) = 0.0370.
d) The average lifetime is equal to the expectation of X, that is

E(X) =

� ∞

−∞
xf(x) dx =

� ∞

1

3x

x4
dx =

� ∞

1

3

x3
dx =

�
− 3

2x2

�∞

1

= 3/2,

or a year and a half.
e) First calculate E(X2):

E(X2) =

� ∞

1

3x2

x4
dx =

� ∞

1

3

x2
dx =

�
− 3

x

�∞

1

= 3,

therefore var(X) = E(X2)− E(X)2 = 0.75; the standard deviation is
�

var(X) = 0.87 years.

Solution 52 (a) The distribution function of U is F (u) = u/2, for 0 < u < 2, so we seek

Pr(U ≤ u | U < 1) =
Pr(U ≤ u, U ≤ 1)

Pr(U ≤ 1)
=

u/2

1/2
= u, 0 < u < 1.

Thus the required distribution is U(0, 1).
(b) Write A = {u : |u− 1| ≥ 1/2} = {u : u < 1/2} ∪ {u : u > 3/2} and note that the density of U is

f(u) = 1
2I(0 < u < 2). Hence the density function of U conditional on U ∈ A is

f(u | U ∈ A) =
f(u)

Pr(U ∈ A)
, u ∈ A,

and zero elsewhere. Clearly Pr(U ∈ A) = 1/2, so

f(u | U ∈ A) =

�
1, u ∈ A ∩ (0, 2),

0, elsewhere.

This density is uniform on A ∩ (0, 2) = (0, 1/2) ∪ (3/2, 2).
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Solution 53 Note that since X takes positive real values, Y takes values in R. Since the logarithm
function is strictly increasing, we can write

FY (y) = Pr(Y ≤ y) = Pr(logX ≤ y) = Pr{X ≤ exp(y)} =

� exp(y)

0

exp(−x)dx, y ∈ R.

Differentiation of this expression with respect to y yields

fY (y) =
dFY (y)

dy
= ey × exp(−ey), y ∈ R.

Solution 54 Let Y = g(X) with g(x) = 1/x. Since g is monotonic with inverse g−1(y) = 1/y on (0, 1],
then

fY (y) = fX{g−1(y)} ×
���dg

−1(y)
dy

��� = (1/y)−2 × 1
y2 = 1, 0 < y ≤ 1.

Alternatively,

FX(x) =

� x

1

t−2 dt =
�
− 1

t

�x
1
= 1− x−1, x ≥ 1.

So, for 0 < y ≤ 1 we have

FY (y) = Pr(Y ≤ y) = Pr
�

1
X ≤ y

�
= Pr

�
1
y ≤ X

�
= 1− Pr

�
X < 1

y

�

= 1− FX(1/y) = 1− (1− y) = y,

which implies that Y ∼ U(0, 1); Y has the standard uniform distribution.

Solution 55 If Y = g(X) and g is a monotone function, then

fY (y) =

����
dg−1(y)

dy

���� fX{g−1(y)},

defined for those values of y for which g−1(y) lies in the support of X.
In this case the function y = g(x) = ex is monotone and g−1(y) = log y; therefore dg−1(y)/dy = 1/y,

defined only for y > 0. Therefore since fX(x) = (2π)−1/2 exp(−x2/2), for x ∈ R, we have

fY (y) =
1

y

1√
2π

e−(log y)2/2, y > 0,

and fY (y) = 0 if y ≤ 0.

Solution 56 Let X ∼ N(175, 62) denote height of a 25-year-old man. Then

Pr(X > 185) = 1− Φ{(185− 175)/6} � 4.78%

and two similar calculations give

Pr(X > 192 | X > 180) = Pr(X>192)
Pr(X>180) � 1.14%.

Solution 57 The quantity a must satisfy
�∞
−∞ f(x)dx = 1, so

a =
1�∞

0
x2 exp(−bx2)dx

.

If we make the change of variables y/
√
2b = x, we obtain

� ∞

0

x2 exp(−bx2)dx =

�
1√
2b

�3 � ∞

0

y2 exp(−y2/2)dy =

�
1√
2b

�3 √
2π

2
×
� +∞

−∞

y2√
2π

exp(−y2/2)dy.

The last integral is equal to 1 (the second moment of a standard normal variable) and therefore

a =
4√
π
b3/2.
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Chapter 5

Solution 58 For all real z we have

FZ(z) = FX(z)FY (z),

FZ̃(z) = 1− {1− FX(z)}{1− FY (z)} = FX(z) + FY (z)− FX(z)FY (z),

differentiation of which yields

fZ(z) = fX(z)FY (z) + FX(z)fY (z),

fZ̃(z) = fX(z){1− FY (z)}+ fY (z){1− FX(z)}.

Solution 59 Write W = min(X1, . . . , Xn) and note that

Pr(W ≥ t) = Pr(X1 ≥ t, . . . , Xn ≥ t) = Pr(X1 ≥ t)n

But Pr(X1 ≥ t) = e−tλ, so Pr(W ≥ t) = e−tnλ, and therefore the distribution function of W is

Pr(W ≤ t) =

�
1− e−tnλ, t > 0,

0, otherwise.

Thus W ∼ exp(nλ).

Solution 60 We first compute the mass function of X. For non-negative integer k,

Pr{X = k} =
�

n≥k

Pr{X = k | Z = n}Pr{Z = n}

=
�

n≥k

�
n

k

�
pk(1− p)n−ke−λ λn

n!

= e−λ (pλ)k

k!

�

n≥k

�
n

k

�
(1− p)n−k λn−k

n!
k!(n−k)!
(n−k)!

= e−λ (pλ)k

k!

�

n≥k

(1−p)n−kλn−k

(n−k)!

= e−λ (pλ)k

k! e(1−p)λ

= e−pλ (pλ)k

k! ,

so X is Poisson with parameter pλ .
Then, for non-negative integer l,

Pr{Y = l} =
�

n≥l

Pr{Y = l | Z = n}Pr{Z = n}

=
�

n≥l

Pr{X = n− l | Z = n}Pr{Z = n}

=
�

n≥l

�
n

l

�
pn−l(1− p)le−λ λn

n!

= e−(1−p)λ ((1−p)λ)l

l! ,

so Y is also a Poisson variable, of parameter (1− p)λ . Finally, for all k, l ∈ {0, 1, 2, . . .}, since n− l = k,

Pr{X = k, Y = l} =
�

n≥0

Pr{X = k, Y = l | Z = n}Pr{Z = n}

= Pr{X = k, Y = l | Z = k + l}Pr{Z = k + l}

=

�
k + l

k

�
pk(1− p)le−λ λk+l

(k+l)!

= e−pλ (pλ)k

k! × e−(1−p)λ ((1−p)λ)l

l! ,

which is Pr{X = k}Pr{Y = l}, so X and Y are indeed independent.
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Solution 61 a) Since � 2

0

� 1

0

fX,Y (x, y) dx dy = 1,

we have c× 7/6 = 1, thus c = 6/7.
b) The marginal density of X is

fX(x) =

� 2

0

fX,Y (x, y) dy =
6

7

� 1

0

�
x2 + xy/2

�
dy =

6

7

�
x2y + xy2/4

�2
0
=

6

7
(2x2 + x), 0 ≤ x ≤ 1.

