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Probability and Statistics for SIC slide 16

Course material

Probability constitutes roughly the first 60% of the course, and a good book is

! Ross, S. M. (2007) Initiation aux Probabilités. PPUR: Lausanne.

! Ross, S. M. (2012) A First Course in Probability, 9th edition. Pearson: Essex.

Statistics comprises roughly the last 40% of the course. Possible books are

! Davison, A. C. (2003). Statistical Models. Cambridge University Press. Sections 2.1, 2.2; 3.1, 3.2;
4.1–4.5; 7.3.1; 11.1.1, 11.2.1.

! Morgenthaler, S. (2007) Introduction à la Statistique. PPUR: Lausanne.

! Wild, C. & Seber, G. A. F. (2000). Chance Encounters: A First Course in Data Analysis and
Statistics. John Wiley & Sons: New York.

! Helbling, J.-M. & Nuesch, P. (2009). Probabilités et Statistique (polycopie).

There are many excellent introductory books on both topics, look in the Rolex Learning Centre.
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1.2 Preliminary ideas slide 18

Sets

Definition 1. A set A is a unordered collection of objects, x1, . . . , xn, . . .:

A = {x1, . . . , xn, . . .} .

We write x ∈ A to say that ‘x is an element of A’, or ‘x belongs to A’. The collection of all possible
objects in a given context is called the universe Ω.
An ordered set is written A = (1, 2, . . .). Thus {1, 2} = {2, 1}, but (1, 2) #= (2, 1).

Examples:

CH = {Geneva,Vaud, . . . ,Grisons} set of Swiss cantons

{0, 1} = finite set made up of the elements 0 and 1

N = {1, 2, . . .}, positive integers, countable set

Z = {. . . ,−1, 0, 1, 2, . . .}, integers, countable set

R = real numbers, uncountable set

∅ = { } empty set, has no elements

Probability and Statistics for SIC slide 19

10



Subsets

Definition 2. A set A is a subset of a set B if x ∈ A implies that x ∈ B: we write A ⊂ B.

! If A ⊂ B and B ⊂ A, then every element of A is contained within B and vice versa, thus A = B:
both sets contain exactly the same elements.

! Note that ∅ ⊂ A for every set A. Thus,

∅ ⊂ {1, 2, 3} ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C, ∅ ⊂ I ⊂ C

! Venn diagrams are useful for grasping the existing elementary relations between sets, but they
can be deceptive (not all relations can be represented).
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Cardinal of a set

Definition 3. A finite set A has a finite number of elements, and this number is called its cardinal:

card A, #A, |A|.

! Evidently |∅| = 0 and |{0, 1}| = 2

! Exercise: Show that if A and B are finite and A ⊂ B, then |A| ≤ |B|.
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Boolean operations

Definition 4. Let A,B ⊂ Ω. Then we can define

! the union and the intersection of A and B to be

A ∪B = {x ∈ Ω : x ∈ A or x ∈ B} , A ∩B = {x ∈ Ω : x ∈ A and x ∈ B} ;

! the complement of A in Ω to be Ac = {x ∈ Ω : x #∈ A}.

Evidently A ∩B ⊂ A ∪B,and if the sets are finite, then

|A|+ |B| = |A ∩B|+ |A ∪B|, |A|+ |Ac| = |Ω|.

We can also define the difference between A and B to be

A \ B = A ∩Bc = {x ∈ Ω : x ∈ A and x #∈ B},

(note that A \ B #= B \ A), and the symmetric difference

A * B = (A \ B) ∪ (B \ A).
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Boolean operations

If {Aj}∞j=1 is an infinite set of the subsets of Ω, then

∞⋃

j=1

Aj = A1 ∪A2 ∪ · · · : those x ∈ Ω that belong to at least one Aj ;

∞⋂

j=1

Aj = A1 ∩A2 ∩ · · · : those x ∈ Ω that belong to every Aj .

The following results are easy to show (e.g., using Venn diagrams):

! (Ac)c = A, (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc;

! A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C);

! (
⋃∞

j=1Aj)c =
⋂∞

j=1A
c
j , (

⋂∞
j=1Aj)c =

⋃∞
j=1A

c
j .
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Partition

Definition 5. A partition of Ω is a collection of nonempty subsets A1, . . . , An in Ω such that

! the Aj are exhaustive, i.e., A1 ∪ · · · ∪An = Ω, and

! the Aj are disjoint, i.e., Ai ∩Aj = ∅, for i #= j.

A partition can also be composed of an infinity of sets {Aj}∞j=1.

Example 6. Let Aj = [j, j + 1), for j = . . . ,−1, 0, 1, . . .. Do the Aj partition Ω = R?

Example 7. Let Aj be the set of integers that can be divided by j, for j = 1, 2, . . .. Do the Aj

partition Ω = N?
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Note to Example 6

Obviously, Aj ∩Ai = ∅ if i #= j. Moreover any real number x lies in A"x#, where +x, is the largest
integer less than or equal to x. Therefore these sets partition R.

Probability and Statistics for SIC note 1 of slide 24

Note to Example 7

Note that 6 ∈ A2 ∩A3, so these sets do not partition N.

Probability and Statistics for SIC note 2 of slide 24
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Cartesian product

Definition 8. The Cartesian product of two sets A,B is the set of ordered pairs

A×B = {(a, b) : a ∈ A, b ∈ B}.

In the same way
A1 × · · ·×An = {(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}.

If A1 = · · · = An = A, then we write A1 × · · · ×An = An.

As the pairs are ordered, A×B #= B ×A unless A = B.
If A1, . . . , An are all finite, then

|A1 × · · · ×An| = |A1|× · · · × |An|.

Example 9. Let A = {a, b}, B = {1, 2, 3}. Describe A×B.
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Note to Example 9

{(a, 1), (a, 2), . . . , (b, 3)}.
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1.3 Combinatorics slide 26

Combinatorics: Reminders

Combinatorics is the mathematics of counting. Two basic principles:

! multiplication: if I have m hats and n scarves, there are m× n different ways of wearing both a
hat and a scarf;

! addition: if I have m red hats and n blue hats, then I have m+ n hats in total.

In mathematical terms: if A1, . . . , Ak are sets, then

|A1 × · · ·×Ak| = |A1|× · · · × |Ak|, (multiplication),

and if the Aj are disjoint, then

|A1 ∪ · · · ∪Ak| = |A1|+ · · · + |Ak|, (addition).
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Permutations: Ordered selection

Definition 10. A permutation of n distinct objects is an ordered set of those objects.

Theorem 11. Given n distinct objects, the number of different permutations (without repetition) of
length r ≤ n is

n (n − 1) (n − 2) · · · (n− r + 1) =
n!

(n − r)!
.

Thus there are n! permutations of length n.

Theorem 12. Given n =
∑r

i=1 ni objects of r different types, where ni is the number of objects of
type i that are indistinguishable from one another, the number of permutations (without repetition) of
the n objects is

n!

n1! n2! · · · nr!
.
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Example

Example 13. A class of 20 students choose a committee of size 4 to organise a ‘voyage d’études’. In
how many different ways can they pick the committee if:
(a) there are 4 distinct roles (president, secretary, treasurer, travel agent)?
(b) there is one president, one treasurer, and two travel agents?
(c) there are two treasurers and two travel agents?
(d) their roles are indistinguishable?
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Note to Example 13

(a) First choose the president, then the secretary, etc., giving 20× 19× 18× 17 = 116280.
This is the number of permutations of length 4 in a group of size 20.
(b) 20× 19× 18× 17/2! = 58140.
(c) 20× 19× 18 × 17/(2!2!) = 29070.
(d) The first could have been chosen in 20 ways, the second in 19, etc. But the final group of four
could be elected in 4! orders, so the number of ways is 20× 19× 18× 17/4! = 4845.

Probability and Statistics for SIC note 1 of slide 29

Multinomial and binomial coefficients

Definition 14. Let n1, . . . , nr be integers in 0, 1, . . . , n, having total n1 + · · · + nr = n. Then

(
n

n1, n2, . . . , nr

)
=

n!

n1! n2! · · · nr!
,

is called the multinomial coefficient.
The most common case arises when r = 2:

(
n

k

)
=

n!

k!(n− k)!

(
= Ck

n in certain books
)

is called the binomial coefficient.

Probability and Statistics for SIC slide 30
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Combinations: non ordered selection

Theorem 15. The number of ways of choosing a set of r objects from a set of n distinct objects
without repetition is

n!

r!(n− r)!
=

(
n

r

)
.

Theorem 16. The number of ways of distributing n distinct objects into r distinct groups of size
n1, . . . , nr, where n1 + · · ·+ nr = n, is

n!

n1! n2! · · · nr!
.
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Properties of binomial coefficients

Theorem 17. If n,m ∈ {1, 2, 3 . . .} and r ∈ {0, . . . , n}, then:
(
n

r

)
=

(
n

n− r

)
;

(
n+ 1

r

)
=

(
n

r − 1

)
+

(
n

r

)
, (Pascal’s triangle);

r∑

j=0

(
m

j

)(
n

r − j

)
=

(
m+ n

r

)
, (Vandermonde’s formula);

(a+ b)n =
n∑

r=0

(
n

r

)
arbn−r, (Newton’s binomial theorem);

(1− x)−n =
∞∑

j=0

(
n+ j − 1

j

)
xj, |x| < 1, (negative binomial series);

lim
n→∞

n−r

(
n

r

)
=

1

r!
, r ∈ N.
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Note to Theorem 17

! The numbers of ways of choosing r objects from n is the same as the number of ways of choosing
n− r objects from n.

! To choose r objects from n+ 1, we first designate one of the n+ 1. Then if that object is in the
sample, we must choose r − 1 from among the other n, and if not, we must choose r from the n,
which gives the result.

! Suppose I have n blue hats and m red hats. Then the number of ways I can choose r hats from all
my hats equals the number of ways I can choose j red hats and r − j blue hats, summed over the
possible choices of j.

! The binomial results are standard.

! For the last part, with r fixed, we have

n−r

(
n

r

)
=

n(n− 1) · · · (n− r + 1)

nrr!
→ 1

r!
, n → ∞.

Probability and Statistics for SIC note 1 of slide 32
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Partitions of integers

Theorem 18. (a) The number of distinct vectors (n1, . . . , nr) of positive integers, n1, . . . , nr > 0,
satisfying n1 + · · · + nr = n, is (

n− 1

r − 1

)
.

(b) The number of distinct vectors (n1, . . . , nr) of non-negative integers, n1, . . . , nr ≥ 0, satisfying
n1 + · · ·+ nr = n, is (

n+ r − 1

n

)
.

Example 19. How many different ways are there to put 6 identical balls in 3 boxes, in such a way that
each box contains at least one ball?

Example 20. How many different ways are there to put 6 identical balls into 3 boxes?
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Note to Theorem 18

(a) Line up the n balls, and note that there are n− 1 spaces between them. You must choose r − 1
out of these n− 1 spaces to place these separators, giving the stated formula.
(b) Line up the n balls and the r− 1 separators. Any distinct configurations of these n+ r− 1 objects
will correspond to a different partition, so the number of these partitions is the number of ways the
balls and separators can be ordered, and this is the stated formula.

Probability and Statistics for SIC note 1 of slide 33

Note to Example 19

We have a total of n = 6 balls and r = 3 groups, each of which must have at least one member, so
the number is (

6− 1

3− 1

)
=

5!

3!2!
= 10.

Probability and Statistics for SIC note 2 of slide 33

Note to Example 20

Now there is the possibility of empty boxes, so the total number is

(
6 + 3− 1

6

)
=

8!

6!2!
= 28.

Thus there are 18 ways to get at least one empty box.

Probability and Statistics for SIC note 3 of slide 33
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Reminder: Some series

Theorem 21. (a) A geometric series is of the form a, aθ, aθ2, . . .; we have

n∑

i=0

aθi =

{
a1−θn+1

1−θ , θ #= 1,

a(n+ 1), θ = 1.

If |θ| < 1, then
∑∞

i=0 θ
i = 1/(1 − θ), and

∞∑

i=0

i!

r!(i− r)!
θi−r =

1

(1− θ)r+1
, r = 1, 2, . . . .

The exponential series

exp(x) =
∞∑

n=0

xn

n!

converges absolutely for all x ∈ C.
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Small lexicon

Mathematics English Français
Ω, A,B . . . set ensemble
A ∪B union union
A ∩B intersection intersection
Ac complement of A (in Ω) complémentaire de A (en Ω)

A \ B difference différence
A ∆ B symmetric difference différence symétrique
A×B Cartesian product produit cartésien
|A| cardinality cardinal

{Aj}nj=1 pairwise disjoint {Aj}nj=1 disjoint deux à deux
partition partition
permutation permutation
combination combinaison(n

r

)
binomial coefficient coefficient binomial (Cr

n)( n
n1,...,nr

)
multinomial coefficient coefficient multinomial

indistinguishable indifférentiable
colour-blind daltonien (ienne)

Probability and Statistics for SIC slide 35
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Small probabilistic lexicon

Mathematics English Français
one fair die (several fair dice) dé juste/équilibré (plusieurs dés justes/équilibrés)
random experiment expérience aléatoire

Ω sample space ensemble fondamental
ω outcome, elementary event épreuve, événement élémentaire

A,B, . . . event événement
F event space espace des événements

sigma-algebra tribu
P probability distribution/probability function loi de probabilité

(Ω,F ,P) probability space espace de probabilité
inclusion-exclusion formula formule d’inclusion-exclusion

P(A | B) probability of A given B probabilité de A sachant B
independence indépendance
(mutually) independent events événements (mutuellement) indépendants
pairwise independent events événements indépendants deux à deux
conditionally independent events événements conditionellement indépendants

Probability and Statistics for SIC slide 37

2.1 Probability Spaces slide 38

The Card Players

Paul Cézanne, 1894–95, Musée d’Orsay, Paris

Probability and Statistics for SIC slide 39
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Motivation: Game of dice

We throw two fair dice, one red and one green.

! (a) What is the set of possible results?

! (b) Which results give a total of 6?

! (c) Which results give a total of 12?

! (d) Which results give an odd total?

! (e) What are the probabilities of the events (b), (c), (d)?

Probability and Statistics for SIC slide 40

Calculation of probabilities

! We can try to calculate the probabilities of events such as (b), (c), (d) by throwing the dice
numerous times and letting

probability of an event =
# of times event takes place

# experiments carried out
.

This is an empirical rather than a mathematical answer, to be reached only after a lot of work
(how many times should we roll the dice?), and it will yield different answers each time—not
satisfactory!

! For simple examples, we often use symmetry to calculate probabilities. This isn’t possible for more
complicated cases—we construct mathematical models, based on notions of

– random experiments

– probability spaces.

Probability and Statistics for SIC slide 41

Random experiment

Definition 22. A random experiment is an ‘experiment’ whose result is (or can be defined as)
random.

Example 23. I toss a coin.

Example 24. I roll 2 fair dice, one red and one green.

Example 25. The number of emails I receive today.

Example 26. The waiting time until the end of this lecture.

Example 27. The weather here tomorrow at midday.

Probability and Statistics for SIC slide 42
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Andrey Nikolaevich Kolmogorov (1903–1987)

Grundbegriffe der Wahrscheinlichkeitsrechnung (1933)

(Source: http://en.academic.ru/dic.nsf/enwiki/54484)
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Probability space (Ω,F ,P)

A random experiment is modelled by a probability space.

Definition 28. A probability space (Ω,F ,P) is a mathematical object associated with a random
experiment, comprising:

! a set Ω, the sample space (universe), which contains all the possible results (outcomes,
elementary events) ω of the experiment;

! a collection F of subsets of Ω. These subsets are called events, and F is called the event space;

! a function P : F 1→ [0, 1] called a probability distribution, which associates a probability
P(A) ∈ [0, 1] to each A ∈ F .

Probability and Statistics for SIC slide 44

Sample space

! The sample space Ω is the space composed of elements representing all the possible results of a
random experiment. Each element ω ∈ Ω is associated with a different result.

! Ω is analogous to the universal set. It can be finite, countable or uncountable.

! Ω is nonempty. (If Ω = ∅, then nothing interesting can happen.)

Example 29. Describe the sample spaces for Examples 23–27.

For simple examples with finite Ω, we often choose Ω so that each ω ∈ Ω is equiprobable:

P(ω) =
1

|Ω| , for every ω ∈ Ω.

Then P(A) = |A|/|Ω|, for every A ⊂ Ω.

Probability and Statistics for SIC slide 45
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Note to Example 29

Example 23: Here we can write Ω = {ω1,ω2}, where ω1 and ω2 represent Tail and Head respectively.
Example 24: Ω = {ω1, . . . ,ω36}, representing all 36 different possibilities.
Example 25: Ω = {ωj : j = 0, 1, . . . , }, representing any non-negative number.
Example 26: Ω = {ω : ω ∈ [0, 45] minutes}, an uncountable set.
Example 27: Ω? We have to decide what we count as weather outcomes, so this is not so easy.
In general discussion we use ω as an element of Ω, but in examples it is usually easier to write H or T
or (r, g) or similar.

Probability and Statistics for SIC note 1 of slide 45

Event space

F is a set of subsets of Ω which represents the events of interest.

Example 30 (Example 24, continued). Give the events

A the red die shows a 4,

B the total is odd,

C the green die shows a 2,

A ∩B the red die shows a 4 and the total is odd.

Calculate their probabilities.
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Note to Example 30

First we set up the probability space Ω. If we write (2, 4) to mean that the red shows 2 and the green
shows 4, we have

Ω = {(r, g) : r, g = 1, . . . , 6},

giving

A = {(4, g), g = 1, . . . , 6},
B = {(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), . . . , (6, 1), (6, 3), (6, 5)},
C = {(r, 2), r = 1, . . . , 6},

A ∩B = {(4, 1), (4, 3), (4, 5)}.

By symmetry if the two dice are fair, then |Ω| = 36, |A| = |C| = 6, |B| = 18, and |A ∩B| = 3, so the
probabilities are

P(A) = P(C) = 6/36 = 1/6, P(B) = 18/36 = 1/2, P(A ∩B) = 3/36 = 1/12.

Probability and Statistics for SIC note 1 of slide 46

21



Event space F , II

Definition 31. An event space F is a set of the subsets of Ω such that:

(F1) F is nonempty;

(F2) if A ∈ F then Ac ∈ F ;

(F3) if {Ai}∞i=1 are all elements of F , then
⋃∞

i=1 Ai ∈ F .

F is also called a sigma-algebra (en français, une tribu).

Let A,B,C, {Ai}∞i=1 be elements of F . Then the preceding axioms imply that

(a)
⋃n

i=1Ai ∈ F ,

(b) Ω ∈ F , ∅ ∈ F ,

(c) A ∩B ∈ F , A \ B ∈ F , A ∆ B ∈ F ,

(d)
⋂n

i=1Ai ∈ F .

Probability and Statistics for SIC slide 47

Use of these axioms

To prove (a)–(d), we argue as follows:

(a) Take An+1 = An+2 = · · · = An, and apply (F3).

(b) If F is non-empty, then it has an element A, and by (F2) Ac ∈ F , so A ∪Ac = Ω ∈ F . Also,
Ωc = ∅ ∈ F .

(c) Note that A ∩B = (Ac ∪Bc)c, and sets operated on by union and complement remain in F .
Likewise for the differences.

(d) We write
⋂n

i=1Ai = ((
⋂n

i=1 Ai)c)c = (
⋃n

i=1A
c
i )

c ∈ F .

Probability and Statistics for SIC slide 48

Event space F , III

! If Ω is countable, we often take F to be the set of all the subsets of Ω. This is the biggest (and
richest) event space for Ω.

! We can define different event spaces for the same sample space.

Example 32. Give the event space for Example 23.

Example 33. I roll two fair dice, one red and one green.
(a) What is my event space F1?
(b) I only tell my friend the total. What is his event space F2?
(c) My friend looks at the dice himself, but he is colour-blind. What then is his event space F3?

Probability and Statistics for SIC slide 49

Note to Example 32

We can write Ω = {H,T}, and then have two choices:

F1 = {{H,T}, ∅} , F2 = {{H,T}, ∅, {H}, {T}} .

Either of these satisfies the axioms (check this) and hence is a valid event space. Only the second,
however, is interesting. In the first the only non-null event is {H,T}, which corresponds to ‘the
experiment was performed and a head or a tail was observed’.
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Note to Example 33

(a) Since we see an outcome of the form (r, g), we can reply to any question about the outcomes; thus
we take F1 to be the set of all possible subsets of Ω{(r, g) : r, g = 1, . . . , 6}. The ordered pair (r, g)
corresponds to the event Ar,g = {(r, g)} (‘the experiment was performed and the outcome was (r, g)’),
and the 236 distinct elements Bjof F1 can be constructed by taking all possible unions and
intersections of the Ar,g. (Note that the intersection of any two or more disjoint events here will give
∅, and the union of all of them gives Ω.) This means that F1 is the power set of
{Ar,g : r, g = 1, . . . , 6}, and |F1| = 236.
(b) If I tell him only that the ‘total is t’ for t = 2, . . . , 12, then he can reply to any question about the
total, but nothing else. So his event space F2 is based on the events T2, . . . , T12, where

T2 = {(1, 1)}, T3 = {(1, 2), (2, 1)}, T4 = {(1, 3), (2, 2), (3, 1)}, . . . , T12 = {(6, 6)}.

His event space therefore comprises all the possible unions and intersections of these 11 events, and
therefore |F2| = 211.
(c) Since he is colour-blind, he cannot tell the difference between (1, 2) and (2, 1), etc.. Thus F3 is
made up of all possible unions and intersections of the sets

{(1, 1)}, {(2, 2)}, . . . , {(6, 6)}, {(1, 2), (2, 1)}, {(1, 3), (3, 1)}, . . . , {(5, 6), (6, 5)}.

There are 6 + 15 such sets, so |F3| = 221, and obviously F2 ⊂ F3 ⊂ F1.
In cases (b) and (c) the event spaces have less information than in (a): they represent a coarsening of
F1, so that fewer questions can be answered.

Probability and Statistics for SIC note 2 of slide 49

Event space F , III

! Usually the event space is clear from the context, but it is important to write out Ω and F
explicitly, in order to avoid confusion.

! This can also be useful when so-called ‘paradoxes’ appear (generally due to an unclear or erroneous
mathematical formulation of the problem).

! It is essential to give Ω and F when doing exercices, tests and exams.
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Examples

Example 34. A woman planning her future family considers the following possibilities (we suppose
that the chances of having a boy or a girl are the same each time) :

(a) have three children;

(b) keep giving birth until the first girl is born or until three children are born, stop when one of the
two situations arises.

(c) keep giving birth until there are one of each gender or until there are three children, stop when
one of the two situations arises.

Let Bi be the event ‘i boys are born’, A the event ‘there are more girls than boys’. Calculate P(B1)
and P(A) for (a)–(c).

(In fact, the ratio of boys/girls at birth is ∼ 105/100.)

Example 35 (Birthdays). n people are in a room. What is the probability that they all have a
different birthday?
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Note to Example 34

We learn from this example that:

! changing the protocol or stopping rule can change the observable outcomes and hence the sample
space;

! the outcomes need not have the same probabilities under different stopping rules;

! in some cases it is possible to compute probabilities for outcomes in one sample space by
comparing it to another sample space.

(a) We can write the sample space under this stopping rule as

Ω1 = {BBB,BBG,BGB,BGG,GBB,GBG,GGB,GGG},

where B denotes a boy, G denotes a girl and the ordering is important. These events all have
probability 1/8, by symmetry. Then B1 = {BGG,GBG,GGB} and A = B1 ∪ {GGG} have
probabilities 3/8 and 1/2 respectively. The latter is obvious also by symmetry.
(b) Under this stopping rule the sample space is

Ω2 = {BBB,BBG,BG,G},

but these are not equi-probable; for example B1 = {BG} here corresponds to the event
{BGG,BGB} in Ω1 and so has probability 1/4, and A = {G} here corresponds to the event
{GBB,GBG,GGB,GGG} in Ω1, and so has probability 1/2.
(c) Under this stopping rule the sample space is

Ω3 = {BBB,GGG,BBG,GGB,GB,BG},

noting that BG here corresponds to {BGG,BGB} in Ω1, and likewise GB here corresponds to
{GBG,GBB} in Ω1. In this case the event B1 = {GB,BG,GGB} in Ω3 corresponds to
{GBB,GBG,BGG,BGB,GGB} in Ω1 and hence has probability 5/8, and in Ω3 the event
A = {GGG,GGB} has probability 1/4.
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Birthdays
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Note to Example 35

The sample space can be written Ω = {1, . . . , 365}n, and each of these possibilities has probability
365−n. We seek the probability of the event

A = {(i1, . . . , in) : i1 #= i2 #= · · · #= in}.

There are 365× 364 × · · · (365 − n+ 1) = 365!/(365 − n)! ways this can happen, so the overall
probability is 365!/{(365 − n)!365n}, which is shown in the graph.
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Galileo Galilei (1564–1642)

(Source: Wikipedia, portrait by Ottavio Leoni)
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Il Saggiatore, 1623

(Source: Wikipedia)
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Il Saggiatore, 1623

La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi
a gli occhi (io dico l’universo), ma non si può intendere se prima non s’impara a intender la
lingua, e conoscer i caratteri, ne’ quali è scritto. Egli è scritto in lingua matematica, e i
caratteri son triangoli, cerchi, ed altre figure geometriche, senza i quali mezi è impossibile a
intenderne umanamente parola; senza questi è un aggirarsi vanamente per un oscuro
laberinto.

The book of the Universe cannot be understood unless one first learns to comprehend
the language and to understand the alphabet in which it is composed. It is written in the
language of mathematics, and its characters are triangles, circles, and other geometric
figures, without which it is humanly impossible to understand a single word of it; without
these, one wanders about in a dark labyrinth.
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Three dice problem

Three fair dice are rolled. Let Ti be the event ‘the total is i’, for i = 3, . . . , 18. Which is most likely,
T9 or T10?
T9 occurs if the dice have the following outcomes

9 = 6 + 2 + 1 = 5 + 3 + 1 = 5 + 2 + 2 = 4 + 4 + 1 = 4 + 3 + 2 = 3 + 3 + 3.

T10 occurs if the dice have the following outcomes

10 = 6 + 3 + 1 = 6 + 2 + 2 = 5 + 4 + 1 = 5 + 3 + 2 = 4 + 4 + 2 = 4 + 3 + 3.

Thus they are equiprobable.