The marginal density of Y is

fY (y) =

� 1

0

fX,Y (x, y) dx =
6

7

� 1

0

(x2 + xy/2) dx =
6

7

�
x3/3 + x2y/4

�1
0
=

6

7
(1/3 + y/4), 0 ≤ y ≤ 2.

The variables X and Y are dependent, because the joint density is not the product of the marginal
densities.

c) We have

Pr(X > Y ) =
6

7

� 1

0

�� x

0

x2 + xy/2dy

�
dx =

6

7

� 1

0

(x3 + x3/4)dx =
6

7
× 5

4
× 1

4
=

30

112
� 0.2679.

Solution 62 a) Let fX denote the density of X and fY that of Y . Note that

fY (y) =

� ∞

0

f(x, y)dx =
−xe−x(1+y)

1 + y

����
∞

0

+
−e−x(1+y)

(1 + y)2

����
∞

0

=
1

(1 + y)2
, y > 0,

so

FY (y) =

�
y/(1 + y), y > 0,

0, otherwise.

Also,

fX(x) =

� ∞

0

f(x, y)dy = e−x, x > 0

so X ∼ exp(1). X and Y are not independent because f(x, y) �= fX(x)fY (y) for all x, y.
b) Let fX denote the density of X and fY the density of Y . Note that

fX(x) =

� 1−x

0

f(x, y)dy = 60x

� 1−x

0

y2dy = 20x(1− x)3, 0 < x < 1,

and that

fY (y) =

� 1−y

0

f(x, y)dx = 60y2
� 1−y

0

xdx = 30y2(1− y)2, 0 < y < 1.

X and Y are not independent because f(x, y) �= fX(x)fY (y) for all x, y. In this case the lack of inde-
pendence is obvious without any need for calculation because the support of the joint density is not a
Cartesian product.

Solution 63 The first part is obvious, since if X1 > X2 then the right-hand side equals X1 + X2 and
similarly if X2 ≥ X1.

For the second part, note that min(X1, X2) > x if and only if X1, X2 > x, and since they are
independent this has probability e−λ1x × e−λ2x if x > 0. Therefore

Pr{min(X1, x2) ≤ x} = 1− exp{−(λ1 + λ2)x}, x > 0,

and thus the minimum has the exp(λ1 + λ2) distribution. By the first part,

E(X1 +X2) = E{max(X1, X2) + min(X1, X2)},

and the linearity of expectation implies that E{max(X1, X2)} = E(X1)+E(X2)−E{min(X1, X2)}, which
gives the result.
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Solution 64 a) The conditional density of X given Y is defined as fX|Y (x | y) = fX,Y (x, y)/fY (y), and

fX|Y (x | y) = 1√
2π
�
1/(2y)

exp
�
x2/(2× 1/2y)

�
, fY (y) = (πy)−1/2e−y, y > 0, x ∈ R,

so

fX,Y (x, y) = fY (y)fX|Y (x | y) =
�

1
π e

−y(1+x2), y > 0, x ∈ R,
0, y ≤ 0, x ∈ R.

b) We have

fX(x) =

� ∞

0

fX,Y (x, y)dy =
1

π(1 + x2)
, x ∈ R,

which is the standard Cauchy density.
c) Now fY |X(x, y) = fX,Y (x, y)/fX(x), so

fY |X(x, y) =

�
(1 + x2)e−y(1+x2), y > 0,

0, y ≤ 0.

So, conditional on X = x, Y follows an exponential distribution of parameter 1 + x2 > 0.

Solution 65 a) We have

f(x) =

� √
1−x2

−
√
1−x2

1

π
dy =

2

π

�
1− x2, −1 ≤ x ≤ 1,

and by symmetry we must have

g(y) =
2

π

�
1− y2, −1 ≤ y ≤ 1.

Clearly X and Y are not independent because h(x, y) �= f(x)g(y) for all x, y; it is quicker to note that
since the support of the joint density is the unit disk, and this is not a Cartesian product, they cannot
be independent.

b) Now cov(X,Y ) = E(XY )− E(X)E(Y ), and evidently E(X) = E(Y ) = 0. Now E(XY ) consists of
integrals in the four quadrants, corresponding to x, y > 0, x < 0 < y, x, y < 0, y < 0 < x (the integrals
on the axes themselves equal zero). Let D denote the unit disk, and let Q1, . . . , Q4 denote the quadrants,
starting with the upper right and proceeding anticlockwise. Then we need to compute

E(XY ) ∝
�

D∩Q1

xy dxdy +

�

D∩Q2

xy dxdy +

�

D∩Q3

xy dxdy +

�

D∩Q4

xy dxdy,

and this clearly equals zero, since

�

D∩Q2

xy dxdy =

�

D∩Q1

(−x)y dxdy = −
�

D∩Q1

xy dxdy,

�

D∩Q4

xy dxdy =

�

D∩Q3

(−x)y dxdy = −
�

D∩Q3

xy dxdy.

Solution 66 var(X1 −X2) = (+1)2var(X1) + (−1)2var(X2) − 2cov(X1, x2) = 2nπ(1 − π), because the
covariance is zero (by independence) and the variances both equal nπ(1−π). Since independence implies
that cov(Xi, Xk) = 0 if i �= k,

var(S) =
n�

i=1

var(Xi) +
�

i�=k

cov(Xi, Xk) =
n�

i=1

var(Xi) = n2π(1− π).

Solution 67 The variance may be decomposed as follows:

var(3X − 2Y + 1) = 9var(X)− 12cov(X,Y ) + 4var(Y ).

We have cov(X,Y ) = corr(X,Y )
�
var(X)var(Y ) = 2. Hence var(3X − 2Y + 1) = 48. By bilinearity of

the covariance,
cov(X + 2Y,X − Y ) = var(X) + cov(X,Y )− 2var(Y ) = −12.

By linearity of expectation, E(3X − 2Y + Z) = 0 ⇐⇒ E(Z) = 2E(Y )− 3E(X), giving E(Z) = 1.
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Solution 68 a) By linearity of expectation, E(5X − 3Y + 9) = 5E(X) − 3E(Y ) + 9 = 7. By the
independence of X and Y and properties of the covariance,

var(3Y − 2X) = 32var(Y ) + (−2)2var(X) + 2× 3× (−2)cov(X,Y ) = 57.

b) We have
var(X + Y ) = cov(X + Y,X + Y )) = var(X) + var(Y ) + 2cov(X,Y ),

and likewise

var(X − Y ) = cov(X − Y,X − Y ) = var(X) + var(Y )− 2cov(X,Y ).

From these we get the system of equations:
�
cov(X,Y ) = 48− var(X)

cov(X,Y ) = −32 + var(X),

from which we can deduce var(X) = var(Y ) = 40 and cov(X,Y ) = 8. The correlation is 8√
40×40

= 0.2.