True or false?
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Note to the three dice problem

We take Ω = {(r, s, t) : r, s, t = 1, . . . , 6}, for a total of 63 = 216 equiprobable outcomes.
Now T9 occurs if we have r + s+ t = 9, but the outcomes listed are not equiprobable, because
{1, 2, 6} and {1, 3, 5} can each arise in 3! ways, while {2, 2, 5} can arise in just 3 ways. Adding up the
numbers of outcomes gives |T9| = 25, |T10| = 27, so the latter is more probable.
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Probability function P

Definition 36. A probability distribution P assigns a probability to each element of the event space
F , with the following properties:

(P1) if A ∈ F , then 0 ≤ P(A) ≤ 1;

(P2) P(Ω) = 1;

(P3) if {Ai}∞i=1 are pairwise disjoint (i.e., Ai ∩Aj = ∅, i #= j), then

P

(
∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai).
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Properties of P

Theorem 37. Let A,B, {Ai}∞i=1 be events of the probability space (Ω,F ,P). Then

(a) P(∅) = 0;

(b) P(Ac) = 1− P(A);

(c) P(A ∪B) = P(A) + P(B)− P(A ∩B). If A ∩B = ∅, then P(A ∪B) = P(A) + P(B);

(d) if A ⊂ B, then P(A) ≤ P(B), and P(B \ A) = P(B)− P(A);

(e) P (
⋃∞

i=1Ai) ≤
∑∞

i=1 P(Ai) (Boole’s inequality);

(f) if A1 ⊂ A2 ⊂ · · · , then limn→∞P(An) = P (
⋃∞

i=1Ai);

(g) if A1 ⊃ A2 ⊃ · · · , then limn→∞P(An) = P (
⋂∞

i=1 Ai).
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Note to Theorem 37

(a) Since ∅ ∩A = ∅ for any A ∈ F , we can apply (P3) to a finite number of sets, just by adding an
infinite number of ∅s. In particular, Ω = Ω ∪ ∅ ∪ ∅ ∪ · · · , and these are pairwise disjoint, so

1 = P(Ω) = P(Ω) + P(∅) + P(∅) + · · · ,

so since P(∅) ≥ 0, we must have P(∅) = 0.
Further, if we have a finite collection A1, . . . , An of pairwise disjoint events, then we can complement
them with An+1 = An+2 = · · · = ∅, which gives Ai ∩Aj = ∅ for any i #= j and all i, j ∈ N, and then

P

(
n⋃

i=1

Ai

)

= P

(
∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai) =
n∑

i=1

P(Ai) +
∞∑

i=n+1

P(∅) =
n∑

i=1

P(Ai),

so (P3) also holds for any finite number of disjoint events.
(b) Follows from the finite version of (P3) ( in (a)) by setting A1 = A, A2 = Ac, and noting that
1 = P(Ω) = P(A ∪Ac) = P(A) + P(Ac).
(c) Follows from (P3) by writing A ∪B = (A ∩Bc)∪ (A ∩B)∪ (Ac ∩B), which are pairwise disjoint,
and noting that this gives

P(A) = P(A ∩B) + P(A ∩Bc), P(B) = P(A ∩B) + P(Ac ∩B),

and then

P(A∪B) = P(A∩Bc)+P(A∩B)+P(Ac∩B) = {P(A)−P(A∩B)}+P(A∩B)+{P(B)−P(A∩B)},

giving the required result.
(d) Follows by writing B = A ∪ (B ∩Ac), and noting that B\A = B ∩Ac.
(e) Iteration: for k ∈ N, we write Bk−1 =

⋃∞
i=k Ai = Ak ∪

⋃∞
i=k+1Ai = Ak ∪Bk, say, and note that

(c) gives P (Bk−1) = P(Ak ∪Bk) ≤ P(Ak) + P(Bk) , resulting in

P

(
∞⋃

i=1

Ai

)

≤ P(A1) + P(B1) ≤
k∑

i=1

P(Ai) + P(Bk) ≤
∞∑

i=1

P(Ai)

as required.
(f) Now Ai ⊂ Ai+1 for every i, so (Ai+1\Ai) ∩ (Aj+1\Aj) = ∅ when i #= j (draw picture), and
An =

⋃n
i=1(Ai\Ai−1), where we’ve set A0 = ∅. Note that P(Ai+1\Ai) = P(Ai+1)− P(Ai). Thus by

(P3) we have

P(
∞⋃

i=1

Ai) = P(A1) +
∞∑

i=2

P(Ai\Ai−1)

= P(A1) +
∞∑

i=2

{P(Ai)− P(Ai−1)} ,

= lim
n→∞

[

P(A1) +
n∑

i=2

{P(Ai)− P(Ai−1)}
]

,

= lim
n→∞

P(An).

(g) Like (f).
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Continuity of P

Reminder: A function f is continuous at x if for every sequence {xn} such that

lim
n→∞

xn = x, we have lim
n→∞

f(xn) = f(x).

Parts (f) and (g) of Theorem 37 can be extended to show that for all sequences of sets for which

lim
n→∞

An = A, we have lim
n→∞

P(An) = P(A).

Hence P is called a continuous set function.
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Inclusion-exclusion formulae

If A1, . . . , An are events of (Ω,F , P ), then

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2)

P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3)

−P(A1 ∩A2)− P(A1 ∩A3)− P(A2 ∩A3)

+P(A1 ∩A2 ∩A3)
...

P

(
n⋃

i=1

Ai

)

=
n∑

r=1

(−1)r+1
∑

1≤i1<···<ir≤n

P(Ai1 ∩ · · · ∩Air).

The number of terms in the general formula is

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n − 1.
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Note to inclusion-exclusion formulae

We saw the first equality as part (c) of Theorem 37.
For the second, write B = A2 ∪A3, and note that

P(A1 ∪A2 ∪A3) = P(A1) + P(A2 ∪A3)− P{A1 ∩ (A2 ∪A3)}
= P(A1) + P(A2 ∪A3)− P{(A1 ∩A2) ∪ (A1 ∩A3)}
= P(A1) + P(A2) + P(A3)− P(A2 ∩A3)

−P(A1 ∩A2)− P(A1 ∩A3) + P{(A1 ∩A2) ∩ (A1 ∩A3)}

which is what we want, since the last term is P(A1 ∩A2 ∩A3). The general formula follows by
iteration of this argument.
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Note to inclusion-exclusion formulae: II

For example, with n = 4, we have

P(A1 ∪A2 ∪A3 ∪A4) = P(A1) + P(A2) + P(A3) + P(A4)

− {P(A1 ∩A2) + P(A1 ∩A3) + P(A1 ∩A4)

+P(A2 ∩A3) + P(A2 ∩A4) + P(A3 ∩A4)}
+ {P(A1 ∩A2 ∩A3) + P(A1 ∩A2 ∩A4)

+P{(A1 ∩A3 ∩A4) + P(A2 ∩A3 ∩A4)}
−P(A1 ∩A2 ∩A3 ∩A4)

where there are 4, 6, 4, 1 terms in the terms having 1, 2, 3, and 4 events, respectively.
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Example 38. What is the probability of getting at least one 6 when I roll three fair dice?

Example 39. An urn contains 1000 lottery tickets numbered from 1 to 1000. One ticket is drawn at
random. Before the draw a fairground showman offers to pay $3 to whoever will give him $2, if the
number on the ticket is divisible by 2, 3, or 5. Would you give him your $2 before the draw? (You lose
your money if the ticket is not divisible by 2, 3, or 5.)
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Note to Example 38

Let Ai be the event there is a 6 on die i; we want P(A1 ∪A2 ∪A3). Now by symmetry P(Ai) = 1/6,
P(Ai ∩Aj) = 1/36, and P(A1 ∩A2 ∩A3) = 1/216. Therefore the second inclusion-exclusion formula
gives

P(A1 ∪A2 ∪A3) =
3

6
− 3

36
+

1

216
=

91

216
.

Probability and Statistics for SIC note 1 of slide 61

Note to Example 39

Here we can write Ω = {1, . . . , 1000}, and let Di be the event that the number is divisible by i. We
want

P(D2 ∪D3 ∪D5) = P(D2) + P(D3) + P(D5)− P(D2 ∩D3)− P(D2 ∩D5)− P(D3 ∩D5)

+P(D2 ∩D3 ∩D5)

= P(D2) + P(D3) + P(D5)− P(D6)− P(D10)− P(D15) + P(D30)

=
500 + 333 + 200− 166 − 100− 66 + 33

1000
=

367

500
.
= 0.734.

So with probability 0.734 you gain 3-2=1 and with probability 0.266 you lose 2: the average gain is
1× 0.7334 + (−2)× 0.266 = 0.201: you will win on average if you play. The ‘return on investment’ is
0.201/2 ≈ 0.1, or 10%, which is excellent compared to a bank.
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2.2 Conditional Probability slide 62

Conditional probability

Definition 40. Let A,B be events of the probability space (Ω,F ,P), such that P(B) > 0. Then the
conditional probability of A given B is

P(A | B) =
P(A ∩B)

P(B)
.

If P(B) = 0, we adopt the convention P(A ∩B) = P(A | B)P(B), so both sides are equal to zero.
Thus

P(A) = P(A ∩B) + P(A ∩Bc) = P(A | B)P(B) + P(A | Bc)P(Bc)

even if P(B) = 0 or P(Bc) = 0.

Example 41. We roll two fair dice, one red and one green. Let A and B be the events ‘the total
exceeds 8’, and ‘we get 6 on the red die’. If we know that B has occurred, how does P(A) change?
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Note to Example 41

We first draw a square containing pairs {(r, g) : r, g = 1, . . . , 6} to display the totals of the two dice.
By inspection, and since all the individual outcomes have probability 1/36, we have
P(A) = (1 + 2 + 3 + 4)/36 = 5/18, P(B) = 6/36 = 1/6, and thus by definition the conditional
probability is P(A | B) = P(A ∩B)/P(B) = (4/36)/(1/6) = 2/3.
Thus including the information that B has occurred changes the probability of A: conditioning can be
interpreted as inserting information into the calculation of probabilities, resulting in a new probability
space, as we see in the next theorem.
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Conditional probability distributions

Theorem 42. Let (Ω,F ,P) be a probability space, and let B ∈ F such that P(B) > 0 and
Q(A) = P(A | B). Then (Ω,F , Q) is a probability space. In particular,

! if A ∈ F , then 0 ≤ Q(A) ≤ 1;

! Q(Ω) = 1;

! if {Ai}∞i=1 are pairwise disjoint, then

Q

(
∞⋃

i=1

Ai

)

=
∞∑

j=1

Q(Ai).

Thus conditioning on different events allows us to construct lots of different probability distributions,
starting with a single probability distribution.
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Note to Theorem 42

We just need to check the axioms. If A ∈ F , then

Q(A) = P(A | B) = P(A ∩B)/P(B) ∈ [0, 1],

because A ∩B ⊂ B and therefore P(A ∩B) ≤ P(B). Likewise

Q(Ω) = P(Ω ∩B)/P(B) = P(B)/P(B) = 1,

and finally,

Q

(
∞⋃

i=1

Ai

)

=
P(
⋃∞

i=1 Ai ∩B)

P(B)
=

P{
⋃∞

i=1(Ai ∩B)}
P(B)

=

∑∞
i=1 P(Ai ∩B)

P(B)
=

∞∑

i=1

Q(Ai),

using the properties of P(·) and the fact that if A1, A2, . . . are pairwise disjoint, then so too are the
A1 ∩B,A2 ∩B, . . ..
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Thomas Bayes (1702–1761)

Essay towards solving a problem in the doctrine of chances. (1763/4) Philosophical Transactions
of the Royal Society of London.
(Source: Wikipedia)
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Bayes’ theorem

Theorem 43 (Law of total probability). Let {Bi}∞i=1 be pairwise disjoint events (i.e. Bi ∩Bj = ∅,
i #= j) of the probability space (Ω,F ,P), and let A be an event satisfying A ⊂

⋃∞
i=1 Bi. Then

P(A) =
∞∑

i=1

P(A ∩Bi) =
∞∑

i=1

P(A | Bi)P(Bi).

Theorem 44 (Bayes). Suppose that the conditions above are satisfied, and that P(A) > 0. Then

P(Bj | A) =
P(A | Bj)P(Bj)∑∞
i=1 P(A | Bi)P(Bi)

, j ∈ N.

These results are also true if the number of Bi is finite, and if the Bi partition Ω.
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Note to Theorems 43 and 44

Since the Bi are disjoint, then so are their subsets A ∩Bi. Thus

P(A) = P

{

A ∩
∞⋃

i=1

Bi

}

= P

{
∞⋃

i=1

(A ∩Bi)

}

=
∞∑

i=1

P(A ∩Bi) =
∞∑

i=1

P(A | Bi)P(Bi).

For Bayes’ theorem, we note that

P(Bj | A) =
P(A ∩Bj)

P(A)
=

P(A | Bj)P(Bj)

P(A)
=

P(A | Bj)P(Bj)∑∞
i=1 P(A | Bi)P(Bi)

using the theorem of total probability, Theorem 43.
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Example

Example 45. You suspect that the man in front of you at the security check at the airport is a
terrorist. Knowing that one person out of 106 is a terrorist, and that a terrorist is detected by the
security check with a probability of 0.9999, but that the alarm goes off when an ordinary person goes
through with a probability of 10−5, what is the probability that he is a terrorist, given that the alarm
goes off when he passes through security?
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Note to Example 45

Let A and T respectively denote the events ‘the alarm sounds’ and ‘he is a terrorist’. Then we seek

P(T | A) = P(A | T )P(T )
P(A | T )P(T ) + P(A | T c)P(T c)

=
0.9999 × 10−6

0.9999 × 10−6 + 10−5 × (1− 10−6)
.
= 0.0909.

Thus the odds are around 10:1 that he is not a terrorist.
We would have to decrease the false alarm probability of 10−5 to 10−6 to have probability 0.5 that he
is a terrorist.
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Multiple conditioning

Theorem 46 (‘Prediction decomposition’). Let A1, . . . , An be events in a probability space. Then

P(A1 ∩A2) = P(A2 | A1)P(A1),

P(A1 ∩A2 ∩A3) = P(A3 | A1 ∩A2)P(A2 | A1)P(A1),
...

P(A1 ∩ · · · ∩An) =
n∏

i=2

P(Ai | A1 ∩ · · · ∩Ai−1)× P(A1).
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Note to Theorem 46

Just iterate. For example, if we let B = A1 ∩A2 and note that P(B) = P(A2 | A1)P(A1) by the
definition of conditional probability, then

P(A1 ∩A2 ∩A3) = P(A3 ∩B) = P(A3 | B)P(B) = P(A3 | A1 ∩A2)P(A2 | A1)P(A1),

on using the definition of conditional probability, twice. For the general case, just extend this idea, by
setting

P(A1 ∩ · · · ∩An) = P(An | A1, . . . , An−1)P(A1, . . . , An−1)

= P(An | A1, . . . , An−1)P(An−1 | A1, . . . , An−2)P(A1, . . . , An−2)
...

=
n∏

i=2

P(Ai | A1 ∩ · · · ∩Ai−1)× P(A1),

as required.
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Example

Example 47. n men go to a dinner. Each leaves his hat in the cloakroom. When they leave, having
thoroughly sampled the local wine, they choose their hats randomly.
(a) What is the probability that no one chooses his own hat?
(b) What is the probability that exactly r men choose their own hats?
(c) What happens when n is very big?
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Note to Example 47

! This is an example of many types of matching problem, going back to Montmort (1708).

! The sample space here is the permutations of the numbers {1, . . . , n}, of size n!.

! Let Ai denote the event that the ith hat is on the ith head, and note that P(Ai) = 1/n,

P(Ai ∩Aj) = P(Ai | Aj)P(Aj) =
1

n− 1
× 1

n
, . . . ,P(A1 ∩ · · · ∩Ar) =

(n− r)!

n!
,

using the prediction decomposition. Thus the probability that at least r out of n hats are on the
right heads is (n− r)!/n!. Let pn(k) denote the probability that exactly k out of n men get the
right hat.

! (a) We want to compute

P(Ac
1 ∩ · · · ∩Ac

n) = 1− P(A1 ∪ · · · ∪An),

so we use the inclusion-exclusion formula to compute pn(0) = 1− P(A1 ∪ · · · ∪An):

1− P(A1 ∪ · · · ∪An) = 1−






n∑

r=1

(−1)r+1
∑

1≤i1<···<ir≤n

P(Ai1 ∩ · · · ∩Air)






= 1−
{
n× n−1 −

(
n

2

)
× (n− 2)!

n!
+ · · ·+ (−1)n+1 ×

(
n

n

)
× (n − n)!

n!

}

= 1−
n∑

i=1

(−1)i+1/i! =
n∑

i=0

(−1)i/i! → e−1, n → ∞.

! (b) The probability that men 1, . . . , r have the right hats and no-one else does is

P(A1 ∩ · · · ∩Ar ∩Ac
r+1 ∩ · · · ∩Ac

n) = P(A1 ∩ · · · ∩Ar)× P(Ac
r+1 ∩ · · · ∩Ac

n | A1 ∩ · · · ∩Ar)

=
(n− r)!

n!
×

n−r∑

i=0

(−1)i/i!,

but since there are
(n
r

)
distinct ways of choosing r from n, the total probability is

pn(r) =
n!

r!(n− r)!
× (n− r)!

n!
×

n−r∑

i=0

(−1)i/i! =
1

r!
×

n−r∑

i=0

(−1)i/i! → 1

r!
e−1, n → ∞.

! (c) See above.
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2.3 Independence slide 70

Independent events

Intuitively, saying that ‘A and B are independent’ means that the occurrence of one of the two does
not affect the occurrence of the other. That is to say that, P(A | B) = P(A), so the knowledge that
B has occurred leaves P(A) unchanged.

Example 48. A family has two children.
(a) We know that the first child is a boy. What is the probability that the second child is a boy?
(b) We know that one of the two children is a boy. What is the probability that the other child is also
a boy?
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Note to Example 48

The sample space can be written as Ω = {BB,BG,GB,GG}, in an obvious notation, and the events
that ‘the ith child is a boy’ are B1 = {BB,BG} and B2 = {BB,GB}. Then

! (a) P(B2 | B1) = P(B1 ∩B2)/P(B2) = P({BB})/P(B1) = 1/4÷ 1/2 = 1/2 = P(B2). Thus B2

and B1 are independent.

! (b) the event ‘at least one child is a boy’ is C = B1 ∪B2 = {BB,BG,GB}, and the event ‘two
boys’ is D = {BB}, so now we seek P(D | C2) = 1/4÷ 3/4 = 1/3 #= P(D). Thus D and C are
not independent.

Note also the importance of precise language: in (a) we know that a specific child is a boy, and in (b)
we are told only that one of the two children is a boy. These different pieces of information change the
probabilities, because the conditioning event is not the same.
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Independence

Definition 49. Let (Ω,F ,P) be a probability space. Two events A,B ∈ F are independent (we
write A ⊥⊥ B) iff

P(A ∩B) = P(A)P(B).

In compliance with our intuition, this implies that

P(A | B) =
P(A ∩B)

P(B)
=

P(A)P(B)

P(B)
= P(A),

and by symmetry P(B | A) = P(B).

Example 50. A pack of cards is well shuffled and one card is packed at random. Are the events A ‘the
card is an ace’, and H ‘the card is a heart’ independent? What can we say about the events A and K
‘the card is a king’?

Probability and Statistics for SIC slide 72

Note to Example 50

The sample space Ω consists of the 52 cards, which are equiprobable. P(A) = 4/52 = 1/13 and
P(H) = 13/52 = 1/4, and P(A ∩H) = 1/52 = P(A)P(H), so A and H are independent. However
P(A ∩K) = 0 #= P(A)P(K), so these are not independent.
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Types of independence

Definition 51. (a) The events A1, . . . , An are (mutually) independent if for all sets of indices
F ⊂ {1, . . . , n},

P

(
⋂

i∈F

Ai

)

=
∏

i∈F

P(Ai).

(b) The events A1, . . . , An are pairwise independent if

P(Ai ∩Aj) = P(Ai) P(Aj), 1 ≤ i < j ≤ n.

(c) The events A1, . . . , An are conditionally independent given B if for all sets of indices
F ⊂ {1, . . . , n},

P

(
⋂

i∈F

Ai | B
)

=
∏

i∈F

P(Ai | B).
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A few remarks

! Mutual independence entails pairwise independence, but the converse is only true when n = 2.

! Mutual independence neither implies nor is implied by conditional independence.

! Independence is a key idea that greatly simplifies probability calculations. In practice, it is essential
to verify whether events are independent, because undetected dependence can greatly modify the
probabilities.

Example 52. A family has two children. Show that the events ‘the first born is a boy’, ‘the second
child is a boy’, and ‘there is exactly one boy’ are pairwise independent but not mutually independent.
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Note to Example 52

The sample space is Ω = {BB,BG,GB,GG}, so P(B1) = 1/2, P(B2) = 1/2, P(1B) = 1/2, using
an obvious notation.
Also P(B1 ∩B2) = P(B1 ∩ 1B) = P(B2 ∩ 1B) = 1/4, but P(B1 ∩B2 ∩ 1B) = 0, while the product of
all three probabilities is 1/8.
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Example 53. In any given year, the probability that a male driver has an accident and claims on his
insurance is µ, independently of other years. The probability for a female driver is λ < µ. An insurer
has the same number of male drivers and female drivers, and picks one of them at random.
(a) Give the probability that he (or she) makes a claim this year.
(b) Give the probability that he (or she) makes claims in two consecutive years.
(c) If the company randomly selects a person that made a claim, give the probability that (s)he makes
a claim the following year.
(d) Show that the knowledge that a claim was made in one year increases the probability that a claim
is made in the following year.
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Note to Example 53

Let Ar denote the event that the selected driver has accidents in r successive years, and M denote the
event that (s)he is male.
(a) Here the law of total probability gives

P(A1) = P(A1 | M)P(M) + P(A1 | M c)P(M c) = µ× 1
2 + λ× 1

2 = (µ+ λ)/2.

(b) Independence of accidents from year to year, for each driver individually, gives

P(A2) = P(A2 | M)P(M) + P(A2 | M c)P(M c) = µ2 × 1
2 + λ2 × 1

2 = (µ2 + λ2)/2.

(c) Now we want

P(A2 | A1) = P(A2 ∩A1)/P(A1) = P(A2)/P(A1) = (λ2 + µ2)/(λ+ µ).

(d) Note that (λ2 + µ2)/(λ + µ) > (λ+ µ)/2, because

2(λ2 + µ2)− (λ+ µ)2 = λ2 + µ2 − 2λµ = (λ− µ)2 > 0.

Thus they would only be equal if λ = µ, i.e. with no difference between the sexes.
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Series-Parallel Systems

An electric system has components labelled 1, . . . , n, which fail independently of each another. Let Fi

be the event ‘the ith component is faulty’, with P(Fi) = pi. The event S, ‘the system fails’ occurs if
current cannot pass from one end of the system to the other. If the components are arranged in
parallel, then

PP(S) = P(F1 ∩ · · · ∩ Fn) =
n∏

i=1

pi.

If the components are arranged in series, then

PS(S) = P(F1 ∪ · · · ∪ Fn) = 1−
n∏

i=1

(1− pi).

If there exist upper and lower bounds p+ and p− such that

1 > p+ > pi > p− > 0, i = 1, . . . , n,

and n → ∞, then PP(S) → 0, PS(S) → 1.
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Reliability

Example 54 (Chernobyl). A nuclear power station depends on a security system whose components
are arranged according to:

The components fail independently with probability p, and the system fails if current cannot pass from
A to B.
(a) What is the probability that the system fails?
(b) The components are made in batches, which can be good or bad. For a good batch, p = 10−6,
whereas for a bad batch p = 10−2. The probability that a batch is good is 0.99. What is the
probability that the system fails (i) if the components come from different batches? (ii) if all the
components come from the same batch?
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Note to Example 54

The two parallel systems in the upper right and lower branches have respective probabilities p3 and
pl = p2 of failing, so the overall probability of failure for the top branch, which is a series system, is
pu = 1− (1− p)(1− p3). The upper and lower branches are in parallel, so the probability that they
both fail is pu × pl = p2{1− (1− p)(1− p3)} = f(p), say.
Such computations can be used recursively to compute failure probabilities for very large systems.
The probability of failure of a component selected randomly from the two sorts of batches is

q = 10−6 × 0.99 + 10−2 × 0.1 = 0.00010099,

so the probability of failure in case (i) is f(q) = 1.029995 × 10−12, whereas in (ii) it is

0.99f(10−6) + 0.01f(10−2) = 1.000099 × 10−8,

roughly 104 times larger than in (i).
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2.4 Edifying Examples slide 78

Death and the Ladies

(Source: La Danse Macabre des Femmes, Project Gutenberg)
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Female smokers

Survival after 20 years for 1314 women in the town of Whickham, England (Appleton et al., 1996, The
American Statistician). The columns contain: number of dead women after 20 years/number of
surviving women at the start of the study (%).

Age (years) Smokers Non-smokers
Total 139/582 (24) 230/732 (31)

18–24 2/55 (4) 1/62 (2)
25–34 3/124 (2) 5/157 (3)
35–44 14/109 (13) 7/121 (6)
45–54 27/130 (21) 12/78 (15)
55–64 51/115 (44) 40/121 (33)
65–74 29/36 (81) 101/129 (78)
75+ 13/13 (100) 64/64 (100)

According to the totals, there is a beneficial effect of smoking:

24% < 31%!
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Simpson’s paradox

Define the events ‘dead after 20 years’, D, ‘smoker’, S, and ‘in age category a at the start’, A = a.
For almost every a we have

P(D | S,A = a) > P(D | Sc, A = a),

but
P(D | S) < P(D | Sc).

Note that

P(D | S) =
∑

a

P(D | S,A = a)P(A = a),

P(D | Sc) =
∑

a

P(D | Sc, A = a)P(A = a),

so if the probabilities P(D | S,A = a) and P(D | Sc, A = a) vary a lot with a, weighting them with
the P(A = a) can reverse the order of the inequalities.

This is an example of Simpson’s paradox: ‘forgetting’ conditioning can change the conclusion of a
study.
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The tragic story of Sally Clark

An English solicitor, whose first son died of Sudden Infant Death Syndrome (SIDS) a few weeks
after his birth in 1996. Following the death of her second son in the same manner, she was arrested in
1998 and accused of double murder. Her trial was controversial, as a very eminent paediatrician,
Professor Sir Roy Meadow, testified that the probability that two children should die of SIDS in a
family such as that of Sally Clark was of 1 in 73 million, a number he obtained as 1/85002, where
1/8500 was the estimated probability of a single death due to SIDS.

She was convicted in November 1999, then released in January 2003, because it turned out some
pathological evidence suggesting her innocence had not been diclosed to her lawyer. As a result of her
case, the Attorney-General ordered a review of hundreds of other cases, and two other women in the
same situation were released from jail.

She died of alcoholism in March 2007.
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The rates of SIDS

Data on the rates of infantile deaths, (CESMA SUDI report,
http://cemach.interface-test.com/Publications/CESDI-SUDI-Report-(1).aspx)
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Sally Clark: Four tragic errors

! Estimated probabilities

! ‘Ecological fallacy’

! Independence? Really?

! ‘Prosecutors’ fallacy’
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Note on Sally Clark story

! Estimated probabilities: How were the probabilities obtained? What is their accuracy? There are
very few SIDS deaths, and the number 1/8543 may be based on as few as 4 SIDS deaths. Using
standard methods, the estimated probability could be from 0.04 to 0.32 deaths/1000 live births, so
(for example), the figure of 1/73 million could be much larger.

! Ecological fallacy: Even if we accept the argument above, the SUDI study conflates a lot of
different types of families and cases: there is no reason to suppose that the marginal probability of
1/8500 applies to any particular individual (think of Simpson’s paradox, which we just met).