Solution 69 a) X1 and X2 are binomial variables of parameters (n, 1/6). A binomial variable may be
written as a sum of independent Bernoulli variables, each with the same success probability.

b) We have var(X1) = var(X2) = n× 1
6 × (1− 1

6 ) = n× 5
36 .

c) The variable U represents the total number of 1s and 2s obtained during n throws. Its distribution is
Bin(n, 1/3), so its variance is n× 2

9 . Since var(X1+x2) = var(X1)+2cov(X1, X2)+var(X2), it follows
that cov(X1, X2) = − 1

2 [var(X1) + var(X2)− var(X1 +X2)] = −n/36, so corr(X1, X2) = − n
36/

5n
36 =

−1/5.

d) We have var(V ) = var(X1)+var(X2)−2cov(X1, X2) =
12n
36 , and corr(U, V ) = cov(U, V )/

�
var(U)var(V ),

where cov(U, V ) = var(X1)− var(X2) = 0. Thus, corr(U, V ) = 0.

Solution 70 By enumerating the possible events, we observe that Pr(Z = 1) = Pr(Z = 7) = 1/12 and
that Pr(Z = 2) = · · · = Pr(Z = 6) = 1/6. Moreover

E(Z | X = x) = E(X + Y | X = x) = x+ E(Y ) = x+ 3.5.

Likewise var(Z | X = x) = var(X+Y | X = x) = var(x+Y | X = x) = var(Y ) = 35/12, since conditional
on X = x, the only random variable in x+ Y is Y .

It is easy to check that Theorem 168 is satisfied.

Solution 71 If z = 1, then Pr(Z = z) = Pr(X = 0)Pr(Y = 1) = (1− p)p. For z ≥ 2,

Pr(Z = z) = Pr(X = 0)Pr(Y = z) + Pr(X = 1)Pr(Y = z − 1)

= (1− p)× p(1− p)z−1 + p× p(1− p)z−2

= p(1− p)z−2{p+ (1− p)2}.
We have E(Z | X = x) = E(X + Y | X = x) = E(Y ) + x and also E(Z | Y = y) = E(X) + y.

Solution 72 The moment generating function is MX(t) = E(etX). Thus

E(Y ) = E(eX) = MX(1) = exp(1/2),

E(Y 2) = E(e2X) = MX(2) = exp(2),

var(Y ) = E(Y 2)− E(Y )2 = exp(2)− exp(1).

Solution 73 a) For any positive t and by independence of X and Y we have

Pr{Z ≤ t} =

��

{x+y≤z}

fX,Y (x, y)dxdy =

��

{x+y≤z}

fX(x)fY (y)dxdy

= λ1λ2

� t

0

e−λ1u

�� t−u

0

e−λ2vdv

�
du

= λ1

� t

0

e−λ1u(1− e−λ2(t−u))du

= (1− e−λ1t)− λ1e
−λ2t

� t

0

e(λ2−λ1)udu

=

�
(1− e−λ1t) + λ1

λ1−λ2
(e−λ1t − e−λ2t), λ1 �= λ2,

1− (1 + λt)e−λt, λ1 = λ2 = λ.
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b) Recall that independence implies that for all real t,

MZ(t) = E[etZ ] = E[etXetY ] = E[etX ]E[etY ].

In the case of an exponential variable,

MX(t) =

� +∞

0

λ1e
−λ1uetudu = λ1

λ1−t , t < λ1,

so
MZ(t) =

λ1

λ1−t
λ2

λ2−t , t < min(λ1,λ2).

c) We deduce from b) that if λ1 = λ2, then Z is a gamma variable of parameters α = 2 and λ.

Solution 74 The mass function of X is

Pr(X = n) = p(1− p)n−1, n = 1, 2, . . . , 0 < p < 1,

and its MGF is

MX(t) =
∞�

n=1

etnp(1− p)n−1 = pet
∞�

n=1

[et(1− p)]n−1 =
pet

1− et(1− p)
, |et(1− p)| < 1.

The moments are well defined for values of p for which et(1− p)
���
t=0

< 1 or equivalently such that p > 0.

The first moment is M �
X(0), i.e.,

E(X) =
pet

1− et(1− p)
+ pet

et(1− p)

1− et(1− p)

���
t=0

= MX(t) +MX(t)2
���
t=0

(1−p)
p = 1

p ,

where we used the fact that MX(0) = 1.
The second moment is given by the second derivative of MX(t) evaluated at t = 0 and is

E(X2) = d[MX(t)�]
dt

���
t=0

= dMX(t)
dt

���
t=0

+ dMX(t)2

dt

���
t=0

1−p
p = 1

p + 1−p
p 2MX(t)dMX(t)

dt

���
t=0

= 2
p2 − 1

p .

Solution 75 a) By direct calculation: for k ∈ {0, 1, . . .}:

Pr{Z = k} =
�k

l=0 Pr{X = l, Y = k − l}
=

�k
l=0 Pr{X = l}Pr{Y = k − l}

= e−(λ1+λ2)
�k

l=0
λ1

l

l!
λ2

(k−l)

(k−l)!

= e−(λ1+λ2)

k!

�k
l=0 k!× λ1

l

l!
λ2

(k−l)

(k−l)!

= e−(λ1+λ2) (λ1+λ2)
k

k!

by the binomial theorem, so Z is Poissonian, of parameter λ1 + λ2 .
b) Remember that for all real t, independence of X and Y gives

MZ(t) = E[etZ ] = E[etXetY ] = E[etX ]E[etY ]

and that

MX(t) = e−λ1

∞�

k=0

etk λ1
k

k! = e−λ1eλ1e
t

= exp{λ1(e
t − 1)}.

Therefore
MZ(t) = exp(λ1(e

t − 1)) exp(λ2(e
t − 1)) = exp{(λ1 + λ2)(e

t − 1)} :

and we recognise this as the MGF of a Poisson variable of parameter λ1 + λ2.

Solution 76 a) The variables X and Y are centred at 0, and � and X are independent, so

cov(X,Y ) = E(XY )− E(X)E(Y ) = E(XY ) = E(�X2) = E(�)E(X2) = 0.

b) The vector (X,Y ) cannot be jointly Gaussian because X + Y isn’t Gaussian: X + Y takes the value
0 with probability 1/2. For a more formal argument, we can compute the joint MGF of (X,Y ), which is

E{exp(sX + tY )} = E�[E{exp(sX + tY ) | �}] = 1
2E{exp(sX + tX)}] + 1

2E{exp(sX − tX)}],

48



where � = +1 in the first summand and equals −1 in the second summand. Therefore

E{exp(sX + tY )} = 1
2 exp{(s+ t)2/2}+ 1

2 exp{(s− t)2/2},

and this is clearly not of the form exp{(s, t)µ + (s, t)Ω(s, t)T/2} for some µ and Ω, which would be
necessary for the joint density to be Gaussian.

c) No, because Y is a function of X!