! Independence? If there is a genetic or environmental factor leading to SIDS, then the probability
of two deaths might be much higher than claimed. Just suppose that a genetic factor G is present
in 0.1% of families, and leads to a probability of death of 1/10 for each child, and that conditional
on G or Gc, deaths are independent. Then we might have

P( two deaths ) = P( two deaths | G)P(G) + P( two deaths | Gc)P(Gc)

= (1/10)2 × 0.001 + (1/8500)2 × 0.999
.
= 0.0001 = 1/104 6 1/(73 × 106).

! Prosecutors’ Fallacy: The probability calculated was P( two deaths | innocent ), whereas what
is wanted is P( innocent | two deaths ). To get the latter we need to apply Bayes’ theorem. Let
E denote the evidence observed (two deaths), and C denote culpability. Then we have

P(Cc | E) =
P(E | Cc)P(Cc)

P(E | Cc)P(Cc) + P(E | C)P(C)
,

and we see that in order to compute the required probability, we have to have some estimates of
P(C). Suppose that P(C) = 10−6 and that P(E | C) = 1, as murdering two of your own children
is probably quite rare. Then even using the probabilities above, Bayes’s theorem would give that

P(Cc | E)
.
= 0.014 ≈ 14/103,

which, though small, is nothing like as small as 1/(73 × 106). Thus even accepting the ‘squaring
of probabilities’, the case for the prosecution is not nearly as strong as the original argument
suggested.
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3 Random Variables slide 85

Small probabilistic lexicon

Mathematics English Français
one fair die (several fair dice) un dé juste/équilibré (plusieurs dés justes/équilibrés)
random experiment expérience aléatoire

Ω sample space ensemble fondamental
ω outcome, elementary event épreuve, événement élémentaire

A,B, . . . event événement
F event space l’espace des événements

sigma-algebra tribu
P probability distribution/probability function loi de probabilité

(Ω,F ,P) probability space espace de probabilité
inclusion-exclusion formula formule d’inclusion-exclusion

P(A | B) probability of A given B probabilité de A sachant B
independence indépendance
(mutually) independent events événements (mutuellement) indépendants
pairwise independent events événements indépendants deux à deux
conditionally independent events événements conditionellement indépendants

X,Y,Z,W, . . . random variable variable aléatoire
FX(x) (cumulative) distribution function fonction de répartition
fX(x) (probability) density/mass function (PDF) fonction de densité/masse (fm)
E(X) expectation/mean of X espérance de X
var(X) variance of X la variance de X

var(X)1/2 standard deviation of X deviation standard (ou écart-type, mais . . .) de X
fX(x | B) conditional density/mass function fonction de densité/masse conditionnelle
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3.1 Basic Ideas slide 87

Random variables

We usually need to consider random numerical quantities.

Example 55. We roll two fair dice, one red and one green. Let X be the total of the sides facing up.
Find all possible values of X, and the corresponding probabilities.

Definition 56. Let (Ω,F ,P) be a probability space. A random variable (rv) X : Ω 1→ R is a
function from the sample space Ω taking values in the real numbers R.

Definition 57. The set of values taken by X,

DX = {x ∈ R : ∃ω ∈ Ω such that X(ω) = x}

is called the support of X. If DX is countable, then X is a discrete random variable.

The random variable X associates probabilities to subsets S included in R, given by

P(X ∈ S) = P({w ∈ Ω : X(w) ∈ S}).

In particular, we set Ax = {ω ∈ Ω : X(ω) = x}. Note that we must have Ax ∈ F for every x ∈ R, in
order to calculate P(X = x).
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Note to Example 55

Draw a grid. X takes values in DX = {2, . . . , 12}, and so is clearly a discrete random variable. By
symmetry the 36 points in Ω are equally likely, so, for example,

P(X = 3) = P({(1, 2), (2, 1)}) = 2

36
.

Thus the probabilities for {2, 3, 4 . . . , 12} are respectively

1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36.
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Examples

Example 58. We toss a coin repeatedly and independently. Let X be the random variable
representing the number of throws until we first get heads. Calculate

P(X = 3), P(X = 15), P(X ≤ 3.5), P(X > 1.7), P(1.7 ≤ X ≤ 3.5).

Example 59. A natural set Ω when I am playing darts is the wall on which the dart board is hanging.
The dart lands on a point ω ∈ Ω ⊂ R2. My score is X(ω) ∈ DX = {0, 1, . . . , 60}.
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Note to Example 58

X takes values in {1, 2, 3, . . .} = N, and so is clearly a discrete random variable, with countable
support.
Let p = P(F ); then the event X = 3 corresponds to two failures, each with probability 1− p, followed
by a success, with probability p, giving P(X = 3) = (1− p)2p by independence of the successive trials.
Likewise P(X = 15) = (1− p)14p, and

P(X ≤ 3.5) = P(X ≤ 3) + P(3 < X ≤ 3.5)

= p+ (1− p)p+ (1− p)2p

= 1− P(X > 3)

= 1− (1− p)3,

and similarly

P(1.7 ≤ X ≤ 3.5) = P(X = 2) + P(X = 3)

= (1− p)p+ (1− p)2p

= p(1− p)(1 + 1− p)

= p(1− p)(2− p).
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Note to Example 59

Here an infinite Ω ⊂ R2 is mapped onto the finite set {0, . . . , 60}. Even though the underlying Ω is
uncountable, the support of X is countable.
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Jacob Bernoulli (1654–1705)

Ars Conjectandi, Basel (1713)
(Source: http://www-history.mcs.st-and.ac.uk/PictDisplay/Bernoulli_Jacob.html)
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Bernoulli random variables

Definition 60. A random variable that takes only the values 0 and 1 is called an indicator variable,
or a Bernoulli random variable, or a Bernoulli trial.

Typically the values 0/1 correspond to false/true, failure/success, bad/good, . . .

Example 61. Suppose that n identical coins are tossed independently, let Hi be the event ‘we get
heads for the ith coin’, and let Ii = I(Hi) be the indicator of this event. Then

P(Ii = 1) = P(Hi) = p, P(Ii = 0) = P(Hc
i ) = 1− p,

where p is the probability of obtaining heads.

! If n = 3 and X = I1 + I2 + I3, describe Ω, DX and the sets Ax.

! What do

X = I1 + · · · + In, Y = I1(1− I2)(1− I3), Z =
n∑

j=2

Ij−1(1− Ij)

represent?
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Note to Example 61

! If n = 3, then we can write the sample space as
Ω = {TTT, TTH, THT,HTT, THH,HTH,HHT,HHH}. Clearly DX = {0, 1, 2, 3}, and

A0 = {TTT}, A1 = {TTH, THT,HTT}, A2 = {THH,HTH,HHT}, A3 = {HHH}.

! X is the total number of heads in the first n tosses, Y = 1 if and only if the sequence starts HTT,
and Z counts the number of times a 1 is followed by a 0 in the sequence of n tosses.
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Mass functions

A random variable X associates probabilities to subsets of R. In particular when X is discrete, we have

Ax = {ω ∈ Ω : X(ω) = x},

and we can define:

Definition 62. The probability mass function (PMF) of a discrete random variable X is

fX(x) = P(X = x) = P(Ax), x ∈ R.

It has two key properties :

(i) fX(x) ≥ 0, and it is only positive for x ∈ DX , where DX is the image of the function X, i.e.,
the support of fX ;

(ii) the total probability
∑

{i:xi∈DX} fX(xi) = 1.

When there is no risk of confusion, we write fX ≡ f and DX ≡ D.
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Binomial random variable

Example 63 (Example 61 continued). Give the PMFs and supports of Ii, of Y and of X.

Definition 64. A binomial random variable X has PMF

f(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n, n ∈ N, 0 ≤ p ≤ 1.

We write X ∼ B(n, p), and call n the denominator and p the probability of success. With n = 1,
this is a Bernoulli variable.

Remark: we use ∼ to mean ‘has the distribution’.
The binomial model is used when we are considering the number of ‘successes’ of a trial which is
independently repeated a fixed number of times, and where each trial has the same probability of
success.
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Note to Example 63

! Ii takes values 0 and 1, with probabilities P(Ii = 1) = p, and P(Ii = 0) = 1− p.

! Y is also binary with P(Y = 1) = p(1− p)2, P(Y = 0) = 1− p(1− p)2.

! X takes values 0, 1, . . . , n, with binomial probabilities (see below).
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Binomial probability mass functions
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Examples

Example 65. A multiple choice test contains 20 questions. For each question you must choose the
correct answer amongst 5 possible answers. A pass is obtained with 10 correct answers. A student
picks his answers at random.

! Give the distribution for his number of correct answers.

! What is the probability that he will pass the test?
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Note to Example 65

Since n = 20 and p = 1/5 = 0.2, the number of correct replies is X ∼ B(20, 0.2). The probability of
success is

P(X ≥ 10) =
20∑

x=10

(
20

x

)
0.2x(1− 0.2)20−x .

= 0.0026

after a painful calculation, or, better, using R,

> 1-pbinom(q=9, size=20, prob=0.2)

[1] 0.002594827

> pbinom(q=9, size=20, prob=0.2, lower.tail=FALSE)

[1] 0.002594827
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Geometric distribution

Definition 66. A geometric random variable X has PMF

fX(x) = p(1− p)x−1, x = 1, 2, . . . , 0 ≤ p ≤ 1.

We write X ∼ Geom(p), and we call p the success probability.

This models the waiting time until a first event, in a series of independent trials having the same
success probability.

Example 67. To start a board game, m players each throw a die in turn. The first to get six begins.
Give the probabilities that the 3rd player will begin on his first throw of the die, that he will begin, and
of waiting for at least 6 throws of the die before the start of the game.

Theorem 68 (Lack of memory). If X ∼ Geom(p), then

P(X > n+m | X > m) = P(X > n).

This is also sometimes called memorylessness.
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Note to Example 67

In this case DX = N.
Here p = 1/6, so the probability that the third person starts on his first throw of the die is
(5/6)2 × 1/6 = 0.116. He starts if the first six appears on throw 3,m+ 3, 2m+ 3, . . . and this equals

∞∑

i=0

P(X = 3 + im) =
∞∑

i=0

p(1− p)3+im−1 = p(1− p)2
∞∑

i=0

(1− p)im =
p(1− p)2

1− (1− p)m
,

where p = 1/6.
The probability of waiting for at least 6 tosses is (1− p)6 = 0.335.
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Note to Theorem 68

Since P(X > n) = (1− p)n, we seek

P(X > n+m | X > m) = (1− p)m+n/(1 − p)m = (1− p)n = P(X > n).

Thus we see that there is a ‘lack of memory’: knowing that X > m does not change the probability
that we have to wait at least another n trials before seeing the event.
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Negative binomial distribution

Definition 69. A negative binomial random variable X with parameters n and p has PMF

fX(x) =

(
x− 1

n− 1

)
pn(1− p)x−n, x = n, n+ 1, n+ 2, . . . , 0 ≤ p ≤ 1.

We write X ∼ NegBin(n, p). When n = 1, X ∼ Geom(p).

It models the waiting time until the nth success in a series of independent trials having the same
success probability.

Example 70. Give the probability of seeing 2 heads before 5 tails in repeated tosses of a coin.
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Note to Example 70

This is the probability that X ≤ 6, where X is the waiting time for n = 2 heads. It is
(
2− 1

2− 1

)
p2(1 − p)2−2 +

(
3− 1

2− 1

)
p2(1− p)3−2

+

(
4− 1

2− 1

)
p2(1− p)4−2 +

(
5− 1

2− 1

)
p2(1− p)5−2 +

(
6− 1

2− 1

)
p2(1− p)6−2.

If we assume that the coin is fair, so p = 0.5, R gives

pnbinom(q=4, size=2, prob=0.5)

[1] 0.890625

where note that q = x− n in the parametrization used in R.
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Geometric and negative binomial PMFs
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Negative binomial distribution: alternative version

We sometimes write the geometric and negative binomial variables in a more general form, setting
Y = X − n, and then the probability mass function is

fY (y) =
Γ(y + α)

Γ(α)y!
pα(1− p)y, y = 0, 1, 2, . . . , 0 ≤ p ≤ 1,α > 0,

where

Γ(α) =

∫ ∞

0
uα−1e−u du, α > 0

is the Gamma function. The principal properties of Γ(α) are:

Γ(1) = 1;

Γ(α+ 1) = αΓ(α), α > 0;

Γ(n) = (n− 1)!, n = 1, 2, 3, . . . ;

Γ(12 ) =
√
π.

They will be useful later.
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Hypergeometric distribution

Definition 71. We draw a sample of m balls without replacement from an urn containing w white
balls and b black balls. Let X be the number of white balls drawn. Then

P(X = x) =

(w
x

)( b
m−x

)

(w+b
m

) , x = max(0,m− b), . . . ,min(w,m),

and the distribution of X is hypergeometric. We write X ∼ HyperGeom(w, b;m).

Example 72. I leave for a camping trip in Ireland with six tins of food, two of which contain fruit. It
pours with rain, and the labels come off the tins. If I pick three of the six tins at random, find the
distribution of the number of tins of fruit among the three I have chosen.
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Note to Example 72

White balls correspond to fruit tins, black balls to others, so w = 2, b = 4, and I take m = 3.
Therefore the number of fruit tins X drawn has probability

P(X = x) =

(2
x

)( 4
3−x

)
(6
3

) , x = 0, . . . , 2,

and some calculation gives P(X = 0) = 1/5, P(X = 1) = 3/5, P(X = 2) = 1/5.
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Capture-recapture

Example 73. In order to estimate the number of fish N in a lake, we first catch r fish, mark them,
and let them go. After having waited long enough for the fish population to become well-mixed, we
catch another sample of size s.

! Find the distribution of the number of marked fish, M , in this sample.

! Show that the value of N which maximises P(M = m) is +rs/m,, and calculate the best
estimation of N when s = 50, r = 40, and m = 4.

The basic idea behind this example is used to estimate the sizes of populations of endangered species,
the number of drug addicts or of illegal immigrants in human populations, etc. One practical problem
often encountered is that certain individuals become harder to recapture, whereas others enjoy it; thus
the probabilities of recapture are heterogeneous, unlike in the example above.
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Note to Example 73

The total number is N , of which r are marked and N − r unmarked. The distribution of M is

PN (M = m) =

( r
m

)(N−r
s−m

)
(N
s

) , m = max(0, s + r −N), . . . ,min(r, s),

(work out the limits carefully).
For the second part, we seek to maximise this probability with respect to N . Now compare the
probabilities for N and N − 1 and take ratios, giving

PN (M = m)

PN−1(M = m)
=

( r
m

)(N−r
s−m

)
(N
s

)
/( r

m

)(N−1−r
s−m

)
(N−1

s

) =
(N − r)(N − s)

N(N +m− r − s)
> 1

provided that (after a little algebra) rs/m > N . Hence the largest value of N for which this ratio
increases is N̂ = +rs/m,, which therefore maximises the probability, because we can write

PN (M = m) =
PN (M = m)

PN−1(M = m)
× · · ·× PNmin+1(M = m)

PNmin(M = m)
PNmin(M = m),

where the latter probability is for the smallest value of N for which the probability that M = m is
positive.
In the example given, N̂ = +50× 40/4, = 500.
The behaviour of such estimators can be very poor.
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Hypergeometric PMFs

Probability mass functions of M (left) and of +rs/M, (centre) in Example 73, when r = 40, s = 50
and N = 1000, without +rs/M, = +∞, which corresponds to M = 0, and PN (M = m) as a function
of N (right):
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Discrete uniform distribution

Definition 74. A discrete uniform random variable X has PMF

fX(x) =
1

b− a+ 1
, x = a, a+ 1, . . . , b, a < b, a, b ∈ Z.

We write U ∼ DU(a, b).

This definition generalizes the outcome of a die throw, which corresponds to the DU(1, 6) distribution.
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Siméon-Denis Poisson (1781–1840)

‘Life is good for only two things, discovering mathematics and teaching mathematics.’
(Source: http://www-history.mcs.st-and.ac.uk/PictDisplay/Poisson.html)
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Poisson distribution

Definition 75. A Poisson random variable X has the PMF

fX(x) =
λx

x!
e−λ, x = 0, 1, . . . , λ > 0.

We write X ∼ Pois(λ).

! Since λx/x! > 0 for any λ > 0 and x ∈ {0, 1, . . .}, and

e−λ =
1

eλ
=

1
∑∞

x=0
λx

x!

> 0,

we see that fX(x) > 0 and
∑∞

x=0 fX(x) = 1, so this is a probability distribution.

! The Poisson distribution appears everywhere in probability and statistics, often as a model for
counts, or for a number of rare events.

! It also provides approximations to probabilities, for example for random permutations (Example 47,
random hats) or the binomial distribution (later).
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Poisson probability mass functions
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Cumulative distribution function

Definition 76. The cumulative distribution function (CDF) of a random variable X is

FX(x) = P(X ≤ x), x ∈ R.

If X is discrete, we can write
FX(x) =

∑

{xi∈DX :xi≤x}

P(X = xi),

which is a step function with jumps at the points of the support DX of fX(x).

When there is no risk of confusion, we write F ≡ FX .

Example 77. Give the support and the probability mass and cumulative distribution functions of a
Bernoulli random variable.

Example 78. Give the cumulative distribution function of a geometric random variable.
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Note to Example 77

The support is D = {0, 1}, and the CDF is

F (x) =






0, x < 0,

1− p, 0 ≤ x < 1,

1, x ≥ 1.

Draw a picture, showing a step function with a jump of 1− p at x = 0 and of p at x = 1.
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Note to Example 78

The support is D = N, and for x ≥ 1 we have

P(X ≤ x) =

"x#∑

r=1

p(1− p)r−1,

so we need to sum a geometric series with common ratio 1− p, giving

P(X ≤ x) =
p{1− (1− p)"x#}

1− (1− p)
= 1− (1− p)"x#.

Thus

P(X ≤ x) =

{
0, x < 1,

1− (1− p)"x#, x ≥ 1.
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Properties of a cumulative distribution function

Theorem 79. Let (Ω,F ,P) be a probability space and X : Ω 1→ R a random variable. Its cumulative
distribution function FX satisfies:

(a) limx→−∞ FX(x) = 0;

(b) limx→∞ FX(x) = 1;

(c) FX is non-decreasing, so FX(x) ≤ FX(y) for x ≤ y;

(d) FX is continuous on the right, thus

lim
t↓0

FX(x+ t) = FX(x), x ∈ R;

(e) P(X > x) = 1− FX(x);

(f) if x < y, then P(x < X ≤ y) = FX(y)− FX(x).
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Note to Theorem 79

(a) If not, there must be a blob of mass at −∞, which is not allowed, as X ∈ R.
(b) Ditto, for +∞.
(c) If y ≥ x, then F (y) = F (x) + P(x < X ≤ y), so the difference is always non-negative.
(d) Now F (x+ t) = P(X ≤ x) + P(x < X ≤ x+ t), and the second term here tends to zero, because
any point in the interval (x, x+ t] at which there is positive probability must lie to the right of x.
(e) We have P(X > x) = 1− P(X ≤ x) = 1− FX(x).
(f) We have P(x < X ≤ y) = P(X ≤ y)− P(X ≤ x) = FX(y)− FX(x).
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Remarks

! We can obtain the probability mass function of a discrete random variable from the cumulative
distribution function using

f(x) = F (x)− lim
y↑x

F (y).

In many cases X only takes integer values, DX ⊂ Z, and so f(x) = F (x)− F (x− 1) for x ∈ Z.

! From now on we will mostly ignore the implicit probability space (Ω,F ,P) when dealing with a
random variable X. We will rather think in terms of X, FX(x), and fX(x). We can legitimise this
‘oversight’ mathematically.

! We can specify the distribution of a random variable in an equivalent way by saying (for example):

– X follows a Poisson distribution with parameter λ; or

– X ∼ Pois(λ); or

– by giving the probability mass function of X; or

– by giving the cumulative distribution function of X.
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Transformations of discrete random variables

Real-valued functions of random variables are random variables themselves, so they possess probability
mass and cumulative distribution functions.

Theorem 80. If X is a random variable and Y = g(X), then

fY (y) =
∑

x:g(x)=y

fX(x).

Example 81. Calculate the PMF of Y = I(X ≥ 1) when X ∼ Pois(λ).

Example 82. Let Y be the remainder of the division by four of the total of two independent dice
throws. Calculate the PMF of Y .
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Note to Theorem 80

We have
fY (y) = P(Y = y) =

∑

x:g(x)=y

P(X = x) =
∑

x:g(x)=y

fX(x).
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Note to Example 81

Here Y = I(X ≥ 1) takes values 0 and 1, and

fY (0) = P(Y = 0) = P(X = 0) = e−λ, fY (1) = P(Y = 1) =
∞∑

x=1

P(X = x) =
∞∑

x=1

λx

x!
e−λ = 1−e−λ.
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Note to Example 82

Y has support 0, 1, 2, 3, and mass function given by

fY (0) = P(Y = 0) = P(X ∈ {4, 8, 12}) = (3 + 5 + 1)/36 = 9/36,

fY (1) = P(Y = 1) = P(X ∈ {5, 9}) = (4 + 4)/36 = 8/36,

fY (2) = P(Y = 2) = P(X ∈ {2, 6, 10}) = (1 + 5 + 3)/36 = 9/36,

fY (3) = P(Y = 3) = P(X ∈ {3, 7, 11}) = (2 + 6 + 2)/36 = 10/36,

which fortunately adds to 36/36.
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3.2 Expectation slide 112

Expectation

Definition 83. Let X be a discrete random variable for which
∑

x∈DX
|x|fX(x) < ∞, where DX is

the support of fX . The expectation (or expected value or mean) of X is

E(X) =
∑

x∈DX

xP(X = x) =
∑

x∈DX

xfX(x).

! If E(|X|) =
∑

x∈DX
|x|fX(x) is not finite, then E(X) is not well defined.

! E(X) is also sometimes called the “average of X”. We will limit the use of the word “average” to
empirical quantities.

! The expectation is analogous in mechanics to the notion of centre of gravity of an object whose
mass is distributed according to fX .

Example 84. Calculate the expectation of a Bernoulli random variable with probability p.

Example 85. Calculate the expectation of X ∼ B(n, p).

Example 86. Calculate the expectation of the random variables with PMFs

fX(x) =
4

x(x+ 1)(x+ 2)
, fY (x) =

1

x(x+ 1)
, x = 1, 2, . . . .
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Note to Example 84

First we note that if the support of X is finite, then E(|X|) < maxx∈DX
|x| < ∞.

If I is Bernoulli with probability p, then E(I) = 0× (1− p) + 1× p = p.
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Note to Example 85

Here DX = {0, 1, . . . , n} is finite, so E(|X|) < ∞.
We get

E(X) =
n∑

x=0

x

(
n

x

)
px(1− p)n−x

=
n∑

x=1

n× (n − 1)!

(x− 1)!{n − 1− (x− 1)}!p× px−1(1− p)(n−1)−(x−1)

= np
n−1∑

y=0

(
n− 1

y

)
py(1− p)n−1−y = np,

where we have set y = x− 1. This agrees with the previous example, since X can be viewed as a sum
I1 + · · · + In.
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Note to Example 86

Note that fY sums to unity: since the series is absolutely convergent we can re-organise the brackets in
the sums, giving

∞∑

x=1

1

x(x+ 1)
=

∞∑

x=1

(
1

x
− 1

x+ 1

)
=

1

1
+

∞∑

x=1

(
1

x+ 1
− 1

x+ 1

)
= 1,

after cancelling terms.
A similar argument works for fX , since

∞∑

x=1

4

x(x+ 1)(x + 2)
= 2

∞∑

x=1

(
1

x(x+ 1)
− 1

(x+ 1)(x+ 2)

)

= 2

{
1

1× 2
+

∞∑

x=1

(
1

(x+ 1)(x+ 2)
− 1

(x+ 1)(x+ 2)

)}

= 1.

Now since the sum below is absolutely convergent, we have

E(X) = 4
∞∑

x=1

1

(x+ 1)(x + 2)
= 4

∞∑

x=1

(
1

x+ 1
− 1

x+ 2

)
= 4

{
1

1 + 1
+

∞∑

x=1

(
1

x+ 2
− 1

x+ 2

)}

= 2.

However,

E(Y ) =
∞∑

x=1

1

x+ 1
= +∞.

Thus it is relatively easy to construct random variables whose expectations are infinite: existence of an
expected value is not guaranteed.

Probability and Statistics for SIC note 3 of slide 113

Expected value of a function

Theorem 87. Let X be a random variable with mass function f , and let g be a real-valued function
of X. Then

E{g(X)} =
∑

x∈DX

g(x)f(x),

when
∑

x∈DX
|g(x)|f(x) < ∞.

Example 88. Let X ∼ Pois(λ). Calculate the expectations of

X, X(X − 1), X(X − 1) · · · (X − r + 1).
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Note to Theorem 87

Write Y = g(X), and note that for any y in the support DY of Y , we have

fY (y) = P(Y = y) = P{g(X) = y} =
∑

{x∈DX :g(x)=y}

P(X = x) =
∑

{x∈DX :g(x)=y}

fX(x).

Therefore

E(Y ) =
∑

y∈DY

yfY (y) =
∑

y∈DY

y
∑

{x∈DX :g(x)=y}

fX(x) =
∑

y∈DY

∑

x:g(x)=y

g(x)fX (x) =
∑

x∈DX

g(x)fX(x),

as required.
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Note to Example 88

Note that

E{X(X − 1) · · · (X − r + 1)} =
∞∑

x=0

x(x− 1) · · · (x− r + 1)
λx

x!
e−λ = λr

∞∑

x−r=0

λx−r

(x− r)!
e−λ = λr,

which yields E(X) = λ and E{X(X − 1)} = λ2.
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Properties of the expected value

Theorem 89. Let X be a random variable with a finite expected value E(X), and let a, b ∈ R be
constants. Then

(a) E(·) is a linear operator, i.e., E(aX + b) = aE(X) + b ;

(b) if g(X) and h(X) have finite expected values, then

E{g(X) + h(X)} = E{g(X)} + E{h(X)};

(c) if P(X = b) = 1, then E(X) = b ;

(d) if P(a < X ≤ b) = 1, then a < E(X) ≤ b ;

(e) {E(X)}2 ≤ E(X2).

Remark: Linearity of the expected value, (a) and (b), and fact (c), are very useful in calculations.
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Note to Theorem 89

(a) We need to show absolute convergence:

∑

x

|ax+ b|f(x) ≤
∑

x

(|a||x| + |b|)f(x) = |a|
∑

x

|x|f(x) + |b|
∑

x

f(x) < ∞,

and after that we just apply linearity of the summation.
(b) Follows using same argument as in (a), after noting that |g(x) + h(x)| ≤ |g(x)| + |h(x)|.
(c) Here f(b) = P(X = b) = 1, so E(X) = bf(b) = b by definition.
(d) Now f(x) = 0 for x #∈ (a, b], so E(X) =

∑
x xf(x) ≤

∑
x bf(x) = b and similarly E(X) > a.