Solution 77 We use the convolution formula

fZ(z) =

� ∞

−∞
fX(x)fY (z − x)dx,

here with fX(x) = fY (y) = 1 if 0 ≤ x ≤ 1, and otherwise zero. We therefore have

fX(x)fY (z − x) = 1, 0 ≤ x ≤ 1, z − 1 ≤ x ≤ z, fX(x)fY (z − x) = 0 otherwise.

There are several cases to consider:

• If z > 2 or z < 0, then {0 ≤ x ≤ 1} ∩ {z − 1 ≤ x ≤ z} is empty and fZ(z) = 0.

• If 0 ≤ z ≤ 1, then {0 ≤ x ≤ 1} ∩ {z − 1 ≤ x ≤ z} = {0 ≤ x ≤ z} and fZ(z) = z.

• If 1 ≤ z ≤ 2, then {0 ≤ x ≤ 1}∩{z−1 ≤ x ≤ z} = {z−1 ≤ x ≤ 1} and fZ(z) = 1− (z−1) = 2−z.

We find the required density.

Chapter 6

Solution 78 a) α = 2/θ2.
b) By definition FMn

(x) = Pr(max1≤i≤n Xi ≤ x). So,

FMn
(x) =

�� x

0

αydy

�n

= αn

�
x2

2

�n

=
�x
θ

�2n
.

Furthermore fMn
(x) = dFMn

(x)/dx. So,

fMn
(x) =

2n

θ2n
x2n−1, 0 < x < θ,

and

µ1 = E(Mn) =

� θ

0

x
2n

θ2n
x2n−1dx =

2n

θ2n
θ2n+1

2n+ 1
=

2n

2n+ 1
θ,

µ2 = E(M2
n) =

� θ

0

x2 2n

θ2n
x2n−1dx =

2n

θ2n
θ2n+2

2n+ 2
=

n

n+ 1
θ2.

c) We must show that for each � > 0, limn→∞ Pr(| Mn−θ |≥ �) = 0. But, by Chebyschov’s inequality,

Pr(| Mn − θ |≥ �) ≤ 1

�2
E{(Mn − θ)2}

=
1

�2
E(M2

n − 2Mnθ + θ2)

=
θ2

�2

�
n

n+ 1
− 4n

2n+ 1
+ 1

�

=
θ2

�2
1

(2n+ 1)(n+ 1)
,

which gives the result.
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Solution 79 a) Since X is a positive random variable, by Markov’s inequality:

Pr{X > 85} ≤ E
�
X
85

�
= 75

85 � 0, 88.

b) Knowing the second moment of X allows us to use Chebyshov’s inequality,

Pr{X > 85} = Pr{X2 > 852} ≤ 1
852E(X

2) = σ2+E(X)2

852 = 25+752

852 � 0, 78.

We also have:

Pr{65 ≤ X ≤ 85} = Pr{| X − E(X) |≤ 10} = 1− Pr{| X − E(X) |> 10} ≥ 1− σ2

102 = 3/4.

c) Since the marks of each of the n students are independent variables,

Xn = 1
n

n�

k=1

Xk

is also of expectation 75, and its variance is (n25)/n2 = 25/n. Hence

Pr{| Xn − E(Xn) |≤ 5} = 1− Pr{| Xn − E(Xn) |> 5} ≥ 1− 25/n
25 = n−1

n :

with 10 students our probability is at least 0.9 .
d) Let’s see if it is pertinent to use the CLT. If it can be applied, we have:

Pr{| Xn − E(Xn) |≤ 5} � Pr(−5 ≤ Zn ≤ 5) = Pr( −5√
25/n

≤ Z ≤ 5√
25/n

),

where Zn is normal and centred of variance 25/n and Z is standard normal. The minimum number of
students obtained this time is n = 3, quite a different result! With n = 10, we are not in an asymptotic
case and the CLT therefore doesn’t apply.

Solution 80 The number Y of sixes obtained in 120 throws follows a binomial distribution with n = 120
and p = 1/6, with mean µ = np = 120× 1/6 = 20 and variance σ2 = np(1− p) = 120× 1/6× 5/6 � 16.7.

By the CLT, we can approximate the binomial Y by X ∼ N (20, 16.7). The required probability is
thus approximately (using the continuity correction)

Pr(X < 15.5) = Pr
�
Z < 15.5−µ

σ

�
= Pr

�
Z < 15.5−20√

16.7

�
= Pr(Z < −1.1) � 0.135,

where Z ∼ N(0, 1).

Solution 81 The number of heads obtained, X, is a sum of 500 independent random Bernoulli variables
of parameter 1/2, so it is binomial with parameters n = 500 and p = 1/2. Its expectation and variance
are therefore µ = np = 500× 1

2 = 250 and σ2 = np(1− p) = 500× 1
2 × 1

2 = 125. The CLT gives

Pr(250− 10 ≤ X ≤ 250 + 10) = Pr(240 ≤ X ≤ 260) � Pr
�
240−µ

σ ≤ Z ≤ 260−µ
σ

�

i.e.,
Pr(−0.894 ≤ Z ≤ 0.894) = 2× Pr(0 ≤ Z ≤ 0.894) = 2× 0.314 = 0.628,

where Z ∼ N(0, 1).

Solution 82 Let X1, . . . , X50 denote the numbers, A1, . . . , A50 their rounded versions and U1, . . . , U50

the corresponding errors. Thus Xk = Ak +Uk. The sum obtained by rounding is
�50

k=1 Ak and the exact

sum is
�50

i=k Xk, so the error is
50�

k=1

Xk −
50�

k=1

Ak =
50�

k=1

Uk.

The variable
�50

k=1 Uk has zero expectation and variance 50 × 1/12 (by independence). We therefore
have, by application of the CLT:

Pr

������
50�

k=1

Uk

����� > 3

�
� Pr

�
|Z| > 3�

50/12

�
= 2× Pr

�
Z >

3�
50/12

�
≈ 2 {1− Φ(1.47)} � 0.142.

Here Z is standard normal.
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Solution 83 Let T = X1 + · · ·+X100 denote the random variable for the lifespan of the system. Then
since T is a sum of many independent identically distributed random variables, the central limit theorem
implies that T has an approximate normal distribution of expectation 100 × 5 = 500 and variance
σ2 = 100× 25 = 2500 = 502. Hence

Pr(T > 525) = Pr

�
T − 500

50
>

525− 500

50

�
� Pr (Z > 0.5) = 1− Φ(0.5) � 0.31,

where Z ∼ N(0, 1).

Solution 84 In this problem, a first light-bulb of lifetime X1 is put in place, then, when this one is at
the end of its life, it is replaced by another light-bulb of lifetime X2, etc.

Let XA denote the total lifetime of the light-bulbs of type A. Since 40 ≥ 25 and the bulbs should
be independent, we can apply the central limit theorem, which tells us that the sum XA

·∼ N(µA,σ
2
A),

where µA = 40/λA = 4000 [hours] and σ2
A = 40/λ2

A = 400000 [hours2].

Similarly, with XB the total lifetime of the B-type light-bulbs, XB
·∼ N(µB = 3000,σ2

B = 150000).
Using properties of the normal distribution, the total lifetime of all the light-bulbs, X = XA +XB is

approximately a normal variable of mean µ = µA+µB = 7000 hours and variance σ2 = σ2
A+σ2

B = 550000
hours2. Having obtained the distribution of X we can now calculate our probability to be

Pr(X ≥ 6500) = 1− Pr(X ≤ 6500) = 1− Φ

�
6500− 7000√

550000

�
= 1− Φ(−0.67) = 0.75.

Solution 85 a) Since Y = lnX,

E(Y ) =

� 1

0

lnx dx = x lnx− x|10 = −1,

and

var(Y ) = E
�
Y 2
�
− E(Y )2 =

�� 1

0

(lnx)2dx

�
− 1 = x(lnx)2 − 2x lnx+ 2x|10 − 1 = 1.

b) We observe that the function ln is strictly increasing and therefore

Pr
�
Z < 10−40

�
= Pr (lnZ < −40 ln 10) ,

and that, if we set Yi = lnXi, we obtain

lnZ =

100�

i=1

Yi,

that is to say lnZ is the sum of 100 independent variables with the same distribution, and whose ex-
pectation and variance were obtained in a). We use the CLT and replace lnZ by W ∼ N (−100, 100),
giving

Pr
�
Z < 10−40

�
� Pr (W < −40 ln 10) = Pr

�
W − E(W )�

var(W )
<

−40 ln 10 + 100

10

�
� Φ(0.790) � 0.78.

Solution 86 Let A, B, C denote the random variables for the calculation times of each of the three
sections.

a) In an obvious notation, cov(A,C) = corr(A,C)σAσC = 0.2× 2.5× 1.3 = 0.65.

b) We have
E(T ) = E(A+B + C) = E(A) + E(B) + E(C) = 5.5 + 3.4 + 4.5 = 13.4,

and

var(T ) = var(A+B + C)

= var(A+ C) + var(B) (since B is independent of A and C)

= var(A) + var(C) + 2cov(A,C) + var(B)

= 2.52 + 1.32 + 2× 0.65 + 2.62

= 16.
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c) The calculation time of section B is the sum of 100 independent and identically distributed calculation
times, so the central limit theorem implies that the distribution of B is approximately normal, and
B

·∼ N (3.4, 6.76).

d) Since T is a sum of normal variables, it is approximately normal, with T
·∼ N (13.4, 16). Thus

Pr(T ≤ 10) = Pr

�
T − 13.4√

16
≤ 10− 13.4√

16

�
= Φ(−0.85) ≈ 0.20,

and

Pr(T ≥ 20) = Pr

�
T − 13.4√

16
≥ 20− 13.4√

16

�
= 1− Φ(1.65) ≈ 0.05.

Solution 87 We note that X
·∼ N (µ, µ/n) using the central limit theorem, and apply the delta method

with g(u) = 2
√
u, giving g�(u) = u−1/2. Therefore

Y = g(X)
·∼ N

�
g(µ), g�(µ)2 × µ/n

�
= N (2

√
µ, 1/n), n → ∞.

Thus the variance of Y does not depend on µ, at least to this order of approximation, and therefore the
square root transformation is variance-stabilizing for the Poisson distribution.

Solution 88 Using the results on linear combinations of normal variables, X ∼ N (µ,σ2/n), and if we
apply the delta method with g(u) = 1/u, we have g�(u) = −1/u2, provided u �= 0. Therefore

Y = g(X)
·∼ N

�
g(µ), g�(µ)2 × σ2/n

�
= N{1/µ,σ2/(nµ4)}, n → ∞,

provided that µ �= 0. Note that if X has units of length (say), then its mean and its variance have units
of length and length2, so 1/X has units of 1/length and its variance has units of 1/length2, agreeing with
the distribution here.

If µ = 0, then for all n, we have Pr(X < 0) = Pr(X > 0) = 1/2, so the distribution of Y will
concentrate at ±∞ with equal probabilities as n → ∞.

Chapter 7

Solution 89 The median is a location measure in the same way as the average, as it finds a typical or
central value that best describes the data. The median is called robust because it is very little influenced
by a single outlier (or even a few outliers), unlike the average.

Solution 90 Only b): All the observations are equal, because s2 = (n− 1)−1
�

(xj − x)2 = 0.
The only way we can observe s2 = 0 is if (xj−x) = 0 for all j, and this means that x1 = · · · = xn = x.

There is no implication here that n is small or that x = 0, and if the data were normally distributed,
then it would be impossible to observe two identical values, because the normal density is continuous.

Solution 91 The empirical covariance measures the association of the variables X and Y but is un-
bounded. We can give as counter-example to c) the observations (x1, y1) = (1,−1) and (x2, y2) = (1, 1),
for which the covariance is nil. Unlike the correlation, the covariance depends on the units of X and Y .

Solution 92 The empirical correlation is dimensionless, measures the (linear) association between the
variables X and Y , and lies between −1 and 1, so b) and c) are true. A counter-example to d) is the
observations (x1, y1) = (1,−1) and (x2, y2) = (1, 1), for which the correlation is zero.

Solution 93 The empirical correlation is defined as

rXY =
1

n− 1

�n
i=1(xi − x)(yi − y)��n

i=1(xi − x)2
�n

i=1(yi − y)2
,

where x and y are the averages of x1, . . . , xn and y1, . . . , yn. If rXY = −±, the points line on a straight
line of positive/negative slope. If rXY = 0 the cloud of points shows no linear relation: there may be no
relation, or there may be a nonlinear relation.

Solution 94 (i) If the empirical correlation is 1, then the points (xi, yi) are perfectly aligned and the
corresponding line has a strictly positive slope. Possible data configurations are
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(ii) If the empirical correlation is −0.5, then the points (xi, yi) form a cloud that has a rough negative
trend. Possible data configurations are
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(iii) If the empirical correlation is 0, then the points (xi, yi) form a cloud that doesn’t exhibit a linear
trend. Possible data configurations are
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Chapter 8

Solution 95 The mean and variance are respectively α/λ and α/λ2, so the estimators are the solutions
to the equations

α

λ
= X = n−1

n�

j=1

Xj ,
α

λ2
= n−1

n�

j=1

(Xj −X)2,
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i.e.,

λ̃ = X/



n−1

n�

j=1

(Xj −X)2



 , α̃ = (X)2/



n−1

n�

j=1

(Xj −X)2



 .

Solution 96 (a) Since X ∼ N (µ,σ2), we have

E(Y r) = E(erX) = MX(r) = exp(rµ+ r2σ2/2), r ∈ R,

which gives the stated equations after a little work with MX(1) and MX(2).
(b) The moment estimators solve the equations

Y = eψ, n−1
n�

j=1

(Yj − Y )2 = e2ψ(eσ
2 − 1)

simultaneously, so they are (after a little algebra)

ψ̃ = log(Y ), σ̃2 = log


1 + log



n−1

n�

j=1

(Yj − Y )2/Y
2






 .