(e) For any real a, linearity of the expectation gives

0 ≤ E
{
(X − a)2

}
= E

{
X2 − 2aX + a2

}
= E(X2)− 2aE(X) + a2,

and setting a = E(X) and simplifying the right-hand side to E(X2)− E(X)2 yields the result.
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Moments of a distribution

Definition 90. If X has a PMF f(x) such that
∑

x |x|rf(x) < ∞, then

(a) the rth moment of X is E(Xr);

(b) the rth central moment of X is E[{X − E(X)}r];
(c) the variance of X is var(X) = E[{X − E(X)}2] (the second central moment);

(d) the standard deviation of X is defined as
√

var(X) (non-negative);

(e) the rth factorial moment of X is E{X(X − 1) · · · (X − r + 1)}.

Remarks:

! E(X) and var(X) are the most important moments: they represent the ‘average value’ E(X) of
X, and the ‘average squared distance’ of X from its mean, E(X).

! The variance is analogous to the moment of inertia in mechanics: it measures the scatter of X
around its mean, E(X), with small variance corresponding to small scatter, and conversely.

! The expectation and standard deviation have the same units (kg, m, . . . ) as X.

Example 91. Calculate the expectation and variance of the score when we roll a die.
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Note to Example 91

Now X takes values 1, . . . , 6 with equal probabilities 1/6. Obviously E(|X|) < ∞, and
E(X) = (1 + · · ·+ 6)/6 = 21/6 = 7/2. The variance is

E[{X − E(X)}2] =
6∑

x=1

1

6
(x− 7/2)2 = 2

6 × 1
4 × (1 + 9 + 25) = 35/12.
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Properties of the variance

Theorem 92. Let X be a random variable whose variance exists, and let a, b be constants. Then

var(X) = E(X2)− E(X)2 = E{X(X − 1)}+ E(X)− E(X)2;

var(aX + b) = a2var(X);

var(X) = 0 ⇒ X is constant with probability 1.

! The first of these formulae expresses the variance in terms of either the ordinary moments, or the
factorial moments. Usually the first is more useful, but occasionally the second can be used.

! The second formula shows that the variance does not change if X is shifted by a fixed quantity b,
but the dispersion is increased by the square of a multiplier a.

! The third shows that the variance is appropriately named: if X has zero variance, then it does not
vary.

Example 93. Calculate the variance of a Poisson random variable.
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Note to Theorem 92

(a) Just expand, use linearity of E, and simplify.
(b) Ditto.
(c) If we write E(X) = µ and

var(X) = E[{X − E(X)}2] = E[{X − µ}2] =
∑

x

f(x)(x− µ)2 = 0,

then for each x ∈ DX , either x = µ or f(x) = 0. Suppose that f(a), f(b) > 0 and a #= b. Then if
var(X) = 0, we must have a = µ = b, which is a contradiction. Therefore f(x) > 0 for a unique value
of x, and then we must have f(x) = 1, so P(X = x) = 1 and (x− µ)2 = 0; thus
P(X = µ) = fX(µ) = 1.

Probability and Statistics for SIC note 1 of slide 117

Note to Example 93

By recalling Example 88, we find

var(X) = E{X(X − 1)} + E(X)− E(X)2 = λ2 + λ− λ2 = λ.
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Poisson du moment

(Source: Copernic)
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Moment du Poisson

(Source: Copernic)
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Properties of the variance II

Theorem 94. If X takes its values in {0, 1, . . .}, r ≥ 2, and E(X) < ∞, then

E(X) =
∞∑

x=1

P(X ≥ x),

E{X(X − 1) · · · (X − r + 1)} = r
∞∑

x=r

(x− 1) · · · (x− r + 1)P(X ≥ x).

Example 95. Let X ∼ Geom(p). Calculate E(X) and var(X).

Example 96. Each packet of a certain product has equal chances of containing one of n different
types of tokens, independently of each other packet. What is the expected number of packets you will
need to buy in order to get at least one of each type of token?
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Note to Theorem 94

! The first part of this is

E(X) =
∞∑

x=1

xf(x) =
∞∑

x=1

P(X = x)
x∑

r=1

1 =
∞∑

x=1

P(X ≥ x),

as follows on changing the order of summation, noting that since all the terms are positive, this is
a legal operation.

! The second part is proved in the same way, first writing

r(x− 1) · · · (x− r + 1) = r!
(x− 1)!

(r − 1)!(x − r)!
= r!

(
x− 1

r − 1

)
.

Then we write

r
∞∑

x=r

(x− 1) · · · (x− r + 1)P(X ≥ x) =
∞∑

x=r

r!

(
x− 1

r − 1

) ∞∑

y=x

fX(y) =
∞∑

y=r

fX(y)r!
y∑

x=r

(
x− 1

r − 1

)
,

and use Pascal’s triangle (Theorem 17) to find that

r!
y∑

x=r

(
x− 1

r − 1

)
= r!

y∑

x=r

{(
x

r

)
−
(
x− 1

r

)}
= r!

(
y

r

)
= y(y − 1) · · · (y − r + 1)

after cancellations. As required, this gives

∞∑

y=r

fX(y)y(y − 1) · · · (y − r + 1) = E{X(X − 1) · · · (X − r + 1)}.
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Note to Example 95

In this case X ∈ {1, 2, . . .}, and Theorem 94 yields

E(X) =
∞∑

x=1

(1− p)x−1 =
1

1− (1− p)
= 1/p ≥ 1.

For the variance, note that the second part of Theorem 94, with r = 2, gives

E{X(X − 1)} = 2
∞∑

x=2

(x− 1)(1 − p)x−1

= 2(1 − p)
d

dp

{

−
∞∑

x=1

(1− p)x−1

}

= 2(1 − p)
d

dp
(−1/p) = 2(1− p)/p2.

Hence the variance is

var(X) = E{X(X − 1)} + E(X)− E(X)2 = 2(1 − p)/p2 + 1/p− 1/p2 = (1− p)/p2.

This gets smaller as p → 1, and larger as p → 0, as expected.

Probability and Statistics for SIC note 2 of slide 120

Note to Example 96

This can be represented as X1 +X2 + · · ·+Xn, where X1 is the number of packets to the first token,
then X2 is the number of packets to the next different token (i.e., not the first), etc. Thus the Xr are
independent geometric variables with probabilities p = n/n, (n− 1)/n, . . . , 1/n. Hence the expectation
is n(1 + 1/2 + 1/3 + · · · + 1/n) ∼ n log n, which → ∞ as n → ∞.
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3.3 Conditional Probability Distributions slide 121

Conditional probability distributions

Definition 97. Let (Ω,F ,P) be a probability space, on which we define a random variable X, and let
B ∈ F with P(B) > 0. Then the conditional probability mass function of X given B is

fX(x | B) = P(X = x | B) = P(Ax ∩B)/P(B),

where Ax = {ω ∈ Ω : X(ω) = x}.

Theorem 98. The function fX(x | B) satisfies

fX(x | B) ≥ 0,
∑

x

fX(x | B) = 1,

and is thus a well-defined mass function.

Often B is an event of form X ∈ B, for some B ⊂ R, and then

fX(x | B) =
P(X = x,X ∈ B)

P(X ∈ B) =
P(X ∈ B | X = x)P(X = x)

P(X ∈ B) =
I(x ∈ B)
P(X ∈ B)fX(x),

so fX(x | B) = 0 (x #∈ B) and fX(x | B) ∝ fX(x) (x ∈ B), rescaled to have unit probability.

Example 99. Calculate the conditional PMFs of X ∼ Geom(p), (a) given that X > n, (b) given
that X ≤ n.

Probability and Statistics for SIC slide 122

Note to Theorem 98

We need to check the two properties of a distribution function.

! Non-negativity is obvious because the fX(x | B) = P(X = x | B) are conditional probabilities.

! Now Ax ∩Ay = ∅ if x #= y, and
⋃

x∈RAx = Ω. Hence the Ax partition R, and thus

∑

x

fX(x | B) =
∑

x

P(Ax ∩B)/P(B) = P(B)/P(B) = 1.
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Note to Example 99

(a) The event B1 = {X > n} has probability (1− p)n, so the new mass function is

fX(x | B1) =
P(X = x ∩X > n)

P(X > n)
=

fX(x)I(x > n)

P(X > n)
= p(1− p)x−n−1, x = n+ 1, n + 2, . . . .

This implies that conditional on X > n, X − n has the same distribution as did X originally.
(b) The event B2 = Bc

1 = {X ≤ n} has probability 1− (1− p)n, so the new mass function is

fX(x | B2) =
P(X = x ∩X ≤ n)

P(X ≤ n)
=

fX(x)I(x ≤ n)

1− (1− p)n
=

p(1− p)x−1

1− (1− p)n
, x = 1, . . . , n.
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Conditional expected value

Definition 100. Suppose that
∑

x |g(x)|fX (x | B) < ∞. Then the conditional expected value of
g(X) given B is

E{g(X) | B} =
∑

x

g(x)fX(x | B).

Theorem 101. Let X be a random variable with expected value E(X) and let B be an event with
P(B),P(Bc) > 0. Then

E(X) = E(X | B)P(B) + E(X | Bc)P(Bc).

More generally, when {Bi}∞i=1 is a partition of Ω, P(Bi) > 0 for all i, and the sum is absolutely
convergent,

E(X) =
∞∑

i=1

E(X | Bi)P(Bi).
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Note to Theorem 101

We prove the second part, of which the first is a special case. The total probability theorem,
Theorem 43, gives

f(x) = P(X = x) =
∞∑

i=1

P(X = x | Bi)P(Bi) =
∞∑

i=1

f(x | Bi)P(Bi),

and this gives

E(X) =
∑

x

xf(x) =
∑

x

x
∞∑

i=1

f(x | Bi)P(Bi) =
∞∑

i=1

{
∑

x

xf(x | Bi)

}

P(Bi) =
∞∑

i=1

E(X | Bi)P(Bi),

as required. The first part follows on setting B1 = B, B2 = Bc, B3 = B4 = · · · = ∅.
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Example

Example 102. Calculate the expected values for the distributions in Example 99.

Probability and Statistics for SIC slide 124

69



Note to Example 99

(a) Since
fX(x | B1) = p(1− p)x−n−1, x = n+ 1, n + 2, . . . ,

we have

E(X | B1) =
∞∑

x=n+1

xp(1− p)x−n−1 =
∞∑

y=1

(n+ y)p(1− p)y−1

where we have set y = x− n, and hence

E(X | B1) = n
∞∑

y=1

p(1− p)y−1 +
∞∑

y=1

yp(1− p)y−1 = n+ 1/p,

since the first sum equals unity and the second is the expectation of a Geom(p) variable.
(b) We can tackle this directly using the expression

E(X | B2) =
n∑

x=1

x
p(1− p)x−1

1− (1− p)n

or indirectly by writing B = B1 and Bc = B2, which are complementary events, and using
Theorem 101:

E(X) = E(X | B1)P(B1) + E(X | B2)P(B2),

giving
1/p = (n+ 1/p)(1 − p)n + E(X | B2){1 − (1− p)n},

and a little algebra yields

E(X | B2) =
1/p − (n+ 1/p)(1 − p)n

1− (1− p)n
.
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3.4 Notions of Convergence slide 125

Convergence of distributions

We often want to approximate one distribution by another. The mathematical basis for doing so is the
convergence of distributions.

Definition 103. Let {Xn}, X be random variables whose cumulative distribution functions are {Fn},
F . Then we say that the random variables {Xn} converge in distribution (or converge in law) to
X, if, for all x ∈ R where F is continuous,

Fn(x) → F (x), n → ∞.

We write Xn
D−→ X.

If DX ⊂ Z, then Fn(x) → F (x) if fn(x) → f(x) for all x, n → ∞.
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Law of small numbers

Recall from Theorem 17 that n−r
(n
r

)
→ 1/r! for all r ∈ N, when n → ∞.

Theorem 104 (Law of small numbers). Let Xn ∼ B(n, pn), and suppose that npn → λ > 0 when

n → ∞. Then Xn
D−→ X, where X ∼ Pois(λ).

Theorem 104 can be used to approximate binomial probabilities for large n and small p by Poisson
probabilities.

Example 105. In Example 47 we saw that the probability of having exactly r fixed points in a random
permutation of n objects is

1

r!

n−r∑

k=0

(−1)k

k!
→ e−1

r!
, r = 0, 1, . . . , n → ∞,

Thus the number of fixed points has a limiting Pois(1) distribution.
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Note to Theorem 104

For any fixed r we have

(
n

r

)
prn(1− pn)

n−r = n−r

(
n

r

)
× (npn)

r(1− npn/n)
n−r → 1

r!
λre−λ, n → ∞,

which is the required Poisson mass function; call this limiting Poisson random variable X. This
convergence implies that P(Xn ≤ x) → P(X ≤ x) for any fixed real x, since P(Xn ≤ x) is just then a
finite sum of probabilities, each of which is converging to the limiting Poisson probability.
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Law of small numbers
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Mass functions of three binomial distributions and the Poisson distribution, all with expectation 5.
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Numerical comparison

Example 106 (Binomial and Poisson distributions). Compare P(X ≤ 3) for X ∼ B(20, p), with
p = 0.05, 0.1, 0.2, 0.5 with the results from a Poisson approximation, P(X ′ ≤ 3), with X ′ ∼ Pois(np),
using the functions pbinom and ppois in the software R — see

http://www.r-project.org/

Thus for example we have:

> pbinom(3,size=20,prob=0.05) # Binomial prob, Pr(X <= 3)
[1] 0.9840985

> ppois(3,lambda=20*0.05) # Poisson approx, Pr(X’ <= 3)

[1] 0.9810118

Probability and Statistics for SIC slide 129

People versus Collins

Example 107. In 1964 a handbag was stolen in Los Angeles by a young woman with blond hair in a
pony tail. The thief disappeared, but soon afterwards she was spotted in a yellow car with a bearded
black man with a moustache. The police then arrested a woman called Janet Collins, who matched the
description, and had a black bearded friend with a moustache, who drove a yellow car.

Due to a lack of evidence and of reliable witnesses, the prosecutor tried to convince the jury that
Collins and her friend were the only pair in Los Angeles who could have committed the crime. He
found a probability of p = 1/(12 × 106) that a couple picked at random should fit the description, and
they were convicted.

In a higher court it was argued that the number of couples X fitting the description must follow a
Poisson distribution with λ = np, where n is the size of the population to which the couple belong. To
be certain that the couple were guilty, P(X > 1 | X ≥ 1) must be very small. But with n = 106,
2× 106, 5× 106, 10× 106, these probabilities are 0.041, 0.081, 0.194, 0.359: it was therefore very far
from certain that they were guilty. They were finally cleared.
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Note to Example 107

Here the law of small numbers applies, so

P(X > 1 | X ≥ 1) = 1− P(X = 1 | X ≥ 1) = 1− λe−λ/(1− e−λ) = 1− λ/(eλ − 1),

with Poisson parameter λ = np = 1/12, 1/6, 5/12 and 1 respectively. Calculation gives the required
numbers. In fact here X has a truncated Poisson distribution.
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Example

Example 108. Let XN be a hypergeometric variable, then

P(XN = x) =

(m
x

)(N−m
n−x

)
(N
n

) , x = max(0,m+ n−N), . . . ,min(m,n).

This is the distribution of the number of white balls obtained when we take a random sample of size n
without replacement from an urn containing m white balls and N −m black balls. Show that when
N,m → ∞ in such a way that m/N → p, where 0 < p < 1,

P(XN = x) →
(
n

x

)
px(1− p)n−x, i = 0, . . . , n.

Hence the limiting distribution of XN is B(n, p).
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Note to Example 108

We apply the last part of Theorem 17, writing
(m
x

)(N−m
n−x

)
(N
n

) =
mx(N −m)n−x

Nn
×

m−x
(m
x

)
(N −m)−(n−x)

(N−m
n−x

)

N−n
(N
n

)

→ px(1− p)n−x × n!

x!(n− x)!
, N → ∞,

under the terms of the theorem, as required.
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Which distribution?

We have encountered several distributions: Bernoulli, binomial, geometric, negative binomial,
hypergeometric, Poisson—how to choose? Here is a little algorithm to help your reasoning:

Is X based on independent trials (0/1) with a same probability p, or on draws from a finite population,
with replacement?

! If Yes, is the total number of trials n fixed, so X ∈ {0, . . . , n}?

– If Yes: use the binomial distribution, X ∼ B(n, p) (and thus the Bernoulli distribution if
n = 1).

& If n ≈ ∞ or n 6 np, we can use the Poisson distribution, X ∼ Pois(np).

– If No, then X ∈ {n, n+ 1, . . .}, and we use the geometric (if X is the number of trials until
one success) or negative binomial (if X is the number of trials until the last of several
successes) distributions.

! If No, then if the draw is independent but without replacement from a finite population, then X ∼
hypergeometric distribution.

There are many more distributions, and we may choose a distribution on empirical grounds. The
following map comes from Leemis and McQueston (2008, American Statistician) . . .
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4 Continuous Random Variables slide 135

4.1 Basic Ideas slide 136

Continuous random variables

In many situations, we must work with continuous variables:

! the time until the end of the lecture ∈ (0, 45) min;

! the pair (height, weight) ∈ (0,∞)2.

Until now we supposed that the support

DX = {x ∈ R : X(ω) = x,ω ∈ Ω}

of X is countable, so X is a discrete random variable. We suppose now that DX is not countable,
which implies also that Ω itself is not countable.

Definition 109 (Reminder). Let (Ω,F ,P) be a probability space. The cumulative distribution
function of a rv X defined on (Ω,F ,P) is

F (x) = P(X ≤ x) = P(Bx), x ∈ R,

where Bx = {ω : X(ω) ≤ x} ⊂ Ω.
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Probability density functions

Definition 110. A random variable X is continuous if there exists a function f(x), called the
probability density function (or density) (PDF) of X, such that

P(X ≤ x) = F (x) =

∫ x

−∞
f(u) du, x ∈ R.

The properties of F imply that (i) f(x) ≥ 0, and (ii)
∫∞
−∞ f(x) dx = 1.

Remarks:

! Evidently,

f(x) =
dF (x)

dx
.

! Since P(x < X ≤ y) =
∫ y
x f(u) du for x < y, for all x ∈ R,

P(X = x) = lim
y↓x

P(x < X ≤ y) = lim
y↓x

∫ y

x
f(u) du =

∫ x

x
f(u) du = 0.

! If X is discrete, then its PMF f(x) is often also called its density function.
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Motivation

We study continuous random variables for several reasons:

! they appear in simple but powerful models—for example, the exponential distribution often
represents the waiting time in a process where events occur completely at random;

! they give simple but very useful approximations for complex problems—for example, the normal
distribution appears as an approximation for the distribution of an average, under fairly general
conditions;

! they are the basis for modelling complex problems either in probability or in statistics—for
example, the Pareto distribution is often a good approximation for heavy-tailed data, in finance
and for the internet.

We will discuss a few well-known distributions, but there are plenty more (see map at the end of
Chapter 3) . . ..
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Basic distributions

Definition 111 (Uniform distribution). The random variable U having density

f(u) =

{
1

b−a , a ≤ u ≤ b,

0, otherwise,
a < b,

is called a uniform random variable. We write U ∼ U(a, b).

Definition 112 (Exponential distribution). The random variable X having density

f(x) =

{
λe−λx, x > 0,

0, otherwise,

is called an exponential random variable with parameter λ > 0. We write X ∼ exp(λ).

In practice random variables are almost always either discrete or continuous, with exceptions such as
daily rain totals.

Example 113. Find the cumulative distribution functions of the uniform and exponential distributions,
and establish the lack of memory (or memorylessness) property of X:

P(X > x+ t | X > t) = P(X > x), t, x > 0.
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Note to Example 113

Integration of the uniform density gives

F (u) =






0, u ≤ a,

(u− a)/(b − a), a < u ≤ b,

1, u > b.

Sketch the density and the CDF.
Integration of the exponential density gives

F (x) =

{
0, x ≤ 0,

1− exp(−λx), x > 0.

Draw the density and the CDF.
For the lack of memory of the exponential distribution, note that

P(X > x+ t | X > t) =
P(X > x+ t)

P(X > t)
=

exp{−λ(x+ t)}
exp(−λt) = exp(−λx), x > 0.
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Gamma distribution

Definition 114 (Gamma distribution). The random variable X having density

f(x) =

{
λα

Γ(α)x
α−1e−λx, x > 0,

0, otherwise,

is called a gamma random variable with parameters α,λ > 0; we write X ∼ Gamma(α,λ).
Here α is called the shape parameter and λ is called the rate, with λ−1 the scale parameter. By
letting α = 1 we get the exponential density, and when α = 2, 3, . . . we get the Erlang density.
Slide 99 gives the properties of Γ(·).
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Laplace distribution

Definition 115 (Laplace). The random variable X having density

f(x) =
λ

2
e−λ|x−η|, x ∈ R, η ∈ R,λ > 0,

is called a Laplace random variable (or sometimes a double exponential) random variable.

(Source: http://www-history.mcs.st-and.ac.uk/PictDisplay/Laplace.html)
Pierre-Simon Laplace (1749–1827): Théorie Analytique des Probabilités (1814)
According to Napoleon Bonaparte: ‘Laplace did not consider any question from the right angle: he
sought subtleties everywhere, conceived only problems, and brought the spirit of “infinitesimals” into
the administration.’
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Pareto distribution

Definition 116 (Pareto). The random variable X with cumulative distribution function

F (x) =

{
0, x < β,

1−
(
β
x

)α
, x ≥ β,

, α,β > 0,

is called a Pareto random variable.

Vilfredo Pareto (1848–1923): Professor at Lausanne University, father of economic science.
(Source: http://www.gametheory.net/dictionary/People/VilfredoPareto.html)

Example 117. Find the cumulative distribution function of the Laplace distribution, and the
probability density function of the Pareto distribution.
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Note to Example 117

For the Laplace distribution, integration of the density gives

F (x) =

{
1
2e

−λ|x−η|, x ≤ η,

1− 1
2e

−λ|x−η|, x > η.

Note that F (η) = 1/2, so η is the median of the distribution.
Sketch the density and the CDF.
For the Pareto density, just differentiate with respect to x to obtain the density function,

f(x) =

{
0, x < β,
αβα

xα+1 , x ≥ β.
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Moments

Definition 118. Let g(x) be a real-valued function, and X a continuous random variable of density
f(x). Then if E{|g(X)|} < ∞, we define the expectation of g(X) to be

E{g(X)} =

∫ ∞

−∞
g(x)f(x) dx.

In particular the expectation and the variance of X are

E(X) =

∫ ∞

−∞
xf(x) dx,

var(X) =

∫ ∞

−∞
{x− E(X)}2f(x) dx = E(X2)− E(X)2.

Example 119. Calculate the expectation and the variance of the following distributions: (a) U(a, b);
(b) gamma; (c) Pareto.
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Note to Example 119

(a) Note that we need to compute E(U r) for r = 1, 2, and this is 1
r+1(b

r+1 − ar+1)/(b− a). Hence

E(X) = 1
2(b

2 − a2)/(b− a) = (b+ a)/2, as expected. For the variance, note that

E(X2)− E(X)2 = 1
3

b3 − a3

b− a
− (b+ a)2/4 = 1

3(b
2 + ab+ a2)− (b2 + 2ab+ a2)/4 = (b− a)2/12.

(b) In this case

E(Xr) =

∫ ∞

0
xr × λαxα−1Γ(α)−1 exp(−λx) dx

= λ−rΓ(α)−1
∫ ∞

0
ur+α−1e−u du

= λ−rΓ(r + α)/Γ(α).

Properties of the gamma function (slide 99) give

E(X) = α/λ, E(X2) = α(α + 1)/λ2, var(X) = E(X2)− E(X)2 = α/λ2.

(c) The expectation is

E(Xr) =

∫ ∞

β
αβαxr−α−1 dx = αβr/(α − r)

provided that α > r. If α ≤ r then the moment does not exist. In particular, E(X) < ∞ only if α > 1.
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Conditional densities

We can also calculate conditional cumulative distribution and density functions: for reasonable subsets
A ⊂ R we have

FX(x | X ∈ A) = P(X ≤ x | X ∈ A) =
P(X ≤ x ∩X ∈ A)

P(X ∈ A)
=

∫
Ax

f(y) dy

P(X ∈ A)
,

where Ax = {y : y ≤ x, y ∈ A}, and

fX(x | X ∈ A) =

{
fX(x)

P(X∈A) , x ∈ A,

0, otherwise.

With I(X ∈ A) the indicator variable of the event X ∈ A, we can write

E{g(X) | X ∈ A} =
E {g(X) I(X ∈ A)}

P(X ∈ A)
,

Example 120. Let X ∼ exp(λ). Find the density and the cumulative distribution function of X, given
that X > 3.
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Note to Example 120

With A = (3,∞), we have P(X ∈ A) = exp(−3λ). Hence

FX(x | X ∈ A) =

{
0, x < 3,
exp(−3λ)−exp(−λx)

exp(−3λ) , x ≥ 3,

and the formula here reduces to 1− exp{−(x− 3)λ}, x > 3. This is just the exponential density,
shifted along to x = 3. There is a close relation to the lack of memory property.
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Example

Example 121. To get a visa for a foreign country, you call its consulate every morning at 10 am. On
any given day the civil servant is only there to answer telephone calls with probability 1/2, and when he
does answer, he lets the phone ring for a random amount of time T (min) whose distribution is

FT (t) =

{
0, t ≤ 1,

1− t−1, t > 1.

(a) If you call one morning and don’t hang up, what is the probability that you will listen to the ringing
tone for at least s minutes?
(b) You decide to call once every day, but to hang up if there has been no answer after s∗ minutes.
Find the value of s∗ which minimises your time spent listening to the ringing tone.
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Waiting time in Example 121
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X discrete or continuous?

Discrete Continuous
Support DX countable contains an interval (x−, x+) ⊂ R

fX mass function density function
dimensionless units [x]−1

0 ≤ fX(x) ≤ 1 0 ≤ fX(x)∑
x∈R fX(x) = 1

∫∞
−∞ fX(x) dx = 1

FX(a) = P(X ≤ a)
∑

x≤a fX(x)
∫ a
−∞ fX(x) dx

P(X ∈ A)
∑

x∈A fX(x)
∫
A fX(x) dx

P(a < X ≤ b)
∑

{x:a<x≤b} fX(x)
∫ b
a fX(x) dx

P(X = a) fX(a) ≥ 0
∫ a
a fX(x) dx = 0

E{g(X)} (if well defined)
∑

x∈R g(x)fX(x)
∫∞
−∞ g(x)fX (x) dx
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4.2 Further Ideas slide 149

Quantiles

Definition 122. Let 0 < p < 1. We define the p quantile of the cumulative distribution function
F (x) to be

xp = inf{x : F (x) ≥ p}.

For most continuous random variables, xp is unique and equals xp = F−1(p), where F−1 is the inverse
function F ; then xp is the value for which P(X ≤ xp) = p. In particular, we call the 0.5 quantile the
median of F .

Example 123. Let X ∼ exp(λ). Show that xp = −λ−1 log(1 − p).

Example 124. Find the p quantile of the Pareto distribution.

The infimum is needed when there are jumps in the distribution function, or when it is flat over some
interval. Here is an example:

Example 125. Compute x0.5 and x0.9 for a Bernoulli random variable with p = 1/2.
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Note to Example 123

We have to solve F (xp) = 1− exp(−λxp) = p, which gives the required result.
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Note to Example 124

We have to solve F (xp) = 1− (β/xp)α = p, which gives xp = β(1− p)−1/α.
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Note to Example 125

Recall that in this case

F (x) =






0, x < 0,

1/2, 0 ≤ x < 1,

1, x ≥ 1.