Solution 97 The likelihood is

L(θ) =
n�

i=1

fθ(yi) =

�
2−nθnθ2ne−θ

�n
i=1 yi

�n
i=1 y

2
i , θ > 0,

0, θ ≤ 0,

and this equals

L(θ) = C exp

�
−θ

n�

i=1

yi + 3n log θ

�
, θ > 0,

where C does not depend on the parameter θ, The function θ �→ �(θ) = 3n log θ − θ
�n

i=1 yi is concave
and the equation d�(θ)/dθ = 0 has exactly one root, so �(θ) reaches its maximum at

�θ =
3n�n
i=1 yi

,

which is the maximum likelihood estimator of θ.

Solution 98 The likelihood is

L(θ) =
n�

i=1

e−θ θ
zi

zi!
= e−2nθ (2θ)

z1+···+zn

z1! . . . zn!
, θ > 0.

so
L(θ) ∝ exp {(z1 + · · ·+ zn) log 2θ − 2nθ} , θ > 0,

where the constant of proportionality does not depend on the parameter θ. The function L(·) reaches its
maximum at

�θ =

�n
i=1 zi
2n

= z/2,

which is the maximum likelihood estimator of θ.

Solution 99 The density of the U(0, b) distribution is

f(x) = b−1, 0 ≤ x ≤ b.

Since the observations are independent, the likelihood based on a random sample that has taken values
x1, . . . , xn is

L(b) = f(x1)× · · · × f(xn) = b−n, 0 ≤ x1, . . . , xn ≤ b,

which reaches its maximum when b takes the smallest possible value for which L(b) > 0, i.e., when

b = maxxi. The maximum likelihood estimate of b is therefore �b = maxni=1 xi, and the corresponding
estimator is maxni=1 Xi.

54



Solution 100 (a) With Ua denoting the event ‘X1 ∼ U(0, a)’, and likewise for Ub, we have

FX1
(x) =





0, x < 0,

Pr(X1 ≤ x | Ua)Pr(Ua) + Pr(X1 ≤ x | Ub)Pr(Ub), 0 ≤ x ≤ b,

1, x > b,

=





0, x < 0,

px
a + (1− p)xb , 0 ≤ x ≤ a,

p+ (1− p)xb , a ≤ x ≤ b,

1, x > b,

and the corresponding density function is

fX1(x) =





0, x < 0,
p
a + (1−p)

b , 0 ≤ x ≤ a,
(1−p)

b , a ≤ x ≤ b,

0, x > b.

(b) The variables being supposed independent, each of the Xi will belong to the interval [0, a] with
probability FX1

(a). Thus Na ∼ B{n, p̃ = p + (1− p)a/b}, with expectation E(Na) = np̃ and variance
var(Na) = np̃(1− p̃).

(c) The likelihood for p is

L(p) =

�
p

a
+

1− p

b

�Na
�
1− p

b

�n−Na

, 0 ≤ p ≤ 1,

and differentiation with respect to p yields

∂ logL(p)

∂p
= Na

b− a

pb+ (1− p)a
− n−Na

1− p
,

thus giving

�p =
Nab− na

n(b− a)
.

Solution 101 Let Zj = Xj − θ, so that E(Zj) = 0, var(Zj) = (b− a)2/12, and the Zj are independent
and identically distributed. Note that E(X) = θ, and that

�
X − θ

�2
=

�
n�

i=1

�
Xi

n
− θ

n

��2

=


 1

n

n�

j=1

Zj




2

=
1

n2

n�

j=1

Z2
j +

1

n2

�

i�=j

ZiZj .

Since E(Zj) = 0, we have that E(Z2
j ) = var(Zj) and E(ZiZj) = 0 if i �= j, by independence, so the mean

square error of X as an estimator of θ is

E
��

X − θ
�2�

=
1

n2

n�

j=1

var(Zj) =
1

n
var(Z1) =

(b− a)2

12n
.

Solution 102 (a) We have E(T ) = θ/2 and var(T ) = θ2/(12n), so E(�θ1) = θ and var(�θ1) = θ2/(3n) → 0
as n → ∞.

(b) Now Pr(Mn < m) = Pr(T1 < m, . . . , Tn < m), so

Pr(Mn < x) =





0, x ≤ 0,

(x/θ)n, x ∈ [0, θ],

1, x > θ,

from which the density nxn−1/θn for 0 < x < θ is easily obtained. Integration then gives E(Mn) =
nθ/(n+ 1) and E(M2

n) = nθ2/(n+ 2), so var(Mn) = nθ2/{(n+ 2)(n+ 1)2}.
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(c) We take �θ2 = (n+ 1)Mn/n, which gives

E(�θ2) = θ, var(�θ2) = (n+ 1)2var(Mn)/n
2 = θ2/{n(n+ 2)} → 0, n → ∞.

(d) Since var(�θ2) < var(�θ1) for n > 10 and both estimators are unbiased, we should use �θ2 whenever

n > 10 and otherwise use �θ1.
(e) Mn and �θ2 converge towards θ in probability because, for any � > 0 and as n → ∞,

Pr(|Mn − θ| > �) = Pr(θ −Mn > �) =

�
θ − �

θ

�n

→ 0,

and

Pr(|�θ2−θ| > �) = Pr

�����Mn − n

n+ 1
θ

���� >
n

n+ 1
�

�
= Pr

�
Mn <

n

n+ 1
(θ − �)

�
+Pr

�
Mn >

n

n+ 1
(θ + �)

�
→ 0,

as can easily be verified using the distribution function of Mn.

Solution 103 The proportion of the population who gave a false answer is estimated as 12/120 = 0.1.
Let X be the random variable representing the number of wrong answers, that is X ∼ Bin(120, 0.1)
(assuming that the answers were independent). We can apply the central limit theorem to deduce a
confidence interval with 1 − α = 0.95, and σ2 = np(1 − p). We want the quantile z1−α/2 satisfying

Pr(Z ≤ z) = 1 − α/2 = 0.975, i.e., z0.975 = 1.96. Thus the limits are 0.1 ± 1.96 ×
�

0.1×(1−0.1)
120 =

[0.046, 0.154].

Solution 104 (a) With n measurements with average x, the confidence interval at level (1 − α) = 0.9
for µ has limits x± σz1−α/2/

√
n, so its length is 2σz1−α/2/

√
n. To halve its length, we must quadruple

n to equal 100, that is, take 75 further measurements.
(b) Let α = 0.1 and α� = 0.05. To obtain a 95% confidence interval of the same length as the initial

one, we need n� measurements such that
√
n� � √

n × z1−α�/2/z1−α/2 � 5.958, i.e., n� = 35.5, which
amounts to 11 extra measurements.