There is no value of x such that F (x) = 0.9, but F (x) ≥ 0.9 for every x ≥ 1, so

x0.9 = inf{x : F (x) ≥ 0.9} = inf{x : x ≥ 1} = 1.

Likewise
x0.5 = inf{x : F (x) ≥ 0.5} = inf{x : x ≥ 0} = 0.
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Transformations

We often consider Y = g(X), where g is a known function, and we want to calculate FY and fY given
FX and fX .

Example 126. Let Y = − log(1− U), where U ∼ U(0, 1). Calculate FY (y) and discuss. Calculate
also the density and cumulative distribution function of W = − logU . Explain.

Example 127. Let Y = <X=, where X ∼ exp(λ) (thus Y is the smallest integer greater than X).
Calculate FY (y) and fY (y).
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Note to Example 126

Note first that since 0 < U < 1, 1− U > 0 and taking the log is OK, and we get
Y = − log(1− U) > 0. Hence

P(Y ≤ y) = P{− log(1− U) ≤ y} = P{U ≤ 1− exp(−y)} = 1− exp(−y), y > 0

which is the exponential density; note that the transformation here is monotone. Thus Y has an
exponential distribution.
For W = − logU , we have

P(W ≤ w) = P{− log(U) ≤ w}
= P{logU ≥ −w}
= P(U ≥ e−w)

= 1− P(U < e−w) = 1− e−w, w > 0,

where the < can become an ≤ because there is no probability at individual points in R.
Hence W also has an exponential distribution. This is obvious, because if U ∼ U(0, 1), then
1− U ∼ U(0, 1) also.

Probability and Statistics for SIC note 1 of slide 151
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Note to Example 127

Y = r iff r − 1 < X ≤ r, so for r = 1, 2, . . . , we have

P(Y = r) =

∫ r

r−1
fX(x) dx =

∫ r

r−1
λe−λx dx = (e−λ(r−1) − e−λr) = (e−λ)r−1(1− e−λ).

This is the geometric distribution with probability p = 1− e−λ.
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General transformation

We can formalise the previous discussion in the following way:

Definition 128. Let g : R 1→ R be a function and B ⊂ R any subset of R. Then g−1(B) ⊂ R is the
set for which g{g−1(B)} = B.

Theorem 129. Let Y = g(X) be a random variable and By = (−∞, y]. Then

FY (y) = P(Y ≤ y) =

{∫
g−1(By)

fX(x) dx, X continuous,
∑

x∈g−1(By) fX(x), X discrete,

where g−1(By) = {x ∈ R : g(x) ≤ y}. When g is monotone increasing or decreasing and has
differentiable inverse g−1, then

fY (y) =

∣∣∣∣
dg−1(y)

dy

∣∣∣∣ fX{g−1(y)}, y ∈ R.

Example 130. If X ∼ exp(λ) and Y = exp(X), find FY and fY .

Example 131. Find the distribution and density functions of Y = cos(X), where X ∼ exp(1).

Probability and Statistics for SIC slide 152
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Note to Theorem 129

We have
P(Y ∈ B) = P{g(X) ∈ B} = P{X ∈ g−1(B)},

because X ∈ g−1(B) if and only if g(X) ∈ g{g−1(B)} = B.
To find FY (y) we take By = (−∞, y], giving

FY (y) = P(Y ≤ y) = P{g(X) ∈ By} = P{X ∈ g−1(By)},

which is the formula in the theorem.
When g is monotone increasing with (monotone increasing) inverse g−1, we have
g−1{(−∞, y]} = (−∞, g−1(y)] , and hence

FY (y) = P{Y ∈ By} = P{X ∈ g−1(By)} = P{X ≤ g−1(y)} = FX{g−1(y)}, y ∈ R.

In the case of a continuous random variable X, differentiation gives

fY (y) =
dg−1(y)

dy
fX{g−1(y)}, y ∈ R.

When g is monotone decreasing with (monotone decreasing) inverse g−1, we have
g−1{(−∞, y]} = [g−1(y),∞) , and hence

FY (y) = P{Y ∈ By} = P{X ∈ g−1(By)} = P{X ≥ g−1(y)}, y ∈ R.

In the case of a continuous density, FY (y) = P{X ≥ g−1(y)} = 1− FX{g−1(y)} and differentiation
gives

fY (y) = −dg−1(y)

dy
fX{g−1(y)}, y ∈ R;

note that −dg−1(y)/dy ≥ 0, because g−1(y) is monotone decreasing.
Thus in both cases we can write

fY (y) =

∣∣∣∣
dg−1(y)

dy

∣∣∣∣ fX{g−1(y)}, y ∈ R.

Probability and Statistics for SIC note 1 of slide 152
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Note to Example 130

Note first that since X only puts probability on R+, Y ∈ (1,∞).
In terms of the theorem, let By = (−∞, y], and note that g(x) = ex is monotone increasing, with
g−1(y) = log y, so

P(Y ≤ y) = P(Y ∈ B) = P{g(X) ∈ B} = P{X ∈ g−1(B)} = P{X ∈ (−∞, log y]} = FX(log y),

so
P(Y ≤ y) = 1− exp{−λ log y} = 1− y−λ, y > 1.

Hence Y has the Pareto distribution with β = 1, α = λ, and

fY (y) =

{
0, y ≤ 1,

λy−λ−1, y > 1.

To get the density directly, we note that dg−1(y)/dy = 1/y, and

fY (y) =

∣∣∣∣
dg−1(y)

dy

∣∣∣∣ fX{g−1(y)} = |y−1|× λe−λ log y = λy−λ−1, y > 1,

and fY (y) = 0 for y ≤ 1, because if y < 1, then log y < 0, and fX(x) = 0 for x < 0.

Probability and Statistics for SIC note 2 of slide 152
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Note to Example 131

! Here Y = g(X) = cos(X) takes values only in the range −1 ≤ y ≤ 1, so if y < −1, By = ∅, and
if y ≥ 1, By = R, thus giving

FY (y) =

{
0, y < −1

1, y ≥ 1.

! A sketch of the function cos x for x ≥ 0 shows that in the range 0 < x < 2π, and for −1 < y < 1,
the event cos(X) ≤ y is equivalent to the event cos−1(y) ≤ X ≤ 2π − cos−1(y). Since the cosine
function is periodic, the set By is an infinite union of disjoint intervals. In fact

cos(X) ≤ y ⇔ X ∈ g−1(By) =
∞⋃

j=0

{x : 2πj + cos−1(y) ≤ x ≤ 2π(j + 1)− cos−1(y)},

and therefore

P(Y ≤ y) = P{X ∈ g−1(B)}

=
∞∑

j=0

P
{
2πj + cos−1(y) ≤ X ≤ 2π(j + 1)− cos−1(y)

}

=
∞∑

j=0

(
exp[−λ{2πj + cos−1(y)}]− exp[−λ{2π(j + 1)− cos−1(y)}]

)

=
exp{−λ cos−1(y)}− exp{λ cos−1(y)− 2πλ}

1− exp(−2πλ)
,

where we noticed that the summation is proportional to a geometric series.

! Note that if y = 1, then cos−1(y) = 0, and so P(Y ≤ 1) = 1, and if y = −1, then cos−1(y) = π,
and then P(Y ≤ −1) = 0, as required. Here we used values of cos−1(y) in the range [0,π].

! The density function is found by differentiation: since cos{cos−1(y)} = y, we have

d cos−1(y)

dy
= − 1

sin{cos−1(y)} ,

and this gives

fY (y) =
λ

sin{cos−1(y)}
× exp{−λ cos−1(y)}+ exp{λ cos−1(y)− 2πλ}

1− exp(−2πλ)
, y ∈ (−1, 1).

Probability and Statistics for SIC note 3 of slide 152
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4.3 Normal Distribution slide 153

Normal distribution

Definition 132. A random variable X having density

f(x) =
1

(2π)1/2σ
exp

{
−(x− µ)2

2σ2

}
, x ∈ R, µ ∈ R,σ > 0,

is a normal random variable with expectation µ and variance σ2: we write X ∼ N (µ,σ2). (The
standard deviation of X is

√
σ2 = σ > 0.)

When µ = 0, σ2 = 1, the corresponding random variable Z is standard normal, Z ∼ N (0, 1), with
density

φ(z) = (2π)−1/2e−z2/2, z ∈ R.

Then

FZ(x) = P(Z ≤ x) = Φ(x) =

∫ x

−∞
φ(z) dz =

1

(2π)1/2

∫ x

−∞
e−z2/2 dz.

This integral is given in the Formulaire.

Note that f(x) = σ−1φ{(x− µ)/σ} for x ∈ R.
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Johann Carl Friedrich Gauss (1777–1855)

The normal distribution is often called the Gaussian distribution. Gauss used it for the combination
of astronomical and topographical measures.

Probability and Statistics for SIC slide 155
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Johann Carl Friedrich Gauss (1777–1855)

The normal distribution is often called the Gaussian distribution. Gauss used it for the combination
of astronomical and topographical measures.
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Standard normal density

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

N(0,1) density

z

ph
i(z

)

The famous bell curve:
φ(z) = (2π)−1/2e−z2/2, z ∈ R.

Probability and Statistics for SIC slide 157
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Interpretation of N (µ, σ2)

! The density function is centred at µ, which is the most likely value and also the median;

! the standard deviation σ is a measure of the spread of the values around µ:

– 68% of the probability lies in the interval µ± σ;

– 95% of the probability lies in the interval µ± 2σ;

– 99.7% of the probability lies in the interval µ± 3σ.

Example 133. The average height for a class of students was 178 cm, with standard deviation 7.6 cm.
If this is representative of the population, then 68% have heights in the interval 178 ± 7.6 cm (blue
lines), 95% in the interval 178 ± 2× 7.6 cm (green lines), and 99.7% in the interval 178 ± 3× 7.6 cm
(cyan lines, almost invisible).
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Properties

Theorem 134. The density φ(z), the cumulative distribution function Φ(z), and the quantiles zp of
Z ∼ N (0, 1) satisfy, for all z ∈ R:

(a) the density is symmetric with respect to z = 0, i.e., φ(z) = φ(−z);

(b) P(Z ≤ z) = Φ(z) = 1− Φ(−z) = 1− P(Z ≥ z);

(c) the standard normal quantiles zp satisfy zp = −z1−p, for all 0 < p < 1;

(d) zrφ(z) → 0 when z → ±∞, for all r > 0. This imples that the moments E(Zr) exist for all
r ∈ N;

(e) we have

φ′(z) = −zφ(z), φ′′(z) = (z2 − 1)φ(z), φ′′′(z) = −(z3 − 3z)φ(z), . . .

This implies that E(Z) = 0, var(Z) = 1, E(Z3) = 0, etc.

(f) If X ∼ N (µ,σ2), then Z = (X − µ)/σ ∼ N (0, 1).

Note that if X ∼ N (µ,σ2), then we can write X = µ+ σZ, where Z ∼ N (0, 1).

Probability and Statistics for SIC slide 159
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Theorem 134

(a) Obvious by substitution:

φ(−z) = (2π)−1/2e−(−z)2/2 = (2π)−1/2e−z2/2 = φ(z).

(b) Obvious by the symmetry of φ(z), as

Φ(z) =

∫ z

−∞
φ(x) dx =

∫ ∞

−z
φ(x) dx = 1− Φ(−z),

which implies that

P(Z ≤ z) = Φ(z) = 1− Φ(−z) = 1− P(Z ≤ −z) = 1− Φ(−z).

(c) Again obvious by symmetry, using (b): p = Φ(z) = 1− Φ(−z) implies that zp = −z1−p.
(d) This is just a fact from analysis, since for any r ≥ 0, we have

zrφ(z) ∝ zr∑∞
i=0 z

2i/i!
<

zr

z2(r+1)
→ 0, z → ∞,

and by symmetry the same will be true when z → −∞.
(e) Differentiate φ(z) repeatedly, and then note that

E(Z) =

∫
zφ(z) dz = [−φ(z)]∞−∞ = 0, E(Z2 − 1) =

[
φ′(z)

]∞
−∞

= 0,

etc. by (d). Hence E(Z) = 0, E(Z2) = 1, etc.
(f) This is just a change of variable in the density function.

Probability and Statistics for SIC note 1 of slide 159
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Values of the function Φ(z)

z 0 1 2 3 4 5 6 7 8 9
0.0 .50000 .50399 .50798 .51197 .51595 .51994 .52392 .52790 .53188 .53586
0.1 .53983 .54380 .54776 .55172 .55567 .55962 .56356 .56750 .57142 .57535
0.2 .57926 .58317 .58706 .59095 .59483 .59871 .60257 .60642 .61026 .61409
0.3 .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803 .65173
0.4 .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793
0.5 .69146 .69497 .69847 .70194 .70540 .70884 .71226 .71566 .71904 .72240
0.6 .72575 .72907 .73237 .73565 .73891 .74215 .74537 .74857 .75175 .75490
0.7 .75804 .76115 .76424 .76730 .77035 .77337 .77637 .77935 .78230 .78524
0.8 .78814 .79103 .79389 .79673 .79955 .80234 .80511 .80785 .81057 .81327
0.9 .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891
1.0 .84134 .84375 .84614 .84850 .85083 .85314 .85543 .85769 .85993 .86214
1.1 .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298
1.2 .88493 .88686 .88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147
1.3 .90320 .90490 .90658 .90824 .90988 .91149 .91309 .91466 .91621 .91774
1.4 .91924 .92073 .92220 .92364 .92507 .92647 .92786 .92922 .93056 .93189
1.5 .93319 .93448 .93574 .93699 .93822 .93943 .94062 .94179 .94295 .94408
1.6 .94520 .94630 .94738 .94845 .94950 .95053 .95154 .95254 .95352 .95449
1.7 .95543 .95637 .95728 .95818 .95907 .95994 .96080 .96164 .96246 .96327
1.8 .96407 .96485 .96562 .96638 .96712 .96784 .96856 .96926 .96995 .97062
1.9 .97128 .97193 .97257 .97320 .97381 .97441 .97500 .97558 .97615 .97670
2.0 .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169

Remark: A more detailed table can be found in the Formulaire. You may also use the function pnorm

in the software R: Φ(z) = pnorm(z).

Example 135. Calculate

P(Z ≤ 0.53), P(Z ≤ −1.86), P(−1.86 < Z < 0.53), z0.95, z0.025, z0.5.
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Note to Example 135

In R we use pnorm for Φ and qnorm for Φ−1:

> pnorm(0.53)

[1] 0.701944

> pnorm(-1.86)

[1] 0.03144276
> pnorm(0.53)- pnorm(-1.86)

[1] 0.6705013

> qnorm(0.95)

[1] 1.644854

> qnorm(0.025)

[1] -1.959964

> qnorm(0.5)

[1] 0

Probability and Statistics for SIC note 1 of slide 160
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Examples and calculations

Example 136. The duration in minutes of a maths lecture is N (47, 4), but should be 45. Give the
probability that (a) the lecture finishes early, (b) the lecture finishes at least 5 minutes late.

Example 137. Show that the expectation and variance of X ∼ N (µ,σ2) are µ and σ2, and find the p
quantile of X.

Example 138. Calculate the cumulative distribution function and the density of Y = |Z| and
W = Z2, where Z ∼ N (0, 1).

Probability and Statistics for SIC slide 161

Note to Example 136

(a) Note that we can write X = µ+ σZ, where Z ∼ N (0, 1). We have X ∼ N (47, 4), and we seek
P(X < 45) = P{(X − 47)/2 < (45− 47)/2} = P(Z < −1) = 1− 0.84134

.
= 0.16.

(b) P(X > 50) = P{(X − 47)/2 > (50− 47)/2} = P(Z > 1.5) = 1− 0.93319
.
= 0.067.
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Note to Example 137

Since we can write X = µ+ σZ, and E(Z) = 0 and E(Z2) = var(Z) = 1 by Theorem 134(e), we just
apply the properties of mean and variance from Theorems 89 and 92.

Probability and Statistics for SIC note 2 of slide 161

Note to Example 138

! For Y , note that if y > 0, then P(Y ≤ y) = P(−y ≤ Z ≤ y) = Φ(y)− Φ(−y), and differentiate
to obtain 2φ(y), for y > 0 and zero otherwise.
Alternatively, in the terms of Theorem 129, we have g(x) = |x| and therefore
g−1(By) = g−1{(−∞, y]} = (−y, y), provided that y ≥ 0, and g−1(By) = ∅ if y < 0. Therefore

P(Y ≤ y) =

∫

g−1(By)
φ(x) dx =

∫ y

−y
φ(x) dx = Φ(y)− Φ(−y), y > 0,

as before.

! For W , the same argument gives P(W ≤ w) = P(−
√
w ≤ Z ≤

√
w) = Φ(

√
w)− Φ(−

√
w), for

w > 0. Then differentiate to obtain the density.
In this case g(x) = x2 and g−1(Bw) = g−1{(−∞, w]} = (−

√
w,

√
w) for w ≥ 0 and g−1(Bw) = ∅

for w < 0. This gives the previous result, by a slightly more laborious route.

Probability and Statistics for SIC note 3 of slide 161
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Normal approximation to the binomial distribution

The normal distribution is a central to probability, partly because it can be used to approximate
probabilities of other distributions. One of the basic results is:

Theorem 139 (de Moivre–Laplace). Let Xn ∼ B(n, p), where 0 < p < 1, let

µn = E(Xn) = np, σ2n = var(Xn) = np(1− p),

and let Z ∼ N (0, 1). When n → ∞,

P

(
Xn − µn

σn
≤ z

)
→ Φ(z), z ∈ R; i.e.,

Xn − µn

σn

D−→ Z.

This gives us an approximation of the probability that Xn ≤ r:

P(Xn ≤ r) = P

(
Xn − µn

σn
≤ r − µn

σn

)
.
= Φ

(
r − µn

σn

)
,

which corresponds to Xn
·∼ N{np, np(1− p)}.

In practice the approximation is bad when min{np, n(1− p)} < 5.
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Normal and Poisson approximations to the binomial

We have already encountered the Poisson approximation to the binomial distribution, valid for large n
and small p. The normal approximation is valid for large n and min{np, n(1− p)} ≥ 5. Left: a case
where the normal approximation is valid. Right: a case where the Poisson approximation is valid.
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Continuity correction

A better approximation to P(Xn ≤ r) is given by replacing r by r + 1
2 ; the 1

2 is called the continuity
correction. This gives

P(Xn ≤ r)
.
= Φ

(
r + 1

2 − np
√

np(1− p)

)

.
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Example 140. Let X ∼ B(15, 0.4). Calculate the exact and approximate values of P(X ≤ r) for
r = 1, 8, 10, with and without the continuity correction. Comment.
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Note to Example 140

The following R code shows how to do this, but first do some of it on the board using the normal table.
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NumeRical Results

pbinom(c(1,8,10),15,prob=0.4)

[1] 0.005172035 0.904952592 0.990652339

pnorm(c(1,8,10),mean=15*0.4,sd=sqrt(15*0.4*0.6))

[1] 0.004203997 0.854079727 0.982492509

pnorm(c(1,8,10)+0.5,mean=15*0.4,sd=sqrt(15*0.4*0.6))

[1] 0.008853033 0.906183835 0.991146967
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Example

Example 141. The total number of students in a class is 100.
(a) Each student goes independently to a maths lecture with probability 0.6. What is the size of the
smallest classroom suited for the number of students who go to class, with a probability of 0.95?
(b) There are 14 lectures per semester, and the students decide to go to each lecture independently.
What is now the size of the smallest classroom necessary?

Probability and Statistics for SIC slide 166
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Note to Example 141

(a) The number of students present X is B(100, 0.6), so the mean is 100 × 0.6 = 60 and the variance
is 100× 0.6 × 0.4 = 24. We seek x such that

0.95 = P(X ≤ x) = P

{
X − 60√

24
≤ x− 60√

24

}
.
= Φ

{
x− 60√

24

}
,

and this implies that (x− 60)/
√
24 = Φ−1(0.95) = 1.65, and thus x = 60 +

√
24× 1.65 = 68.08.

Better have a room for 69.
(b) Now we want to solve the equation

0.95 = P(X ≤ x)14 = P

{
X − 60√

24
≤ x− 60√

24

}14
.
= Φ

{
x− 60√

24

}14

,

and this implies that (x− 60)/
√
24 = Φ−1(0.951/14) = 2.68, and thus x = 60 +

√
24× 2.68 = 73.14.

Better have a room for 74.
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4.4 Q-Q Plots slide 167

Quantile-quantile (Q-Q) plots

One way of comparing a sample X1, . . . ,Xn with a theoretical distribution F :

! we order the Xj , giving
X(1) ≤ X(2) ≤ · · · ≤ X(n),

then we plot the graph against F−1{1/(n + 1)}, F−1{2/(n + 1)} . . . , F−1{n/(n + 1)}.
! The idea: in an ideal case U1, . . . , Un ∼ U(0, 1) should cut the interval (0, 1) into n+ 1

sub-intervals of width 1/(n + 1), so we should plot the graph of the U(j) against 1/(n + 1), . . .,

n/(n+ 1), and thus the X(j)
D
= F−1(U(j)) against the F−1{j/(n + 1)};

! the closer the graph is to a straight line, the more the data resemble a sample from F ;

! we often take a standard version of F (e.g., exp(1), N (0, 1)), and then the F−1{j/(n + 1)} are
called the plotting positions of F—then the slope gives an estimation of the dispersion parameter
of the distribution, and the value at the origin gives an estimation of the position parameter;

! for the distributions exp(1) and N (0, 1) we have respectively

F−1

(
j

n+ 1

)
= − log

(
1− j

n+ 1

)
, F−1

(
j

n+ 1

)
= Φ−1

(
j

n+ 1

)
;

! it is difficult to draw strong conclusions from such a graph for small n, as the variability is then
large—we have a tendency to over-interpret patterns in the plot.
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Note to the following graphs

! First graph: the normal graph is close to a straight line, whereas the exponential one is not.
Suggests that the normal would be a reasonable model for these data. Derive the formula for the
exponential plotting positions, using the quantile formula for the exponential distribution.

! Second graph: Here we compare the real data (top centre) with simulated data. The fact that it is
hard to tell which is which (you need to remember the shape of the first graph, or to note that
tied observations are impossible with simulations) suggests that the heights can be considered to
be normal.

! The lower left is gamma: there is clearer nonlinearity than with the other panels—but it is hard to
be sure with this sample size.

! The lower middle is obviously not normal; the sample size is big, however.
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Heights of students

Q-Q plots for the heights of n = 36 students in SSC, for the exponential and normal distributions.
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n = 36: Which sample is not normal?

There are five samples of simulated normal variables, and some real data.
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n = 100: Which sample is not normal?

There are five samples of simulated normal variables, and one simulated gamma sample.
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n = 500: Which sample is not normal?

There are five samples of simulated normal variables, and one simulated gamma sample.
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Which density?

! Uniform variables lie in a finite interval, and give equal probability to each part of the interval;

! exponential and gamma variables lie in (0,∞), and are often used to model waiting times and
other positive quantities,

– the gamma has two parameters and is more flexible, but the exponential is simpler and has
some elegant properties;

! Pareto variables lie in the interval (β,∞), so are not appropriate for arbitrary positive quantities
(which could be smaller than β), but are often used to model financial losses over some threshold
β;

! normal variables lie in R and are used to model quantities that arise (or might arise) through
averaging of many small effects (e.g., height and weight, which are influenced by many genetic
factors), or where measurements are subject to error;

! Laplace variables lie in R; the Laplace distribution can be used in place of the normal in situations
where outliers might be present.
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5. Several Random Variables slide 174

Lexicon

Mathematics English Français
E(X) expected value/expectation of X espérance de X
E(Xr) rth moment of X rième moment de X
var(X) variance of X variance de X
MX(t) moment generating function of X, or fonction génératrice des moments

the Laplace transform of fX(x) ou transformée de Laplace de fX(x)

fX,Y (x, y) joint density/mass function densité/fonction de masse conjointe
FX,Y (x, y) joint (cumulative) distribution function fonction de répartition conjointe
fX|Y (x | y) conditional density function densité conditionnelle

fX,Y (x, y) = fX(x)fY (y) X,Y independent X,Y independantes

X1, . . . ,Xn
iid∼ F random sample from F échantillon aléatoire

E(XrY s) joint moment moment conjoint
cov(X,Y ) covariance of X and Y covariance de X et Y
corr(X,Y ) correlation of X and Y correlation de X et Y

E(X | Y = y) conditional expectation of X espérance conditionnelle de X
var(X | Y = y) conditional variance of X variance conditionnelle de X

X(r) rth order statistic rième statistique d’ordre
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5.1 Basic Notions slide 176

Motivation

Often we have to consider the way in which several variables vary simultaneously. Some examples:

Example 142. The distribution of (height, weight) of a student picked at random from the class.

Example 143 (Hats, continuation of Example 47). Three men with hats permute them in a random
way. Let I1 be the indicator of the event in which man 1 has his hat, etc. Find the joint distribution of
(I1, I2, I3).

Our previous definitions generalise in a natural way to this situation.
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Note to Example 143

The possibilities each have probability 1/6, and with the notation that Ij indicates that the jth hat is
on the right head, are

1 2 3
1 2 3 (I1, I2, I3) = (1, 1, 1)
1 3 2 (I1, I2, I3) = (1, 0, 0)
2 1 3 (I1, I2, I3) = (0, 0, 1)
2 3 1 (I1, I2, I3) = (0, 0, 0)
3 1 2 (I1, I2, I3) = (0, 0, 0)
3 2 1 (I1, I2, I3) = (0, 1, 0)

from which we can compute anything we like.
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Discrete random variables

Definition 144. Let (X,Y ) be a discrete random variable: the set

D = {(x, y) ∈ R2 : P{(X,Y ) = (x, y)} > 0}

is countable. The (joint) probability mass function of (X,Y ) is

fX,Y (x, y) = P{(X,Y ) = (x, y)}, (x, y) ∈ R2,

and the (joint) cumulative distribution function of (X,Y ) is

FX,Y (x, y) = P(X ≤ x, Y ≤ y), (x, y) ∈ R2.

Example 145 (Hats, Continuation of Example 143). Find the joint distribution of
(X,Y ) = (I1, I2 + I3).
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Note to Example 145

The lines of the table in the previous example all have probabilities 1/6, so, for example, we have

f(0, 0) = P(X = 0, Y = 0) = P{configuration (2, 3, 1)} + P{configuration (3, 1, 2)} = 2/6.

In a similar manner, we obtain:
x y f(x, y)
0 0 2/6
0 1 2/6
0 2 0/6
1 0 1/6
1 1 0/6
1 2 1/6
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Continuous random variables

Definition 146. The random variable (X,Y ) is said to be (jointly) continuous if there exists a
function fX,Y (x, y), called the (joint) density of (X,Y ), such that

P{(X,Y ) ∈ A} =

∫ ∫

(u,v)∈A
fX,Y (u, v) dudv, A ⊂ R2.