Solution 105 a) For a normal sample of size n with unknown mean and variance, a confidence interval
for the mean is based on the Student t distribution with ν = n−1 degrees of freedom. Thus ν = 5 for the
xs and ν = 11 for the ys, and a standard computation gives [47.44, 50.96] as the 95% confidence interval
for µ1, and [47.29, 49.51] as that for µ2.

b) This time, σ is known, and we use the normal distribution. Again this is a standard computa-

tion, this time using the fact that
√
6(X−µ1

σ1
) ∼ N(0, 1) to arrive at the interval [47.94, 50.47]. Similar

computations for the second sample lead to [47.42, 49.38].
c) X − Y is a linear combination of normal variables, so it is normal, of expectation µ1 − µ2 and

variance σ2
1/6 + σ2

2/12 = 2/3. The 90% confidence interval for µ1 − µ2 equals [(49.2 − 48.4) − 1.6445 ×�
2/3, (49.2− 48.4) + 1.6445×

�
2/3] = [−0.54, 2.14].

Solution 106 Let X denote the number of coffees drunk annually by any given employee. From the
wording, X ∼ N(µ,σ2), with both parameters unknown. The data give x = 500 and s2 = 1002. A 95%
confidence interval for µ is

[x− tn−1(1− α/2)s/
√
n, x+ tn−1(1− α/2)s/

√
n],

where n = 300 and tn−1(1− α/2) is the (1− α/2)-quantile of the tn−1 distribution, here equal to z1−α/2

since n = 300 is big, and α = 0.05. This gives [488.68, 511.32] coffees as the required confidence interval
for µ.

A 95% confidence interval for the variance σ2 of X is given by

�
(n−1)s2

χ2
n−1(1−α/2)

, (n−1)s2

χ2
n−1(α/2)

�
,

where χ2
n−1(α/2) is the α/2-quantile of the χ2

n−1 distribution at (n − 1) degrees of freedom. This gives
[8572.49, 11818.65] coffees2.
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Solution 107 a) The average is x = 150.3 grams and the sample standard deviation is s = 33.2 grams.
Supposing that the weight of the apples is normally distributed, the bounds of a 90% confidence
interval can be calculated as follows: 150.3 ± t9(0.95) × 33.2/

√
10, where t9(0.95) = 1.833, giving

[131.0, 169.5] grams.

b) A 90% confidence interval covers the true average weight of an apple 9 times out of 10, when computed
for many independent samples of apples.

Solution 108 a) We have:

x = 1
1000 (9× 2001 + 21× 2003 + · · ·+ 3× 2021) � 2010.73,

s2 = 1
999{9× (2001− 2010.73)2 + 21× (2003− 2010.73)2 + · · ·+ 3× (2023− 2010.73)2} � 12.81.

Clearly we can take �µ = x and �σ =
√
s2.

b) Let Z ∼ N (0, 1), so that Pr{Z > 1.96} � 0.025,Pr{Z > 2.58} � 0.005. Since the number of pots
is very large and because the standard normal distribution is the limiting case of the Student for large
degrees of freedom, we use a normal confidence interval, rather than a Student t interval. Thus a 95%
confidence interval for µ is [�µ− 1.96×�σ√

1000
, �µ+ 1.96×�σ√

1000
] � [2010.51, 2010.95] grams.

For the 99% confidence interval we replace 1.96 by 2.58 and obtain [2010.44, 2011.02] grams.

Solution 109 a) Since n = 1000 is quite large, we can suppose that the average salary follows a normal
distribution. A 90% confidence interval is therefore (with α = 0.1)

[x− z1−α/2s/
√
n, x+ z1−α/2s/

√
n] = [47375, 48624] CHF.

b) This comes down to testing the hypothesis H: “the average salary is 50000 CHF”. From the
previous question, we can reject H at level 90% (because 50000 is not in the 90% confidence interval), so
the statement is not reasonable. The true average seems to be lower than 50000.

Solution 110 a) We have x = 9 minutes and s2 = 6.25 minutes2.

b) If X is the random variable for the conversation time, we seek Pr(X ≥ 10). If we suppose that
X ∼ N (x, s2), which seems reasonable since x and s2 are estimates of E(Xi) and var(Xi) and we have
assumed that the data are normal, and write X̃ = (X − x)/s, the required probability is Pr(X̃ ≥
0.4) = 1− Φ(0.4) = 0.345.

c) The null hypothesisH0 specifies the mean but not the variance, and under it T = (X−8)/
�
S2/9 ∼ t8.

Under the alternative hypothesis E(X) < 8, so negative values of T would be evidence against H0;
thus we seek to compute pobs = Pr0(T ≤ tobs), small values of which will suggest that H0 is false. The
observed value of T is t = (9 − 8)/

�
6.25/9 = 1.2, and p = Pr(T ≤ 1.2) = 0.868. Since this exceeds

0.05, we accept H0. If anything, the data suggest that the average length of a call exceeds 8 minutes.

Solution 111 An optimal rejection region of level α is calculated using the Neyman–Pearson lemma.
Write r =

�n
j=1 yj , and let f0(y) =

�n
j=1 e

−yj and f1(y) =
�n

j=1 λe
−λyj denote the densities of the

sample under the null and alternative hypotheses. Then

f1(y)

f0(y)
= λne−r(1−λ),

which is increasing in r. Therefore we set

Yα =



y1, . . . , yn ∈ R+ :

n�

j=1

yj ≤ rα



 ,

and we want to find rα such that α = Pr0(Y ∈ Yα) = Pr0(R ≤ rα). Thus rα is the α quantile of the

distribution of R =
�n

j=1 Yj , computed under the null hypothesis that Y1, . . . , Yn
iid∼ exp(1). The sum

of n standard independent exponential variables follows a Γ(n, 1) distribution (to be checked via the
moment generating function, if you are unsure of this), giving rα = qΓ,α, the αth quantile of a Γ(n, 1)
distribution. We reject H0 in favour of H1 at level α if we observe the event R > rα.
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Chapter 9

Solution 112 a) The cumulative distribution function of R is

Pr(R ≤ r) =





0, r < 0,
πr2

πτ2 = ( rτ )
2, 0 ≤ r ≤ τ,

1, r > τ,

so the density function equals zero outside the interval [0, τ ] and f(r) = (2r)/τ2 inside this interval.
b) Since the variables R1, . . . , Rn are independent, the likelihood based on data r1, . . . , rn is

L(τ) =
n�

i=1

f(ri) =

�
0, 0 ≤ τ < m,
2n(
�n

i=1 ri)/τ
2n, τ ≥ m,

where m = max(r1, . . . , rn), and L reaches its maximum at �τ = m. Let M = max(R1, . . . , Rn). Since
Pr(�τ ≤ r) = Pr(M ≤ r) = Pr(R1 ≤ r)n = (r/τ)2n (0 < r < τ), �τ has density

f�τ (r) =
2n

τ2n
r2n−1, 0 < r < τ,

and the bias of �τ is

E(�τ)− τ = 2n
τ2n

� τ

0

r × r2n−1dr − τ = 2n
2n+1τ − τ = −τ/(2n+ 1);

we see that �τ is biased downwards. An unbiased estimator of τ is τ̃ = (2n+ 1)M/(2n).