By letting A = {(u, v) : u ≤ x, v ≤ y}, we see that the (joint) cumulative distribution function of
(X,Y ) can be written

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) dudv, (x, y) ∈ R2,

and this implies that

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).
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Example

Example 147. Calculate the joint cumulative distribution function and P(X ≤ 1, Y ≤ 2) when

fX,Y (x, y) ∝
{
e−x−y, y > x > 0,

0, otherwise.

We can write f(x, y) = ce−x−yI(y > x)I(x > 0), where I(A) is the indicator function of the set A.
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Note to Example 147

Note that if min(x, y) ≤ 0, then F (x, y) = 0, and consider the integral for y > x (sketch):

F (x, y) =

∫ x

−∞
du

∫ y

−∞
dv f(u, v)

= c

∫ x

0
e−u du

∫ y

u
e−v dv

= c

∫ x

0
du e−u

[
e−v
]u
y

= c

∫ x

0
du e−u

[
e−u − e−y

]

= c

∫ x

0
du (e−2u − e−u−y)

= c
[
e−u−y − 1

2e
−2u
]x
0

= 1
2c
[
1− e−2x − 2e−y + 2e−y−x

]
.

On setting x = y = +∞, we get 1
2c = 1, and this implies that c = 2.

Now for y ≤ x, consideration of areas shows that we should take the above formula with y = x, so

F (x, y) =






1− e−2x + 2e−x−y − 2e−y, y > x > 0,

1 + e−2y − 2e−y, x ≥ y > 0,

0, otherwise.

Thus F (1, 2) = 1− e−2 + 2e−3 − 2e−2 = 1− 3e−2 + 2e−3.
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Exponential families

Definition 148. Let (X1, . . . ,Xn) be a discrete or continuous random variable with mass/density
function of the form

f(x1, . . . , xn) = exp

{
p∑

i=1

si(x)θi − κ(θ1, . . . , θp) + c(x1, . . . , xn)

}

, (x1, . . . , xn) ∈ D ⊂ Rn,

where (θ1, . . . , θp) ∈ Θ ⊂ Rp. This is called an exponential family distribution—not to be confused
with the exponential distribution.

Example 149. Show that the (a) Poisson and (b) gamma distributions are exponential families.

Example 150 (Random graph model). (a) Suppose that we have d ≥ 3 nodes, and links appear
between nodes i and j (i #= j) independently with probability p. Let Xi,j be the indicator that there is
a link between i and j. Show that the joint mass function of X1,2, . . . ,Xd−1,d is an exponential family.
(b) If s1(x) =

∑
i<j xi,j and s2(x) =

∑
i<j<k xi,jxj,kxk,i, discuss the properties of data from an

exponential family with mass function

f(x1,2, . . . , xd−1,d) = exp {s1(x)θ + s2(x)β − κ(θ,β) + c(x1,2, . . . , xd−1,d)} , θ,β ∈ R,

as θ and β vary.

Probability and Statistics for SIC slide 181

104



Note to Example 149

! (a) We write

f(x;λ) = λx exp(−λ)/x! = exp(x log λ− λ− log x!), λ > 0, x ∈ {0, 1, . . .},

which is of the required form with n = p = 1, s(x) = x, θ = log λ ∈ Θ = R, κ(θ) = exp(θ), and
c(x) = − log x!.

! (b) We write

f(x;λ,α) = λαxα−1 exp(−λx)/Γ(α)
= exp {α log x− λx+ α log λ− logΓ(α) − log x} , λ,α > 0, x > 0,

which is of the required form with n = 1, p = 2, θ1 = α, θ2 = −λ, so Θ = R+ × R−,
s1(x) = log x, s2(x) = x, so D = R× R+ and κ(θ) = logΓ(θ1)− θ1 log(−θ2), c(x) = − log x.

Probability and Statistics for SIC note 1 of slide 181

Note to Example 150

! (a) Since the Xi,j are Bernoulli variables, we can write f(xi,j) = pxi,j(1− p)1−xi,j , where
xi,j ∈ {0, 1}, and 0 < p < 1. Since they are independent, their joint mass function is

f(x1,2, . . . , xd−1,d) =
∏

i<j

pxi,j (1− p)1−xi,j

= exp





∑

i<j

xi,j log p+
∑

i<j

(1− xi,j) log(1− p)






= exp




∑

i<j

xi,j log{p/(1− p)}+ d(d− 1)

2
log(1− p)



 ,

which is of the given form with n = d(d− 1)/2, p = 1, s(x) =
∑

i<j xi,j, c(x1,2, . . . , xd−1,d) ≡ 0,

θ = log{p/(1− p)} ∈ Θ = R, and κ(θ) = d(d − 1) log(1 + eθ)/2 (check this).
Note that p = 1/2 corresponds to θ = 0, which corresponds to links appearing independently with
probability 0.5, whereas setting θ ? 0 will give a very sparse graph, with very few links.

! (b) Here s1(x) counts how many links there are, and s2(x) counts how many triangles there are.
Increasing β therefore gives more probability to graphs with lots of triangles, whereas decreasing β
makes triangles less likely. So, taking θ ? 0 and β 6 0 will tend to give a graph with a few links,
but mostly in triangles. Note that the normalising constant is very complex, as it is

κ(θ,β) = log
∑

exp {s1(x)θ + s2(x)β} ,

where the sum is over all 2n possible values of (x1,2, . . . , xd−1,d).

! Exponential families are very useful in practice, because

– many standard distributions can be written as exponential families,

– we can construct new ones to model things of interest to us,

– they have a unified probabilistic and statistical theory, with many nice properties.
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Marginal and conditional distributions

Definition 151. The marginal probability mass/density function of X is

fX(x) =

{∑
y fX,Y (x, y), discrete case,

∫∞
−∞ fX,Y (x, y) dy, continuous case,

x ∈ R.

The conditional probability mass/density function of Y given X is

fY |X(y | x) =
fX,Y (x, y)

fX(x)
, y ∈ R,

provided fX(x) > 0. If (X,Y ) is discrete,

fX(x) = P(X = x), fY |X(y | x) = P(Y = y | X = x).

! The conditional density fY |X(y | x) is undefined if fX(x) = 0. (Why?)

! Analogous definitions exist for fY (y), fX|Y (x | y), and for the conditional cumulative distribution
functions FX|Y (x | y), FY |X(y | x).

Probability and Statistics for SIC slide 182

Examples

Example 152. Calculate the conditional PMF of Y given X, and the marginal PMFs of Example 145.

Example 153. Calculate the marginal and conditional densities for Example 147.

Example 154. Every day I receive a number of emails whose distribution is Poisson, with parameter
µ = 100. Each is a spam independently with probability p = 0.9. Find the distribution of the number
of good emails which I receive. Given that I have received 15 good ones, find the distribution of the
total number that I received.
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Note to Example 152

The joint mass function can be represented as

x y f(x, y)
0 0 2/6
0 1 2/6
1 0 1/6
1 2 1/6

so

fX(0) = f(0, 0) + f(0, 1) = 2/3, fX(1) = f(1, 0) + f(1, 2) = 1/3,

fY (0) = f(0, 0) + f(1, 0) = 1/2, fY (1) = f(0, 1) = 1/3, fY (2) = f(1, 2) = 1/6,

and from which we can compute the required conditional distribution.
For example, we have

fY |X(y | x = 0) =
fX,Y (0, y)

fX(0)
=

{
2/6
2/3 = 1

2 , y ∈ {0, 1},
0, otherwise,

and so we obtain
x y f(y | x)
0 0 1/2
0 1 1/2
1 0 1/2
1 2 1/2
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Note to Example 153

! The only interesting cases are when x, y > 0. In this case the marginal density of X is

fX(x) = 2

∫ ∞

y=x
e−x−y dy = 2e−2x, x > 0,

and obviously this integrates to unity. The marginal density of Y is

fY (y) = 2

∫ y

x=0
e−x−y dx = 2e−y(1− e−y), y > 0,

and its integral is 2(1− 1/2) = 1, so this is also a valid density function.

! For the conditional densities we have

f(y | x) = 2e−x−y/(2e−2x) = ex−y, y > x,

and
f(x | y) = 2e−x−y/{2e−y(1− e−y)} = e−x/(1− e−y), 0 < x < y.

It is easy to check that both conditional densities integrate to unity. Compare to Example 120.
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Note to Example 154

Let N denote the total number of emails, and G the number of good ones. Then conditional on
N = n, G ∼ B(n, p), so

fG,N(g, n) = fG|N(g | n)fN(n) =
n!

g!(n − g)!
(1−p)gpn−g×µn

n!
e−µ, n ∈ {0, 1, 2, . . .}, g ∈ {0, 1, . . . , n},

where µ > 0 and 0 < p < 1. Thus the number of good emails G has density

fG(g) =
∞∑

n=g

fG,N(g, n)

=
e−µµg(1− p)g

g!
×

∞∑

n=g

1

(n− g)!
µn−gpn−g

=
e−µµg(1− p)g

g!
×

∞∑

r=0

1

r!
(µp)r, where r = n− g,

=
e−µµg(1− p)g

g!
× eµp =

{µ(1− p)}g
g!

e−µ(1−p), g ∈ {0, 1, . . .},

which is the Poisson mass function with parameter µ(1− p).
Finally, given that G = g,

fN |G(n | g) = fG,N (g, n)

fG(g)
=

n!
g!(n−g)!(1− p)gpn−g × µn

n! e
−µ

e−µ(1−p)µg(1− p)g/g!
= e−pµ (pµ)

n−g

(n− g)!
, n = g, g + 1, . . . ,

which is a Poisson distribution with mean µp, shifted to start at n = g. Thus the number of spams
S = N −G has a Poisson distribution, with mean µp.
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Multivariate random variables

Definition 155. Let X1, . . . ,Xn be rvs defined on the same probability space. Their joint
cumulative distribution function is

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn)

and their joint density/mass probability function is

fX1,...,Xn(x1, . . . , xn) =

{
P(X1 = x1, . . . ,Xn = xn), discrete case,
∂nFX1,...,Xn (x1,...,xn)

∂x1···∂xn
, continuous case.

We analogously define the conditional and marginal densities, the cumulative distribution functions,
etc., by replacing (X,Y ) by X = XA, Y = XB, where A,B ⊂ {1, . . . , n} and A ∩ B = ∅. So for
example, if n = 4, we can consider the marginal distribution of (X1,X2) and its conditional
distribution given (X3,X4).

Subsequently everything can be generalised to n variables, but for ease of notation we will mostly limit
ourselves to the bivariate case.
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Multinomial distribution

Definition 156. The random variable (X1, . . . ,Xk) has the multinomial distribution of
denominator m and probabilities (p1, . . . , pk) if its mass function is

f(x1, . . . , xk) =
m!

x1!× · · ·× xk!
px1
1 px2

2 · · · pxk

k , x1, . . . , xk ∈ {0, . . . ,m},
k∑

j=1

xj = m,

where m ∈ N and p1 . . . , pk ∈ [0, 1], with p1 + · · ·+ pk = 1.

This distribution appears as the distribution of the number of individuals in the categories {1, . . . , k}
when m independent individuals fall into the classes with probabilities {p1, . . . , pk}. It generalises the
binomial distribution to k > 2 categories.

Example 157 (Vote). n students vote for three candidates for the presidency of their syndicate. Let
X1,X2,X3 be the number of corresponding votes, and suppose that the n students vote independently
with probabilities p1 = 0.45, p2 = 0.4, and p3 = 0.15. Find the joint distribution of X1,X2,X3,
calculate the marginal distribution of X3, and the conditional distribution of X1 given X3 = x3.
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Note to Example 157

! This is a multinomial distribution with k = 3, denominator n, and the given probabilities. The
joint density is therefore

f(x1, x2, x3) =
n!

x1!x2!x3!
px1
1 px2

2 px3
3 , x1, x2, x3 ∈ {0, . . . , n},

3∑

j=1

xj = n.

! The marginal distribution of X3 is the number of votes for the third candidate. If we say that a
vote for him is a success, and a vote for one of the other two is a failure, we see that
X3 ∼ B(n, p3): X3 is binomial with denominator n and probability 0.15.
Alternatively we can compute the marginal density for x3 = 0, . . . , n using Definition 151 with
X = X3 and Y = (X1,X2) as

P(X3 = x3) =
∑

{(x1,x2):x1+x2=n−x3}

n!

x1!x2!x3!
px1
1 px2

2 px3
3

=
n!

x3!(x1 + x2)!
px3
3

∑

{(x1,x2):x1+x2=n−x3}

(x1 + x2)!

x1!x2!
px1
1 px2

2

=
n!

x3!(x1 + x2)!
px3
3 (p1 + p2)

n−x3

=
n!

(n− x3)!x3!
px3
3 (1− p3)

n−x3 ,

using Newton’s binomial formula (Theorem 17) and the fact that p1 + p2 = 1− p3. Thus again we
see that X3 ∼ B(n, p3).

! If we now take the ratio of the joint density of (X1,X2,X3) to the marginal density of X3, we
obtain the conditional density

fX1,X2|X3
(x1, x2 | x3) =

fX1,X2,X3(x1, x2, x3)

fX3(x3)

=
n!

x1!x2!x3!
px1
1 px2

2 px3
3

n!
x3!(x1+x2)!

(p1 + p2)x1+x2px3
3

=
(x1 + x2)!

x1!x2!
πx1
1 π

x2
2 , 0 ≤ x1 ≤ x+ 1 + x2,

where π1 = p1/(p1 + p2), π2 = 1− π1. This density is binomial with denominator
n− x3 = x1 + x2 and probability π1 = p1/(1− p3). Note that X2 = n− x3 −X1, so although the
conditional mass function here has two arguments X1, X2, in reality it is of dimension 1.

! We conclude that, conditional on knowing the vote for one candidate, X3 = x3, the split of votes
for the other two candidates has a binomial distribution. If we regard a vote for candidate 1 as a
‘success’, then X1 ∼ B(n− x3,π1), where n− x3 is the number of votes not for candidate 3, and
π1 is the conditional probability of voting for candidate 1, given that a voter has not chosen
candidate 3.
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Independence

Definition 158. Random variables X, Y defined on the same probability space are independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), A,B ⊂ R.

By letting A = (−∞, x] and B = (−∞, y], we find that

FX,Y (x, y) = · · · = FX(x)FY (y), x, y ∈ R,

implying the equivalent condition

fX,Y (x, y) = fX(x)fY (y), x, y ∈ R, (2)

which will be our criterion of independence. This condition concerns the functions fX,Y (x, y), fX(x),
fY (y): X,Y are independent iff (2) remains true for all x, y ∈ R.

If X, Y are independent, then for all x such that fX(x) > 0,

fY |X(y | x) =
fX,Y (x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y), y ∈ R.

Thus knowing that X = x does not affect the density of Y : this is an obvious meaning of
“independence”. By symmetry fX|Y (x | y) = fX(x) for all y such that fY (y) > 0.
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Examples

Example 159. Are (X,Y ) independent in (a) Example 145? (b) Example 147? (c) when

fX,Y (x, y) ∝
{
e−3x−2y, x, y > 0,

0, sinon.

If X and Y are independent, then in particular the support of (X,Y ) must be of the form
SX × SY ⊂ R2.

Definition 160. A random sample of size n from a distribution F of density f is a set of n
independent random variables which all have a distribution F . Equivalently we say that X1, . . . ,Xn

are independent and identically distributed (iid) with distribution F , or with density f , and write

X1, . . . ,Xn
iid∼ F or X1, . . . ,Xn

iid∼ f .

By independence, the joint density of X1, . . . ,Xn
iid∼ f is

fX1,...,Xn(x1, . . . , xn) =
n∏

j=1

fX(xj).

Example 161. If X1,X2,X3
iid∼ exp(λ), give their joint density.
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Note to Example 159

(a) Since

fX(0)fY (2) =
2

3
× 1

6
#= fX,Y (0, 2) = 0,

X and Y are dependent. This is obvious, because if I have the wrong hat (i.e., X = 0), then it is
impossible that both other persons have the correct hats (i.e., Y = 2 is impossible).
Finding a single pair (x, y) giving fX,Y (x, y) #= fX(x)fY (y) is enough to show dependence, while to
show independence it must be true that fX,Y (x, y) = fX(x)fY (y) for every possible (x, y).
(b) In this case

fX,Y (x, y) =

{
2e−x−y, y > x > 0,

0, otherwise.

and we previously saw that

fX(x) = 2 exp(−2x)I(x > 0), fY (y) = 2 exp(−y){1− exp(−y)}I(y > 0),

so obviously the joint density is not the product of the marginals. This is equally obvious on looking at
the conditional densities.
In this case, the dependence is clear without any computations, as the support of (X,Y ) cannot be the
product of sets IA(x)IB(y), but it would have to be if they were independent.
(c) The density factorizes and the support is a Cartesian product, so they are independent.
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Note to Example 161

The variables are independent, so

f(x1, x2, x3) = f(x1)f(x2)f(x3) = λ3 exp{−λ(x1 + x2 + x3)}, x1, x2, x3 > 0, λ > 0.
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Mixed distributions

We sometimes encounter distributions with X discrete and Y continuous, or vice versa.

Example 162. A big insurance company observes that the distribution of the number of insurance
claims X in one year for its clients does not follow a Poisson distribution. However, a claim is a rare
event, and so it seems reasonable that the distribution of small numbers should be applied. To model
X, we suppose that for each client, the number of claims X in one year follows a Poisson distribution
Pois(y), but that Y ∼ Gamma(α,λ): the mean number of claims for a client with Y = y is then
E(X | Y = y) = y, since certain clients are more likely to make a claim than others.
Find the joint distribution of (X,Y ), the marginal distribution of X, and the conditional distribution of
Y given X = x.
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Insurance and learning
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The graph shows how the knowledge of the number of accidents changes the distribution of the rate of
accidents y for an insured party. Top left: the original density fY (y). Top right: the conditional mass
function fX|Y (x | y = 0.1) for a good driver. Bottom left: the conditional mass function
fX|Y (x | y = 2) for a bad driver. Bottom right: the conditional densities fY |X(y | x) with x = 0
(blue), 1 (red), 2 (black), 3 (green), 4 (cyan) (in order of decreasing maximal density).

Probability and Statistics for SIC slide 189

5.2 Dependence slide 190

Joint moments

Definition 163. Let X,Y be random variables of density fX,Y (x, y). Then if E{|g(X,Y )|} < ∞, we
can define the expectation of g(X,Y ) to be

E{g(X,Y )} =

{∑
x,y g(x, y)fX,Y (x, y), discrete case,

∫∫
g(x, y)fX,Y (x, y) dxdy, continuous case.

In particular we define the joint moments and the joint central moments by

E(XrY s), E [{X − E(X)}r {Y − E(Y )}s] , r, s ∈ N.

The most important of these is the covariance of X and Y ,

cov(X,Y ) = E [{X − E(X)} {Y − E(Y )}] = E(XY )− E(X)E(Y ).
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Properties of covariance

Theorem 164. Let X,Y,Z be random variables and a, b, c, d ∈ R constants. The covariance satisfies:

cov(X,X) = var(X);

cov(a,X) = 0;

cov(X,Y ) = cov(Y,X), (symmetry);

cov(a+ bX + cY, Z) = b cov(X,Z) + c cov(Y,Z), (bilinearity);

cov(a+ bX, c+ dY ) = bd cov(X,Y );

var(a+ bX + cY ) = b2 var(X) + 2bc cov(X,Y ) + c2 var(Y );

cov(X,Y )2 ≤ var(X)var(Y ), (Cauchy–Schwarz inequality).
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Note to Theorem 164

! All of this is mechanical computation. The only part that needs any thought is the last. For any
a ∈ R, we have

var(aX + Y ) = a2var(X) + 2acov(X,Y ) + var(Y ) = Aa2 +Ba+ C ≥ 0,

and since this quadratic polynomial in a has at most one real root, we have

B2 − 4AC = 4cov(X,Y )2 − 4var(X)var(Y ) ≤ 0,

leading to cov(X,Y )2 ≤ var(X)var(Y ).

! Equality would mean that there is precisely one real root, so var(aX + Y ) = 0 for some a, in
which case aX + Y is a constant, c, say, with probability one, and therefore provided a #= 0 there
is an exact linear relation aX + Y = c between X and Y .
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Independence and covariance

If X and Y are independent and g(X), h(Y ) are functions whose expectations exist, then

E{g(X)h(Y )} = · · · = E{g(X)}E{h(Y )}.

By letting g(X) = X − E(X) and h(Y ) = Y − E(Y ), we can see that if X and Y are independent,
then

cov(X,Y ) = · · · = 0.

Thus X,Y indep ⇒ cov(X,Y ) = 0. However, the converse is false.
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Linear combinations of random variables

Definition 165. The average of random variables X1, . . . ,Xn is X = n−1∑n
j=1Xj .

Lemma 166. Let X1, . . . ,Xn be random variables and a, b1, . . . , bn be constants. Then (a)

E(a+ b1X1 + · · ·+ bnXn) = a+
n∑

j=1

bjE(Xj),

var(a+ b1X1 + · · ·+ bnXn) =
n∑

j=1

b2jvar(Xj) +
∑

j ,=k

bjbk cov(Xj ,Xk).

(b) If X1, . . . ,Xn are independent, then cov(Xj ,Xk) = 0, j #= k, so

var(a+ b1X1 + · · · + bnXn) =
n∑

j=1

b2jvar(Xj).

(c) If X1, . . . ,Xn are independent and all have mean µ and variance σ2, then

E(X) = µ, var(X) = σ2/n.

Example 167. Let X1, X2 be independent rv’s with E(X1) = 1, var(X1) = 1, E(X2) = 2,
var(X2) = 4, and Y = 16 + 5X1 − 6X2. Calculate E(Y ), var(Y ).

Probability and Statistics for SIC slide 194

Note to Lemma 166

(a) The expectation of a+ b1X1 + · · ·+ bnXn follows easily from the fact that expectation is a linear
operator.
The variance of a+ b1X1 + · · ·+ bnXn follows by extending the result on var(a+ bX + cY ) from
Theorem 164 in an obvious way.
(b) Obvious.
(c) Use (a) and (b) with a = 0, b1 = · · · = bn = 1/n and the facts that E(Xj) = µ, var(Xj) = σ2

and cov(Xj ,Xk) = 0 when j #= k, since the variables are independent.
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Note to Example 167

Lemma 166 gives

E(Y ) = E(16 + 5X1 − 6X2) = 16 + 5E(X1)− 6E(X2) = 16 + 5× 1− 6× 2 = 9,

var(Y ) = var(16 + 5X1 − 6X2) = 52var(X1) + (−6)2var(X2) = 25× 1 + 36× 4 = 169.

Probability and Statistics for SIC note 2 of slide 194

116



Correlation

Unfortunately the covariance depends on the units of measurement, so we often use the following
dimensionless measure of dependence.

Definition 168. The correlation of X, Y is

corr(X,Y ) =
cov(X,Y )

{var(X)var(Y )}1/2
.

This measures the linear dependence between X and Y .

Example 169. We can model the heredity of a quantitative genetic characteristic as follows. Let X be
its value for a parent, and Y1 and Y2 its values for two children.

Let Z1, Z2, Z3
iid∼ N (0, 1) and take

X = Z1, Y1 = ρZ1 + (1− ρ2)1/2Z2, Y2 = ρZ1 + (1 − ρ2)1/2Z3, 0 < ρ < 1.

Calculate E(X), E(Yj), corr(X,Yj) and corr(Y1, Y2).
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Note to Example 169

! Easy to use linearity of expectation to see that E(X) = E(Yj) = 0 and that
var(X) = var(Yj) = 1.

! Since the Zs are independent and therefore are uncorrelated, and using the bilinearity of
covariance, we have

cov(X,Yj) = cov{Z1, ρZ1 + (1− ρ2)1/2Zj}
= cov(Z1, ρZ1) + cov{Z1, (1− ρ2)1/2Zj}
= ρcov(Z1, Z1) + (1− ρ2)1/2cov(Z1, Zj)

= ρvar(Z1) + 0 = ρ.

! Likewise

cov(Y1, Y2) = cov{ρZ1 + (1− ρ2)1/2Z2, ρZ1 + (1− ρ2)1/2Z3}
= ρ2cov(Z1, Z1) + ρ(1− ρ2)1/2cov(Z1, Z3) + ρ(1− ρ2)1/2cov(Z2, Z1)

+(1− ρ2)cov(Z2, Z3)

= ρ2cov(Z1, Z1)

= ρ2var(Z1) = ρ2.

! Therefore corr(X,Yj) = ρ > corr(Y1, Y2) = ρ2, since 0 < ρ < 1
So the correlation between siblings is less than that between a parent and his/her offspring. A
similar computation shows that the correlation between cousins will be ρ4.
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Properties of correlation

Theorem 170. Let X, Y be random variables having correlation ρ = corr(X,Y ). Then:

(a) −1 ≤ ρ ≤ 1;

(b) if ρ = ±1, then there exist a, b, c ∈ R such that

aX + bY + c = 0

with probability 1 (X and Y are then linearly dependent);

(c) if X,Y are independent, then corr(X,Y ) = 0;

(d) the effect of the transformation

(X,Y ) 1→ (a+ bX, c + dY )

is
corr(X,Y ) 1→ sign(bd)corr(X,Y ).
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Note to Theorem 170

(a) Just apply the Cauchy–Schwarz inequality.
(b) Equality in the Cauchy–Schwarz inequality arises iff we have var(aX + bY + c) = 0 for some
a, b, c ∈ R, and this can only mean that aX + bY + c = 0 with probability 1.
(c), (d) Just computations.
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Limitations of correlation

Note that:

! correlation measures linear dependence, as in the upper panels below;

! we can have strong nonlinear dependence, but correlation zero, as in the bottom left panel;

! correlation can be strong but specious, as in the bottom right, where two sub-populations, each
without correlation, are combined.
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Correlation #= causation

Two variables can be very correlated without one causing changes in the other.

! The left panel shows strong dependence between the number of mobile phone transmitter masts,
and the number of births in UK towns. Do masts increase fertility?

! The right panel shows that this dependence disappears when we allow for population size: more
people ⇒ more births and more transmitter masts. Adding masts will not lead to more babies.
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Conditional expectation

Definition 171. Let g(X,Y ) be a function of a random vector (X,Y ). Its conditional expectation
given X = x is

E{g(X,Y ) | X = x} =

{∑
y g(x, y)fY |X(y | x), in the discrete case,

∫∞
−∞ g(x, y)fY |X(y | x) dy, in the continuous case,

on the condition that fX(x) > 0 and E{|g(X,Y )| | X = x} < ∞. Note that the conditional
expectation E{g(X,Y ) | X = x} is a function of x.

Example 172. Let Z = XY , where X and Y are independent, X having a Bernoulli distribution with
probability p, and Y having the Poisson distribution with parameter λ.

! Find the density of Z.

! Find E(Z | X = x).

Example 173. Calculate the conditional expectation and variance of the total number of emails
received in Example 154, given the arrival of g good emails.
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Note to Example 172

The event Z = 0 occurs iff we have either X = 0 and Y takes any value, or if X = 1 and Y = 0.
Since X and Y are independent, we therefore have

fZ(0) =
∞∑

y=0

P(X = 0, Y = y) + P(X = 1, Y = 0)

=
∞∑

y=0

P(X = 0)P(Y = y) + P(X = 1)P(Y = 0)

= P(X = 0)
∞∑

y=0

P(Y = y) + P(X = 1)P(Y = 0)

= (1 − p)× 1 + p× e−λ.

Similarly

fZ(z) = P(X = 1, Y = z) = P(X = 1)P(Y = z) = p× λze−λ/z!, z = 1, 2, . . . .

No other values for Z are possible. Clearly the above probabilities are non-negative, and

∞∑

z=0

fZ(z) = (1− p) + pe−λ +
∞∑

z=1

pλze−λ/z! = (1− p) + p
∞∑

z=0

λze−λ/z! = (1− p) + p = 1,

so

fZ =

{
(1− p) + pe−λ, z = 0,

pλze−λ/z!, z = 1, 2, . . . ,

is indeed a density function.
Now

E(Z | X = x) = E(XY | X = x) = E(xY | X = x) = xE(Y | X = x) = xE(Y ) = xλ,

since if we know that X = x, then the value x of X is a constant, and since Y and X are
independent, E{h(Y ) | X = x} = xE{h(Y )} for any function h(Y ). Therefore

E(Z | X = 0) = 0, E(Z | X = 1) = λ.
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Note to Example 173

The number of spams S = N −G has a Poisson distribution, with mean pµ. Thus the conditional
expectation of N given G = g is

E(N | G = g) = E(S +G | G = g) = E(S + g | G = g) = pµ+ g,

because conditional on G = g, we treat g as a constant, and S ∼ Poiss(pµ). Likewise

var(N | G = g) = var(S +G | G = g) = var(S + g | G = g) = var(S | G = g) = pµ.
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Expectation and conditioning

Sometimes it is easier to calculate E{g(X,Y )} in stages.

Theorem 174. If the required expectations exist, then

E{g(X,Y )} = EX [E{g(X,Y ) | X = x}] ,
var{g(X,Y )} = EX [var{g(X,Y ) | X = x}] + varX [E{g(X,Y ) | X = x}] .

where EX and varX represent expectation and variance according to the distribution of X.

Example 175. n = 200 persons pass a busker on a given day. Each one of them decides
independently with probability p = 0.05 to give him money. The donations are independent, and have
expectation µ = 2$ and variance σ2 = 1$2. Find the expectation and the variance of the amount of
money he receives.
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Note to Example 175

! Let Xj = 1 if the jth person decides to give him money and Xj = 0 otherwise, and let Yj be the
amount of money given by the jth person, if money is given. Then we can write his total takings as

T = g(X,Y ) = Y1X1 + · · ·+ YnXn,

where X1, . . . ,Xn
iid∼ B(1, p) are independent Bernoulli variables and Y1, . . . , Yn

iid∼ (µ,σ2). We
want to compute E(T ) and var(T ).

! We first condition on X1, . . . ,Xn, in which case (using an obvious shorthand notation)

E(T | X = x) = E(Y1X1 + · · · + YnXn | X = x)

=
n∑

j=1

E(YjXj | X = x)

=
n∑

j=1

xjE(Yj | X = x) =
n∑

j=1

xjE(Yj) =
n∑

j=1

xjµ = µ
n∑

j=1

xj,

var(T | X = x) = var(Y1X1 + · · · + YnXn | X = x)

=
n∑

j=1

var(YjXj | X = x) by independence of the Yj

=
n∑

j=1

x2jvar(Yj | X = x) =
n∑

j=1

x2jσ
2 = σ2

n∑

j=1

xj .

In these expressions the Xj are treated as fixed quantities xj and are regarded as constants, since
the computations are conditional on Xj = xj . Note that x2j = xj , since xj = 0, 1.

! Now we ‘uncondition’, by replacing the values xj of the Xj by the corresponding random variables,
and in order to calculate the expressions in Theorem 174 we therefore need to compute

E



µ
n∑

j=1

Xj



 , var



µ
n∑

j=1

Xj



 , E



σ2
n∑

j=1

Xj



 .

We have that S =
∑n

j=1Xj ∼ B(n, p), so S has mean np and variance np(1− p), and this yields

E(T ) = EX [E{T | X = x}] = EX (µS) = µEX(S) = npµ = 200 × 0.05 × 2 = 20,

var(T ) = EX [var{T | X = x}] + varX [E{T | X = x}]
= EX(σ2S) + varX(µS) = npσ2 + µ2np(1− p)

= 200× 0.05 × 1 + 22 × 200 × 0.05 × 0.95 = 48.
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5.3 Generating Functions slide 201

Definition

Definition 176. We define the moment-generating function of a random variable X by

MX(t) = E(etX)

for t ∈ R such that MX(t) < ∞.

! MX(t) is also called the Laplace transform of fX(x).

! The MGF is useful as a summary of all the properties of X, we can write

MX(t) = E(etX) = E

(
∞∑

r=0

trXr

r!

)

=
∞∑

r=0

tr

r!
E(Xr),

from which we can obtain all the moments E(Xr) by differentiation.

Example 177. Calculate MX(t) when: (a) X = c with probability one; (a) X is an indicator variable;
(c) X ∼ B(n, p); (d) X ∼ Pois(λ); (e) X ∼ N (µ,σ2).
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Note to Example 177

(a) X is discrete, so MX(t) = 1× et×c = ect, valid for t ∈ R.
(b) Here MX(t) = (1− p)et×0 + pet×1 = 1− p+ pet, valid for t ∈ R.
(c) Using the binomial theorem we have

MX(t) =
n∑

x=0

etx
(
n

x

)
px(1− p)n−x =

n∑

x=0

(
n

x

)
(pet)x(1− p)n−x = (1− p+ pet)n, t ∈ R.

(d) We have

MX(t) =
∞∑

x=0

ext
λx

x!
e−λ =

∞∑

x=0

(λet)x

x!
e−λ = exp(λet)e−λ = exp{λ(et − 1)}, t ∈ R,

where we have used the exponential series ea =
∑∞

n=0 a
n/n! for any a ∈ R.

(e) We first consider Z ∼ N (0, 1) and compute

E(etZ) =

∫ ∞

−∞
etz × φ(z) dz =

∫ ∞

−∞
etz × 1√

2π
e−z2/2 dz.

The fact that the N (µ,σ2) density integrates to 1, i.e.,

∫ ∞

−∞

1√
2πσ2

e−(x−µ)2/(2σ2) dx = 1, µ ∈ R,σ > 0

implies, on expanding the exponent and re-arranging the result, that
∫ ∞

−∞

1

(2π)1/2
exp

{
−x2/(2σ2) + xµ/σ2

}
dx = σ exp

{
µ2/(2σ2)

}
, µ ∈ R,σ ∈ R+.

If we take σ = 1, µ = t, the left-hand side is the MGF of Z, and the right is et
2/2, valid for any t ∈ R.

(As an aside, note that if we take µ = 0,σ2 = 1/(1 − 2t), then the left-hand side is the MGF of Z2,
and the right is (1− 2t)−1/2, valid only if t < 1/2. Thus

MZ2(t) = (1− 2t)−1/2, t < 1/2.

This is the moment-generating function of a chi-squared random variable with one degree of freedom.)
Now note that

E(etX ) = E[exp{t(µ + σZ)}]
= exp(tµ)E[exp{(tσ)Z}]
= exp{tµ+ (tσ)2/2}
= exp(tµ+ t2σ2/2), t ∈ R.
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Important theorems I

Theorem 178. If M(t) is the MGF of a random variable X, then

MX(0) = 1;

Ma+bX (t) = eatMX(bt);

E(Xr) =
∂rMX(t)

∂tr

∣∣∣∣
t=0

;

E(X) = M ′
X(0);

var(X) = M ′′
X(0) −M ′

X(0)2.

Example 179. Find the expectation and the variance of X ∼ exp(λ).

Theorem 180 (No proof). There exists an injection between the cumulative distribution functions
FX(x) and the moment-generating functions MX(t).

Theorem 180 is very useful, as it says that if we recognise a MGF, we know to which distribution it
corresponds.
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Note to Theorem 178

This is just a series of mechanical computations, the last three of which involve differentiation of
MX(t) with respect to t under the integral sign.
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Note to Example 179

A simple calculation gives

MX(t) =

∫ ∞

0
ext × λe−λx dx = λ

∫ ∞

0
e−(λ−t)x dx =

λ

λ− t
, t < λ.

Then we just differentiate MX(t) twice, getting

M ′
X(t) = λ/(λ− t)2, M ′′

X(t) = 2λ/(λ− t)3,

and set t = 0, using Theorem 178 to get the expectation and variance, λ−1 and λ−2 respectively.
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Linear combinations

Theorem 181. Let a, b1, . . . , bn ∈ R and X1, . . . ,Xn be independent rv’s whose MGFs exist. Then
Y = a+ b1X1 + · · ·+ bnXn has MGF

MY (t) = · · · = eta
n∏

j=1

MXj
(tbj).

In particular, if X1, . . . ,Xn is a random sample, then S = X1 + · · ·+Xn has

MS(t) = MX(t)n.

Example 182. Let X1,X2
ind∼ Pois(λ),Pois(µ). Find the distribution of X1 +X2.

Example 183. Let X1, . . . ,Xn be independent with Xj ∼ N (µj ,σ2j ). Show that

Y = a+ b1X1 + · · · + bnXn ∼ N(a+ b1µ1 + · · · + bnµn, b
2
1σ

2
1 + · · ·+ b2nσ

2
n) :

thus a linear combination of normal rv’s is normal.
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Note to Theorem 181

This simple calculation uses the fact that independence of X1, . . . ,Xn implies that the expectation of
a product is the product of the expectations.
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Note to Example 182

Theorem 181 implies that

MX1+X2(t) = MX1(t)MX2(t) = exp{(λ1 + λ2)(e
t − 1)}, t ∈ R,

so by Theorem 180 and Theorem 177(d) we recognise that X1 +X2 is a Poisson variable with
parameter λ1 + λ2.
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Note to Example 183

Since the Xj are independent and their MGFs are MXj
(t) = exp(tµj + t2σ2j /2), we can first use

Theorem 181 to see that

MY (t) = eta
n∏

j=1

MXj
(tbj)

= exp(ta)
n∏

j=1

exp(tbjµj + t2b2jσ
2
j/2)

= exp[t(a+ b1µ1 + · · ·+ bnµn) + (t2/2)(σ21b
2
1 + · · ·+ σ2nb

2
n)],

and then Theorem 180 to obtain

Y ∼ N (a+ b1µ1 + · · · + bnµn, b
2
1σ

2
1 + · · ·+ b2nσ

2
n).
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Important theorems II

Definition 184 (
D−→ , Reminder). Let {Xn}, X be random variables whose cumulative distribution

functions are {Fn}, F . Then we say that the random variables {Xn} converge in distribution to X,
if, for all x ∈ R where F is continuous,

Fn(x) → F (x), n → ∞.

We then write Xn
D−→ X.

Theorem 185 (Continuity, no proof). Let {Xn}, X be random variables with distribution functions
{Fn}, F , whose MGFs Mn(t), M(t) exist for 0 ≤ |t| < b. Then if Mn(t) → M(t) for |t| ≤ a < b when

n → ∞, then Xn
D−→ X, i.e., Fn(x) → F (x) at each x ∈ R where F is continuous.

Example 186 (Law of small numbers, II). Let Xn ∼ B(n, pn) and X ∼ Pois(λ). Show that if
n → ∞, pn → 0 in such a way that npn → λ, then

Xn
D−→ X.
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Note to Example 186

The results from Example 177 give MXn(t) = (1− pn + pnet)n for Xn ∼ B(n, pn) and
MX(t) = exp{λ(et − 1)} for X ∼ Pois(λ), both valid for t ∈ R.
We use the fact that if a ∈ R, then (1 + a/n)n → ea as n → ∞.
If n → ∞ and npn → λ, we can write

MXn(t) = (1− pn + pne
t)n =

{
1 +

npn(et − 1)

n

}n

→ exp{λ(et − 1)} = MX(t), t ∈ R,

and this is true for any t ∈ R. Hence the hypothesis of the theorem is clearly satisfied, and thus

Xn
D−→ X.
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Mean vector and covariance matrix

Definition 187. Let X = (X1, . . . ,Xp)T be a p× 1 vector of random variables. Then

E(X)p×1 =




E(X1)

...
E(Xp)



 ,

var(X)p×p =





var(X1) cov(X1,X2) · · · cov(X1,Xp)
cov(X1,X2) var(X2) · · · cov(X2,Xp)

...
...

. . .
...

cov(X1,Xp) cov(X2,Xp) · · · var(Xp)




,

are called the expectation (mean vector) and the (co)-variance matrix of X.

The matrix var(X) is positive semi-definite, since

var




p∑

j=1

ajXj



 = aTvar(X)a ≥ 0

for all vectors a = (a1, . . . , ap)T ∈ Rp.
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Moment-generating function: multivariate case

Definition 188. The moment-generating function (MGF) of a random vector
Xp×1 = (X1, . . . ,Xp)T is

MX(t) = E(et
TX) = E(e

∑p
r=1 trXr), t ∈ T ,

where T = {t ∈ Rp : MX(t) < ∞}. Let the rth and (r, s)th elements of the mean vector E(X)p×1

and of the covariance matrix var(X)p×p be the quantities E(Xr) and cov(Xr,Xs).

The MGF has the following properties:

! 0 ∈ T , thus MX(0) = 1;

! we have

E(X)p×1 = M ′
X(0) =

∂MX(t)

∂t

∣∣∣∣
t=0

, var(X)p×p =
∂2MX(t)

∂t∂tT

∣∣∣∣
t=0

−M ′
X(0)M ′

X(0)T;

! if A,B ⊂ {1, . . . , p} and A ∩ B = ∅, and we write XA for the subvector of X containing
{Xj : j ∈ A}, etc., then XA and XB are independent iff

MX(t) = E(et
T
A
XA+tT

B
XB) = MXA

(tA)MXB
(tB), t ∈ T ;

! there is an injective mapping between MGFs and probability distributions.
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Example

Example 189. Emails arrive as a Poisson process with rate λ emails per day: the number of emails
arriving each day has the Poisson distribution with parameter λ. Each is a spam with probability p.
Show that the numbers of good emails and of spams are independent Poisson variables with
parameters (1− p)λ and pλ.
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Note to Example 189

Let N = S +G be the total number of spam and good emails, and note that N ∼ Poiss(λ), while
S =

∑N
j=1 Ij, G =

∑N
j=1(1− Ij), with Ij being the indicator that the jth message is a spam.

The joint MGF of S and G is therefore

E [exp(t1S + t2G)] = E



exp






N∑

j=1

t1Ij + t2(1− Ij)










= EN



E



exp






N∑

j=1

t1Ij + t2(1− Ij)




 | N = n







 ,

where we have used the iterated expectation formula from Theorem 174. The inner expectation is

E



exp






N∑

j=1

t1Ij + t2(1− Ij)




 | N = n



 =
n∏

j=1

E [exp {t1Ij + t2(1− Ij)}]

because conditional on N = n, the I1, . . . , In are independent, and because they are Bernoulli
variables each with success probability p, we have

E [exp {t1Ij + t2(1− Ij)}] = et1P(Ij = 1) + et2P(Ij = 0) = pet1 + (1− p)et2 .

Therefore

E



exp






N∑

j=1

t1Ij + t2(1− Ij)




 | N = n



 =
{
(1− p)et2 + pet1

}n
,

and on inserting the right-hand side of this into the original expectation, and then treating N = n as
random with a Poiss(λ) distribution, we get

E {exp(t1S + t2G)} = EN

[{
(1− p)et2 + pet1

}N]

=
∞∑

n=0

λn

n!
e−λ

{
(1− p)et2 + pet1

}n

= exp
[
−λ+ λ

{
(1− p)et2 + pet1

}]

= exp
[
−λ(1− p+ p) + λ

{
(1− p)et2 + pet1

}]

= exp
{
−λ(1− p) + λ(1− p)et2

}
× exp

(
−λp+ λpet1

)

= E {exp(t2G)}× E {exp(t1S)} ,

which is the MGF of two independent Poisson variables G and S with means (1− p)λ and pλ, as
required.
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Parenthesis: Characteristic function

Many distributions do not have a MGF, since E(etX) < ∞ only for t = 0. In this case, the Laplace
transform of the density is not useful. Instead we can use the Fourier transform, leading us to the
following definition.

Definition 190. Let i =
√
−1. The characteristic function of X is

ϕX(t) = E(eitX ), t ∈ R.

Every random variable has a characteristic function, which possesses the same key properties as the
MGF. Characteristic functions are however more complicated to handle, as they require ideas from
complex analysis (path integrals, Cauchy’s residue theorem, etc.).

Theorem 191 (No proof). X and Y have the same cumulative distribution function if and only if
they have the same characteristic function. If X is continuous and has density f and characteristic
function ϕ then

f(x) =
1

2π

∫ ∞

−∞
e−itxϕ(t) dt

for all x at which f is differentiable.
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Parenthesis: Cumulant-generating function

Definition 192. The cumulant-generating function (CGF) of X is KX(t) = logMX(t). The
cumulants κr of X are defined by

KX(t) =
∞∑

r=1

tr

r!
κr, κr =

drKX(t)

dtr

∣∣∣∣
t=0

.

It is easy to verify that E(X) = κ1 and var(X) = κ2.
The CGF is equivalent to the MGF, and so shares its properties, but it is often easier to work with the
CGF.

Example 193. Calculate the CGF and the cumulants of (a) X ∼ N (µ,σ2); (b) Y ∼ Pois(λ).
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Note to Example 193

We get directly from Example 177(d) that if X ∼ N (µ,σ2), then (a)

KX(t) = logMX(t) = tµ+ t2σ2/2, t ∈ R,

so we see that κ1 = µ and κ2 = σ2, with all other cumulants zero.
(b) Likewise from Example 177(c),

KY (t) = logMY (t) = λ(et − 1), t ∈ R,

so κr = λ for all r.
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Cumulants of sums of random variables

Theorem 194. If a, b1, . . . , bn are constants and X1, . . . ,Xn are independent random variables, then

Ka+b1X1+···+bnXn(t) = ta+
n∑

j=1

KXj
(tbj).

If X1, . . . ,Xn are independent variables having cumulants κj,r, then the CGF of S = X1 + · · ·+Xn is

KS(t) =
n∑

j=1

KXj
(t) =

n∑

j=1

∞∑

r=1

tr

r!
κj,r =

∞∑

r=1

tr

r!

n∑

j=1

κj,r :

the rth cumulant of X1 + · · ·+Xn is the sum of the rth cumulants of the Xj . If the X1, . . . ,Xn
iid∼ F

and have CGF K(t), then t has CGF nK(t) and has rth cumulant nκr.
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Note to Theorem 194

For the first result, just use take logarithms in Theorem 181. For the second, just use the definition of
the CGF in terms of the infinite series.
This result is very useful when looking at linear combinations of independent variables.
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Multivariate cumulant-generating function

Definition 195. The cumulant-generating function (CGF) of a random variable
Xp×1 = (X1, . . . ,Xp)T is

KX(t) = logMX(t) = log E(et
TX), t ∈ T ,

where T = {t ∈ Rp : MX(t) < ∞}.

The CGF has the following properties:

! 0 ∈ T , thus KX(0) = 0;

! we have

E(X)p×1 = K ′
X(0) =

∂KX(t)

∂t

∣∣∣∣
t=0

, var(X)p×p =
∂2KX(t)

∂t∂tT

∣∣∣∣
t=0

;

! if A,B ⊂ {1, . . . , p} and A ∩ B = ∅, and we write XA for the subvector of X containing
{Xj : j ∈ A}, etc., then XA and XB are independent iff

KX(t) = log E(et
T
A
XA+tT

B
XB) = KXA

(tA) +KXB
(tB), t ∈ T ;

! there is an injective mapping between CGFs and probability distributions.
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5.4 Multivariate Normal Distribution slide 213

Multivariate normal distribution

Definition 196. The random vector X = (X1, . . . ,Xp)T has a multivariate normal distribution if
there exist a p× 1 vector µ = (µ1, . . . , µp)T ∈ Rp and a p× p symmetric matrix Ω with elements ωjk

such that
uTX ∼ N (uTµ, uTΩu), u ∈ Rp;

then we write X ∼ Np(µ,Ω).

! Since var(uTX) = uTΩu ≥ 0 for any u ∈ Rp, Ω must be positive semi-definite.

! This definition allows degenerate distributions, for which there exists a u such that var(uTX) = 0.
This gives mathematically clean results but can be avoided in applications by reformulating the
problem to avoid degeneracy, effectively working in a space of dimension m < p.
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Multivariate normal distribution, II

Lemma 197. (a) We have

E(Xj) = µj, var(Xj) = ωjj, cov(Xj ,Xk) = ωjk, j #= k,

so µ and Ω are called the mean vector and covariance matrix of X.
(b) The moment-generating function of X is MX(u) = exp(uTµ+ 1

2u
TΩu), for u ∈ Rp.

(c) If A,B ⊂ {1, . . . , p}, and A ∩ B = ∅ then

XA ⊥⊥ XB ⇔ ΩA,B = 0.

(d) If X1, . . . ,Xn
iid∼ N (µ,σ2), then Xn×1 = (X1, . . . ,Xn)T ∼ Nn(µ1n,σ2In).

(e) Linear combinations of normal variables are normal:

ar×1 +Br×pX ∼ Nr(a+Bµ,BΩBT).

Lemma 198. The random vector X ∼ Np(µ,Ω) has a density function on Rp if and only if Ω is
positive definite, i.e., Ω has rank p. If so, the density function is

f(x;µ,Ω) =
1

(2π)p/2|Ω|1/2
exp

{
−1

2(x− µ)TΩ−1(x− µ)
}
, x ∈ Rp. (3)

If not, X is a linear combination of variables that have a density function on Rm, where m < p is the
rank of Ω.
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Note to Lemma 197

(a) Let ej denote the p-vector with 1 in the jth place and zeros everywhere else. Then
Xj = eTjX ∼ N(µj ,ωjj), giving the mean and variance of Xj.
Now var(Xj +Xk) = var(Xj) + var(Xk) + 2cov(Xj ,Xk), and

Xj +Xk = (ej + ek)
TX ∼ N (µj + µk,ωjj + ωkk + 2ωjk),

which implies that cov(Xj ,Xk) = ωjk = ωkj.

(b) Since uTX ∼ N (uTµ, uTΩu), its MGF is MuTX(t) = E(etu
TX) = exp(tuTµ+ 1

2t
2uTΩu). The

MGF of X is MX(u) = E(eu
TX) = MuTX(1) = exp(uTµ+ 1

2u
TΩu), for any u ∈ Rp, as stated.

(c) Without loss of generality, let XA = (X1, . . . ,Xq)T, for 1 ≤ q < p, and partition tT = (tTA, t
T
B),

µT = (µT
A, µ

T
B), etc. Also without loss of generality suppose that A ∪ B = {1, . . . , n}, since otherwise

we can just set tj = 0 for j #∈ A∪B. Then, using matrix algebra, the joint CGF of X can be written as

KX(t) = tTµ+ 1
2 t

TΩt = tTAµA + tTBµB + 1
2 t

T
AΩAAtA + 1

2t
T
BΩBBtB + tTAΩABtB.

This equals the sum of the CGFs of XA and XB, i.e.,

KXA
(t) +KXB

(t) = tTAµA + 1
2t

T
AΩAAtA + tTBµB ++1

2t
T
BΩBBtB

if and only if the final term of KX(t) equals zero for all t, which occurs if and only if ΩAB = 0. Hence
the elements of the variance matrix corresponding to cov(Xr,Xs) must equal zero for any r ∈ A and
s #∈ A, as required. Clearly this also holds if A ∪ B #= {1, . . . , p}.
(d) In this case each of the Xj has mean µ and variance σ2, and since they are independent,
cov(Xj ,Xk) = 0 for j #= k. If u ∈ Rn, then uTX is a linear combination of normal variables, with
mean and variance ∑

ujµ = uTµ1n,
∑

u2jσ
2 = uTσ2nu,

so X ∼ Nn(µ1n,σ2In), as required.
(e) The MGF of a+BX equals

E [exp{tT(a+BX)}] = E [exp{tTa+ (BTt)TX)}] = et
TaMX(BTt)

= exp{tTa+ (BTt)Tµ+ 1
2(B

Tt)TΩ(BTt)}
= exp

{
tT(a+Bµ) + 1

2t
T(BΩBT)t

}
,

which is the MGF of the Nr(a+Bµ,BΩBT) distribution.
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Note I to Lemma 198

! Since Ω is positive semi-definite, the spectral theorem tells us that we may write Ω = ATDA,
where D = diag(d1, . . . , dp) contains the eigenvalues of Ω, with d1 ≥ d2 ≥ · · · ≥ dp ≥ 0, and A is
a p× p orthogonal matrix, i.e., ATA = AAT = Ip and |A| = 1. Note that
|Ω| = |ATDA| = |AT|× |D|× |A| = |D|, and that if the inverse exists, Ω−1 = ATD−1A.

! Now Y = AX ∼ Np(Aµ,AΩAT), and AΩAT = AATDAAT = D is diagonal, so Y1, . . . , Yp are
independent normal variables with means bj given by the elements of Aµ and variances dj .

! Suppose that dp > 0, so that Ω has rank p. Then all the Yj have non-degenerate normal densities,
and since they are independent, their joint density is

fY (y) =
p∏

j=1

(2πdj)
−1/2 exp

{
−(yj − bj)2

2dj

}
= (2π)−p/2|D|−1/2 exp

{
−1

2(y − b)TD−1(y − b)
}
.

Since Y = AX and A−1 = AT, we have that X = ATY , and this transformation has Jacobian
|AT| = 1. Since |D| = |Ω|, we can appeal to Theorem 204 and hence write the density of X as

fX(x) = |AT|fY (Ax) = (2π)−p/2|Ω|−1/2 exp
{
−1

2(Ax−Aµ)TD−1(Ax−Aµ)
}
, x ∈ Rp,

where (Ax−Aµ)TD−1(Ax−Aµ) = (x−µ)TATD−1A(x−µ) = (x−µ)TΩ−1(x−µ), giving (3).

! If Ω has rank m < p, then dm > 0 but dm+1 = · · · = dp = 0. In this case only Y1, . . . , Ym have
positive variances, and the argument above allows us to construct a joint density for Y1, . . . , Ym on
Rm. Since Ym = bm, . . . , Yp = bp with probability one, we can write

X = ATY = AT(Y1, . . . , Ym, bm+1, . . . , bp)
T,

which confirms that the density of X is positive only on an m-dimensional linear subspace of Rp

generated by the variation of Y1, . . . , Ym; it might be said to have only ‘m degrees of freedom’.
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Note II to Lemma 198

! Since Ω is symmetric and positive semi-definite, the spectral theorem tells us that we may write
Ω = ADAT, where D = diag(d1, . . . , dp) contains the (real) eigenvalues of Ω, with
d1 ≥ d2 ≥ · · · ≥ dp ≥ 0, and A is a p× p orthogonal matrix, i.e., ATA = AAT = Ip and |A| = 1.
The columns A1, . . . , Ap of A are the eigenvectors corresponding to the respective eigenvalues;
note that

Ω = ADAT =
p∑

j=1

djaja
T
j ,

that |Ω| = |ADAT| = |A|× |D|× |AT| = |D|, and that Ω−1 = AD−1AT if the inverse exists.