Solution 113 (a) Let x1, . . . , x400 ≥ 0 be the sample. The likelihood is

L(k) =
400�

i=1

fk(xi) = k800

�
400�

i=1

xi

�
e−k

�400
i=1 xi ∝ exp

�
800 log k − k

400�

i=1

xi

�
, k > 0,

where the constant of proportionality does not depend on k, and the function k �→ 800 log k − k
�400

i=1 xi

reaches its maximum at �k = 800/
�400

i=1 xi = 2/x = 1.
(b) The log-likelihood is

�(k) = 800 log k − k
400�

i=1

xi, k > 0,

plus a constant, and

��(k) = 800/k −
400�

i=1

xi, ���(k) = −800/k2,

so the observed information at �k equals J(�k) = 800/�k2 = 800. An approximate confidence interval for k

at level (1− α) = 95% is [�k − J(�k)−1/2z1−α/2,�k + J(�k)−1/2z1−α/2] = [0.93, 1.07] (1000 maravedis)−1.
(c) Since the estimated density is xe−x, for x > 0, the proportion of families saving less than 1000

maravedis per month can be estimated by

� 1

0

xe−xdx = 1− 2/e � 0.26.

Chapter 10

Solution 114 (a) From the wording, the prior distribution of p is

Pr(p = 0.05) = Pr(p = 0.1) = 0.5.

For fixed p, X follows a binomial distribution of parameters n = 20 and p:

Pr(X = k | p) =
�
n

k

�
pk(1− p)n−k, k = 0, . . . , n.
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(b) From the total probability formula,

Pr(X = 3) = Pr(X = 3 | p = 0.05)Pr(p = 0.05) + Pr(X = 3 | p = 0.1)Pr(p = 0.1)

= 0.0596× 0.5 + 0.1901× 0.5 = 0.1249.

(c) Among the 20 components, 3 components have been detected as defective. The posterior proba-
bilities of p = 0.05 and p = 0.1 are, from Bayes’ theorem,

Pr(p = 0.05 | X = 3) =
Pr(X = 3 | p = 0.05)Pr(p = 0.05)

Pr(X = 3)
=

0.0596× 0.5

0.1249
= 0.2386,

Pr(p = 0.1 | X = 3) =
Pr(X = 3 | p = 0.1)Pr(p = 0.1)

Pr(X = 3)
=

0.1901× 0.5

0.1249
= 0.7614.

A posteriori it is three times more likely that 10% of the components are defective, rather than 5%.
(d) The posterior expectation of p is

E(p | X = 3) = 0.05× Pr(p = 0.05 | X = 3) + 0.1× Pr(p = 0.1 | X = 3) = 0.0881.

The posterior variance of p is

var(p | X = 3) = E(p2 | X = 3)− E(p | X = 3)2

= 0.052 × Pr(p = 0.05 | X = 3) + 0.12 × Pr(p = 0.1 | X = 3)− {E(p | X = 3)}2
= 0.0004.

(e) The posterior mean of p agrees exactly with neither the employee (who states that p = 0.05),
nor with the inspector (who estimates that p = 0.1), but the value given by the inspector is nearer the
posterior mean.

Solution 115 Let the total number of bugs be N , let the number of bugs found thus far be X, and
let M = N − X. Since it is possible that there might be no bugs, we represent N using the geometric
distribution

Pr(N = n | θ) = θ(1− θ)n, n = 0, 1, . . . , 0 < θ < 1,

and we take X | {N = n, θ} ∼ B(n, θ), and π(θ) = 1 for 0 < θ < 1. We want to find

Pr(M = m | X = x) = Pr(N = m+ x | X = x), m = 0, 1, . . . ,

which can be written as

Pr(N = m+ x,X = x)

Pr(X = x)
=

� 1

0
Pr(X = x | N = m+ x, θ)Pr(N = m+ x | θ)π(θ) dθ

�∞
m=0

� 1

0
Pr(X = x | N = m+ x, θ)Pr(N = m+ x | θ)π(θ) dθ

.

The numerator integral here is

� 1

0

�
m+ x

x

�
θx(1−θ)m+x−x×θ(1−θ)m+x×1 dθ =

�
m+ x

x

�� 1

0

θx+1(1−θ)2m+x dθ =

�
m+ x

x

�
B(x+2, 2m+x+1),

where B(·, ·) denotes the beta function, so the integral equals

(m+ x)!

x!m!

(x+ 1)!(2m+ x)!

(2m+ 2x+ 2)!
= (x+ 1)

(m+ x)!(2m+ x)!

m!(2m+ 2x+ 2)!
, x,m = 0, 1, . . .

Thus

Pr(M = m | X = x) =
(m+ x)!(2m+ x)!/{m!(2m+ 2x+ 2)!}�∞
r=0(r + x)!(2r + x)!/{r!(2r + 2x+ 2)!} , m = 0, 1, . . . .

If x = 0, this simplifies to

Pr(M = m | X = 0) =
1/{(2m+ 1)(2m+ 2)}�∞
r=0 1/{(2r + 1)(2r + 2)} , m = 0, 1, . . . ;

note that the lower sum is finite, because

0 <
∞�

r=0

1

(2r + 1)(2r + 2)
≤

∞�

r=0

1

(r + 1)(r + 2)
=

∞�

r=0

�
1

r + 1
− 1

r + 2

�
= 1,

59



so Pr(M = m | X = 0) gives a well-defined distribution (the probabilities are all positive and their sum
equals unity). Now

E(M | X = 0) =

�∞
m=0 m/{(2m+ 1)(2m+ 2)}�∞

r=0 1/{(2r + 1)(2r + 2)} .

We have just seen that the lower sum here is finite, but

∞�

m=0

m

(2m+ 1)(2m+ 2)
=

1

2

� ∞�

m=0

2m+ 1

(2m+ 1)(2m+ 2)
−

∞�

m=0

1

(2m+ 1)(2m+ 2)

�
,

and first sum here equals 1
2

�∞
m=0(m + 1)−1 = +∞, while the second is finite. So, as we might expect,

E(M | X = 0) = +∞: even if we have found none so far, we can expect there to be an infinite number
of bugs in the operating system.

Solution 116 (a) The posterior density is

f(θ | t) = f(t | θ)g(θ)
f(t)

∝ f(t | θ)g(θ) = λθe−θ(λ+t) ∝ θe−θ(λ+t), θ > 0,

which we recognise as being proportional to the gamma density with shape parameter 2 and scale pa-
rameter λ+ t, i.e.,

f(θ | t) = (λ+ t)2θe−θ(λ+t), θ > 0.

(b) The posterior density function of θ conditional on t1, . . . , tn is

f(θ | t1, . . . , tn) ∝ f(t1, . . . , tn | θ)g(θ) = g(θ)

n�

i=1

f(ti | θ) = λθne−θ(λ+
�n

i=1 ti), θ > 0,

which is maximised when
d

dθ

�
n log θ − θ

�
λ+

n�

i=1

ti

��
= 0,

so the MAP estimate is
�θMAP =

n

λ+
�n

i=1 ti
.
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