! Now let Yj ∼ N (0, dj) be independent variables, let Y = (Y1, . . . , Yp)T, and let u ∈ Rp; note that
if dj = 0 then Yj = 0 with probability one. Then

uTX = uT(µ+AY ) = uTµ+
p∑

j=1

Yju
Taj

is a linear combination of normal variables, so it has a normal distribution, with mean uTµ and
variance

var



uTµ+
p∑

j=1

Yju
Taj



 =
n∑

j=1

(uTaj)
2var(Yj) = uT




n∑

j=1

djaja
T
j



u = uTΩu,

which implies that X = µ+AY ∼ Np(µ,Ω), according to Definition 196.

! Now X = µ+
∑p

j=1 Yjaj can be constructed by scaling the eigenvectors aj of Ω by
normally-distributed factors Yj, so X − µ lies in the linear space S = span(a1, . . . , am) generated
by the eigenvectors aj for which dj > 0. If dp > 0, then m = p and S = Rp, but otherwise S is a
proper subspace of Rp generated by a1, . . . , am, and d1 ≥ · · · ≥ dm > 0 but
dm+1 = · · · = dp = 0. In this case X has a density on µ+ S, but places no probability elsewhere.

! For example, suppose that p = 2, a1 = (1, 0)T and a2 = (0, 1)T. If m = 2, then d1, d2 > 0, and X
can lie anywhere in R2, whereas if m = 1, then d1 > 0 but d2 = 0, and X can only take values in
the x-axis, within which its density is N (µ1, d1). If m = 0, then X takes the constant value µ
with probability one.

! To compute the density of X, suppose that m ≥ 1 and note that the non-degenerate part of
Y = AT(X − µ), Y+ = (Y1, . . . , Ym)T, say, has joint density

fY+(y+) =
m∏

j=1

(2πdj)
−1/2 exp

{
−y2j/(2dj)

}
= (2π)−p/2|D+|−1/2 exp

(
−1

2y
T
+D

−1
+ y+

)
,

where D+ = diag(d1, . . . , dm) and y+ = (y1, . . . , ym)T.

! If Ω has rank m < p, then dm > 0 but dm+1 = · · · = dp = 0. In this case only Y1, . . . , Ym have
positive variances, and the argument above allows us to construct a joint density for Y1, . . . , Ym on
Rm. Since Ym = bm, . . . , Yp = bp with probability one, we can write

X = ATY = AT(Y1, . . . , Ym, bm+1, . . . , bp)
T,

which confirms that the density of X is positive only on an m-dimensional linear subspace of Rp

generated by the variation of Y1, . . . , Ym; it might be said to have only ‘m degrees of freedom’.
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Bivariate normal densities

Normal PDF with p = 2, µ1 = µ2 = 0, ω11 = ω22 = 1, and correlation ρ = ω12/(ω11ω22)1/2 = 0 (left),
−0.5 (centre) and 0.9 (right).
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Examples

Example 199. If X ∼ N (1, 4) , Y ∼ N (−1, 9), corr(X,Y ) = −1/6, and they have a joint normal
distribution, give the joint distribution of (X,Y ). Hence find the distribution of W = X + Y .

Example 200. If X1, . . . ,X4
iid∼ N(0,σ2), find the distribution of Y = BX when

B =





1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1



 .
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Note to Example 199

Part (a) of Lemma 197 gives that

(
X
Y

)
∼ N2

{(
E(X)
E(Y )

)
,

(
var(X) cov(X,Y )

cov(X,Y ) var(Y )

)}
,

and we know all the elements of the matrices except

cov(X,Y ) = corr(X,Y )×
√

var(X)×
√

var(Y ) = −1/6× 2× 3 = −1.

Therefore (
X
Y

)
∼ N2

{(
1
−1

)
,

(
4 −1
−1 9

)}
.

Since W is a linear combination of normal variables, it has a normal distribution, and we can apply
Part (e) of Lemma 197 with r = 1, p = 2, a = 0 and B = (1, 1) to obtain

W = (1, 1)

(
X
Y

)
∼ N1

{
0 + (1, 1)(1,−1)T , (1, 1)

(
4 −1
−1 9

)(
1
1

)}
= N (0, 11).
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Note to Example 200

For this we use parts (d) and (e) of Lemma 197. For (d) we take µ = 04×1 and Ω = σ2I4, and for (e)
we take a = 04×1 and the stated matrix B. Thus

Y = a+BX ∼ N4 (a+Bµ,BΩBT)
D
= N4

(
0,σ2BBT

) D
= N4

(
0, 4σ2I4

)
,

because it is easy to check that BBT = 4I4. Thus the variables Y1, . . . , Y4 have N(0, 4σ2)
distributions, and are independent because their covariance matrix is diagonal.
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Marginal and conditional distributions

Theorem 201. Let X ∼ Np(µp×1,Ωp×p), where |Ω| > 0, and let A,B ⊂ {1, . . . , p} with
|A| = q < p, |B| = r < p and A ∩ B = ∅.
Let µA, ΩA and ΩAB be respectively the q × 1 subvector of µ, q × q and q × r submatrices of Ω
conformable with A, A×A and A× B. Then:
(a) the marginal distribution of XA is normal,

XA ∼ Nq(µA,ΩA);

(b) the conditional distribution of XA given XB = xB is normal,

XA | XB = xB ∼ Nq
{
µA + ΩABΩ

−1
B (xB − µB),ΩA − ΩABΩ

−1
B ΩBA

}
.

This has two important implications:

! (a) implies that any subvector of X also has a multivariate normal distribution;

! (b) implies that two components of XA are conditionally independent given XB if and only if the
corresponding off-diagonal element of ΩA − ΩABΩ

−1
B ΩBA equals zero.
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Proof of Theorem 201

First note that without loss of generality we can permute the elements of X so that the components of
XA appear before those of XB, then writing XT = (XT

A,X
T
B). Partition the vectors t, µ, and the

matrix Ω conformally with X, using obvious notation.
(a) The CGF of X is

KX(t) = tTµ+ 1
2 t

TΩt =

(
tA
tB

)T(
µA

µB

)
+ 1

2

(
tA
tB

)T(
ΩA ΩAB

ΩBA ΩB

)(
tA
tB

)

We obtain the marginal CGF of XA by setting tB = 0, giving

KX(t) =

(
tA
0

)T(
µA

µB

)
+ 1

2

(
tA
0

)T(
ΩA ΩAB

ΩBA ΩB

)(
tA
0

)
= tAµA + 1

2t
T
AΩAtA,

which is the CGF of the Nq(µA,ΩA) distribution.
(b) Consider W = XA − ΩABΩ

−1
B XB. This is a linear combination of normals and so is normal, and

its mean and variance matrix are

µA − ΩABΩ
−1
B µB, ΩA − ΩABΩ

−1
B ΩBA,

and as cov(XB,W ) = 0 (check!) and they are jointly normally distributed, W ⊥⊥ XB. Now

XA = W + ΩABΩ
−1
B XB,

and as W and XB are independent, the distribution of W is unchanged by conditioning on the event
XB = xB. The conditional mean of XA is therefore

E(XA | XB = xB) = E(W+ΩABΩ
−1
B XB | XB = xB) = E(W )+ΩABΩ

−1
B xB = µA+ΩABΩ

−1
B (xB−µB)

as required. Likewise

var(XA | XB = xB) = var(W + ΩABΩ
−1
B XB | XB = xB) = var(W ) = ΩA − ΩABΩ

−1
B ΩBA,

because the term in XB is conditionally constant. This gives the required result.
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Example

Example 202. Let (X1,X2) be the pair (height (cm), weight (kg)) for a population of people aged
20. To model this, we take

µ =

(
180
70

)
, Ω =

(
225 90
90 100

)
.

(a) Find the marginal distributions of X1 and of X2, and corr(X1,X2).
(b) Do the marginal distributions determine the joint distribution?
(c) Find the conditional distribution of X2 given that X1 = x1, and of X1 given that X2 = x2.
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Note to Example 202

(a) The marginal distributions are X1 ∼ N (180, 225) and X2 ∼ N (70, 100). The correlation is

ω12√
ω11ω22

=
90√

225 × 100
=

90

150
= 0.6.

(b) Clearly not, because they don’t determine the correlation.
(c) For this we have

XA | XB = xB ∼ Nq
{
µA + ΩABΩ

−1
B (xB − µB),ΩA − ΩABΩ

−1
B ΩBA

}
.

where XA = X2, XB = X1, so

µA + ΩABΩ
−1
B (xB − µB) = µ2 + ω21ω

−1
11 (x1 − µ1) = 70 + 0.4(x1 − 180),

ΩA −ΩABΩ
−1
B ΩBA = 100 − 902/225 = 64.

Thus X2 | X1 = x1 ∼ N{70 + 0.4(x1 − 180), 64}: larger height leads to larger weight, on average.
A similar computation gives

X1 | X2 = x2 ∼ N{180 + 0.9(x2 − 70), 144}.

In each case the mean depends linearly on the conditioning variable, and the conditional variance is
smaller than the marginal variance, consistent with the idea that conditioning adds information and
therefore reduces uncertainty.
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Bivariate normal distribution

The normal bivariate density for (X1,X2) =(hauteur, poids), as well as the straight lines
E(X2 | X1 = x1) = 70 + 0.4(x1 − 180) (blue) and E(X1 | X2 = x2) = 180 + 0.9(x2 − 70) (green).
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Francis Galton (1822–1911)

(Source: Wikipedia)
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Regression to the mean

! Galton obtained the heights of parents and of their children, and fitted a line.

! The slope of the line < 1: the children of tall parents are smaller than them, on average, and the
children of small parents are larger than them, on average.

! This effect is called regression to the mean, and appears in many contexts. For example,
someone with an above-average mark on a midterm test will tend to do worse in the final, on
average.
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5.5 Transformations slide 223

Reminder: Transformation of random variables

We often want to calculate the distributions of random variables based on other random variables.

! Let Y = g(X), where the function g is known. We want to obtain FY and fY from FX and fX .

! Let g : R 1→ R, B ⊂ R, and g−1(B) ⊂ R be the set for which g{g−1(B)} = B. Then

P(Y ∈ B) = P{g(X) ∈ B} = P{X ∈ g−1(B)},

since X ∈ g−1(B) iff g(X) = Y ∈ g{g−1(B)} = B.

! To find FY (y), we take By = (−∞, y], giving

FY (y) = P(Y ≤ y) = P{g(X) ∈ By} = P{X ∈ g−1(By)}.

! If the function g is monotonic increasing with (monotonic increasing) inverse g−1, then

fY (y) =
dFY (y)

dy
=

dFX{g−1(y)}
dy

= fX{g−1(y)} ×
∣∣∣∣
dg−1(y)

dy

∣∣∣∣ ,

where the | · | ensures that the same formula holds with monotonic decreasing g.
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X bivariate

We calculate P(Y ∈ B), with Y ∈ Rd a function of X ∈ R2 and

Y =




Y1
...
Yd



 =




g1(X1,X2)

...
gd(X1,X2)



 = g(X).

Let g : R2 1→ Rd be a known function, B ⊂ Rd, and g−1(B) ⊂ R2 be the set for which
g{g−1(B)} = B. Then

P(Y ∈ B) = P{g(X) ∈ B} = P{X ∈ g−1(B)}.

Example 203. If X1,X2
iid∼ exp(λ), calculate the distribution of X1 +X2.

It can be helpful to include indicator functions in formulae for densities of new variables (examples
later).
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Note to Example 203

We want to compute P(Y ≤ y) = P(X1 +X2 ≤ y), and with By = (−∞, y] and g(x1, x2) = x1 + x2,
we have that

g−1(By) = {(x1, x2) ∈ R2 : x1 + x2 ≤ y}.

Thus we want to compute FY (y) = P(X1 +X2 ≤ y). If y < 0 this is zero, and otherwise equals

FY (y) = P(X1 +X2 ≤ y) =

∫ y

0
dx1

∫ y−x1

0
dx2 λ

2e−λ(x1+x2)

= λ

∫ y

0
dx1e

−λx1

[
e−λx2

]0
y−x1

= λ

∫ y

0
dx1e

−λx1(1− e−λ(y−x1))

= 1− e−λy − λye−λy, y ≥ 0,

giving

FY (y) =

{
0, y < 0,

1− e−λy − λye−λy, y ≥ 0.

Differentiation gives fY (y) = λ2ye−λy for y > 0, (the gamma density with shape parameter α = 2).
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Transformations of joint continuous densities

Theorem 204. Let X = (X1,X2) ∈ R2 be a continuous random variable, and let Y = (Y1, Y2) with
Y1 = g1(X1,X2) and Y2 = g2(X1,X2), where:
(a) the system of equations y1 = g1(x1, x2), y2 = g2(x1, x2) can be solved for all (y1, y2), giving the
solutions x1 = h1(y1, y2), x2 = h2(y1, y2); and
(b) g1 and g2 are continuously differentiable and have Jacobian

J(x1, x2) =

∣∣∣∣∣

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
∣∣∣∣
∂g1
∂x1

∂g2
∂x2

− ∂g1
∂x2

∂g2
∂x1

∣∣∣∣ ,

which is positive if fX1,X2(x1, x2) > 0.
Then

fY1,Y2(y1, y2) = fX1,X2(x1, x2)× |J(x1, x2)|−1
∣∣
x1=h1(y1,y2),x2=h2(y1,y2)

.

Example 205. Calculate the joint density of X1 +X2 and X1 −X2 when X1,X2
iid∼ N(0, 1).

Example 206. Calculate the joint density of X1 +X2 and X1/(X1 +X2) when X1,X2
iid∼ exp(λ).
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Note to Example 205

! We already have one way to do this, as we can write

(
Y1

Y2

)
=

(
X1 +X2

X1 −X2

)
=

(
1 1
1 −1

)(
X1

X2

)
= B

(
X1

X2

)
,

say, and use results for the multivariate normal distribution in Lemma 197(e).

! Using Theorem 204 instead, we need to compute

fY1,Y2(y1, y2) = fX1,X2(x1, x2)× |J(x1, x2)|−1
∣∣
x1=h1(y1,y2),x2=h2(y1,y2)

.

First, note that the Jacobian of the transformation (x1, x2) 1→ (y1, y2) is

J(x1, x2) = |B| = |− 2| = 2.

Now we need to express the density

fX1,X2(x1, x2) = fX1(x1)fX2(x2) =
1√
2π

e−x2
1/2 × 1√

2π
e−x2

2/2, x1, x2 ∈ R,

in terms of (y1, y2). As x1 = (y1 + y2)/2 and x2 = (y1 − y2)/2, the exponent may be written in
terms of the new variables y1, y2 as

−1
2(x

2
1 + x22) = −1

2

[
{(y1 + y2)/2}2 + {(y1 − y2)/2}2

]
= − 1

2× 4
(2y21 +2y22) = − 1

2× 2
(y21 + y22),

so

fY1,Y2(y1, y2) =
1

2
× 1

2π
exp

{
− 1

2× 2
(y21 + y22)

}
, y1, y2 ∈ R,

and we see that Y1 and Y2 are mutually independent N (0, 2) variables.
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Note to Example 206

We write
f(x1, x2) = λ2 exp{−λ(x1 + x2)}I(x1 > 0)I(x2 > 0).

With Y1 = X1 +X2 > 0 and Y2 = X1/(X1 +X2) ∈ (0, 1), we have

y1 = g1(x1, x2) = x1 + x2 > 0, y2 = g2(x1, x2) = x1/(x1 + x2) ∈ (0, 1),

and the corresponding inverse transformation is

x1 = h(y1, y2) = y1y2, x2 = h(y1, y2) = y1(1− y2), x1, x2 > 0.

Clearly these transformations satisfy the conditions of Theorem 204. We can either compute

J =

∣∣∣∣∣
1 1
x2

(x1+x2)2
− x1

(x1+x2)2

∣∣∣∣∣ =
∣∣∣∣−

(x1 + x2)

(x1 + x2)2

∣∣∣∣ = 1/y1 > 0,

or (maybe better),

J−1 =

∣∣∣∣∣

∂h1
∂y1

∂h1
∂y2

∂h2
∂y1

∂h2
∂y2

∣∣∣∣∣ = y1 > 0.

Thus

f(y1, y2) = λ2 exp{−λ(x1 + x2)}I(x1 > 0)I(x2 > 0)|J−1|
∣∣
x1=y1y2,x2=y1(1−y2)

= y1λ
2 exp(−λy1)I(y1y2 > 0)I{y1(1− y2) > 0},

= y1λ
2 exp(−λy1)I(y1 > 0)× I(0 < y2 < 1)

= fY1(y1)× fY2(y2).

Integration over y2 shows that the marginal density of Y1 is y1λ2 exp(−λy1)I(y1 > 0), and so
Y1 ∼ Gamma(1,λ) and Y2 ∼ U(0, 1), independently.
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Sums of independent variables

Theorem 207. If X, Y are independent random variables, then the PDF of their sum S = X + Y is
the convolution fX ∗ fY of the PDFs fX , fY :

fS(s) = fX ∗ fY (s) =
{∫∞

−∞ fX(x)fY (s− x) dx, X, Y continuous,
∑

x fX(x)fY (s− x), X, Y discrete.

Example 208. Show that the sum of independent exponential and gamma variables has a gamma
distribution.

Probability and Statistics for SIC slide 227

144



Note to Theorem 207

Change variables to W = X and S = X + Y , so the Jacobian is

J =

∣∣∣∣
1 0
1 1

∣∣∣∣ = 1,

and note that x = w and y = s− w. Thus, since X and Y are independent, an application of
Theorem 204 gives

fW,S(w, s) = fX,Y (w, s − w)× |J−1| = fX(w)fY (s− w)× 1.

Therefore the marginal density of S in the continuous case is

fS(s) =

∫ ∞

−∞
fX(w)fY (s− w) dw.

The computation in the discrete case is similar, but the Jacobian is not needed.
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Note to Example 208

Use indicator functions to write the densities as

fX(x) =
λαxα−1

Γ(α)
e−λxI(x > 0), fY (y) = λe−λyI(y > 0), λ,α > 0,

and use the convolution formula to give that S = X + Y has density

fS(s) =

∫ ∞

−∞
fX(w)fY (s− w) dw =

∫ ∞

−∞

λαwα−1

Γ(α)
e−λwI(w > 0)× λe−λ(s−w)I(s −w > 0) dw.

The product of the indicator functions is positive only when w > 0 and s− w > 0 simultaneously, i.e.,
when 0 < w < s, and hence on putting constants outside the integral, we have

fS(s) =
λα+1e−λs

Γ(α)

∫ s

0
wα−1 dw.

On noting that the integral equals sα/α and recalling that αΓ(α) = Γ(α+ 1), we have

fS(s) =
λα+1sα

Γ(α+ 1)
e−λs, s > 0,

so S ∼ gamma(α+ 1,λ). In particular, a sum of two exponential variables has a gamma(2,λ)
distribution.
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Multivariate case

Theorem 204 extends to random vectors with continuous density, Y = g(X) ∈ Rn, where X ∈ Rn is a
continuous variable:

(X1, . . . ,Xn) 1→ (Y1 = g1(X1, . . . ,Xn), . . . , Yn = gn(X1, . . . ,Xn)).

If the inverse transformation h exists, and has Jacobian

J(x1, . . . , xn) =

∣∣∣∣∣∣∣

∂g1
∂x1

· · · ∂g1
∂xn

...
. . .

...
∂gn
∂x1

· · · ∂gn
∂xn

∣∣∣∣∣∣∣
,

then
fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn) |J(x1, . . . , xn)|−1,

evaluated at x1 = h1(y1, . . . , yn), . . . , xn = hn(y1, . . . , yn).
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Convolution and sums of random variables

Theorem 209. If X1, . . . ,Xn are independent random variables, then the PDF of S = X1 + · · ·+Xn

is the convolution
fS(s) = fX1 ∗ · · · ∗ fXn(s).

In fact it is easier to use the MGFs for convolutions, if possible.

Example 210. Show that if X1, . . . ,Xn
iid∼ exp(λ), then Y = X1 + · · ·+Xn ∼ gamma(n,λ).
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Note to Example 210

The MGF of X ∼ exp(λ) is MX(t) = λ/(λ− t), for t < λ. Now if Y has the gamma(n,λ)
distribution,

E(etY ) =

∫ ∞

0
ety

λnyn−1

Γ(n)
e−λy dy

=
λn

Γ(n)

∫ ∞

0
yn−1e−(λ−t)y dy

=
λn

(λ− t)nΓ(n)

∫ ∞

0
(λ− t)nyn−1e−(λ−t)y dy

=

(
λ

λ− t

)n

× 1,

provided that λ− t > 0, or equivalently that t < λ. The last step just notes that the integral
corresponds to the density of the gamma(n,λ− t) distribution, and so equals unity.
Now MY (t) = MX(t)n = λn/(λ− t)n, so Y has the stated gamma distribution, since there is a
bijection between MGFs and distributions.
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5.6 Order Statistics slide 231

Definition

Definition 211. The order statistics of the rv’s X1, . . . ,Xn are the ordered values

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n).

If the X1, . . . ,Xn are continuous, then no two of the Xj can be equal, i.e.,

X(1) < X(2) < · · · < X(n−1) < X(n).

In particular, the minimum is X(1), the maximum is X(n), and the median is

X(m+1) (n = 2m+ 1, odd), 1
2(X(m) +X(m+1)) (n = 2m, even).

The median is the central value of X1, . . . ,Xn.
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Theorem 212. Let X1, . . . ,Xn
iid∼ F , from a continuous distribution with density f , then:

P(X(n) ≤ x) = F (x)n;

P(X(1) ≤ x) = 1− {1− F (x)}n;

fX(r)
(x) =

n!

(r − 1)!(n − r)!
F (x)r−1f(x){1− F (x)}n−r, r = 1, . . . , n.

Example 213. If X1,X2,X3
iid∼ exp(λ), give the densities of the X(r).

Example 214. Abélard and Héloïse make an appointment to work at the Learning Centre. Both are
late independently of each other, arriving at times distributed uniformly up to one hour after the time
agreed. Find the distribution and the expectation of the time at which the first one arrives, and give
the density of his (or her) waiting time. Find the expected time at which they can start to work.
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Note to Theorem 212

! First, X(n) ≤ x if and only if all the Xi ≤ x, and this has probability F (x)n.

! Likewise X(1) > x if and only if all the Xi > x, and this has probability {1− F (x)}n. Thus the
required CDF is P(X(1) ≤ x) = 1− {1− F (x)}n.

! Finally, for the event X(r) ∈ [x, x+ dx), we need to have split the sample into three groups of
respective sizes r − 1, 1 and n− r (hence the combinatorial coefficient) and probabilities F (x),
f(x)dx, and 1− F (x). This gives the required formula.
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Note to Example 213

We note that in this case f(x) = λe−λx and F (x) = 1− exp(−λx), and then just apply the theorem
with n = 3 and r = 1, 2, 3:

fX(1)
(x) = 3λe−λx × (e−λx)2, x > 0

fX(2)
(x) = 6(1 − e−λx)× λe−λx × e−λx, x > 0

fX(3)
(x) = 3(1 − e−λx)2 × λe−λx, x > 0.
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Note to Example 214

Let 0 < U < V < 1 denote the ordered arrival times.
U is the minimum of n = 2 independent U(0, 1) variables, each with F (u) = u (0 < u < 1), so
according to the second line of Theorem 212 U has distribution function FU (u) = 1− (1− u)2 and
corresponding density

fU(u) =
dFU (u)

du
=

d{1− (1− u)2}
du

= 2(1− u), 0 < u < 1;

consequently E(U) =
∫ 1
0 u× 2(1− u) du = 1− 2/3 = 1/3. To compute the joint density we note that

the uniformity of the arrival times implies that

P(V ≤ v, U ≤ u) = P(V ≤ v)− P(V ≤ v, U > u) = v2 − (v − u)2, 0 < u < v < 1,

because the event V < v occurs if and only if both of them independently arrive before v, and the
event V ≤ v, U > u occurs if and only if they both arrive in the interval (u, v). It follows that the joint
density is

f(u, v) =
∂2P(V ≤ v, U ≤ u)

∂u∂v
= 2I(0 < u < v < 1).

Therefore w = v − u has density

f(w) =

∫ 1

u=0
2I(0 < u < v < 1) du = 2

∫ 1

u=0
I(0 < u < u+ w < 1) du

= 2

∫ 1

u=0
I(0 < u < 1− w) du

= 2(1 − w), 0 < w < 1.

They can start to work when the second of them arrives, at time V , and this has expectation
E(V ) =

∫ 1
0 2v dv = 2/3, i.e., 40 minutes after the agreed time.
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6. Approximation and Convergence slide 234

Motivation

It is often difficult to calculate the exact probability p of an event of interest, and we have to
approximate. Possible approaches:

! try to bound p;

! analytic approximation, often using the law of large numbers and the central limit theorem;

! numerical approximation, often using Monte Carlo methods.

The final approaches use the notion of convergence of sequences of random variables, which we will
study in this chapter.
We have already seen examples of these ideas: normal approximation to the binomial distribution, law
of small numbers, . . .
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6.1 Inequalities slide 236

Inequalities

Theorem 215. If X is a random variable, a > 0 a constant, h a non-negative function and g a convex
function, then

P{h(X) ≥ a} ≤ E{h(X)}/a, (basic inequality)

P(|X| ≥ a) ≤ E(|X|)/a, (Markov’s inequality)

P(|X| ≥ a) ≤ E(X2)/a2, (Chebyshov’s inequality)

E{g(X)} ≥ g{E(X)}. (Jensen’s inequality)

On replacing X by X − E(X), Chebyshov’s inequality gives

P{|X − E(X)| ≥ a} ≤ var(X)/a2.

These inequalities are more useful for theoretical calculations than for practical use.

Example 216. We are testing a classification method, in which the probability of a correct
classification is p. Let Y1, . . . , Yn be the indicators of correct classifications in n test cases, and let Y
be their average. For ε = 0.2 and n = 100, bound

P(|Y − p| > ε).
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Note to Theorem 215

(a) Let Y = h(X). If y ≥ 0, then for any a > 0, y ≥ yI(y ≥ a) ≥ aI(y ≥ a). Therefore

E{h(X)} = E(Y ) ≥ E{Y I(Y ≥ a)} ≥ E{aI(Y ≥ a)} = aP(Y ≥ a) = aP{h(X) ≥ a},

and division by a > 0 gives the result.
(b) Note that h(x) = |x| is a non-negative function on R, and apply (a).
(c) Note that h(x) = x2 is a non-negative function on R, and that P(X2 ≥ a2) = P(|X| ≥ a).
(d) A convex function has the property that, for all y, there exists a value b(y) such that
g(x) ≥ g(y) + b(y)(x− y) for all x. If g(x) is differentiable, then we can take b(y) = g′(y). (Draw a
graph if need be.) To prove this result, we take y = E(X), and then have

g(X) ≥ g{E(X)} + b{E(X)}{X − E(X)},

and taking expectations of this gives E{g(X)} ≥ g{E(X)}.
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Note to Example 216

We note that
∑n

j=1 Yj ∼ B(n, p), so has mean np and variance np(1− p), write X = Y − p, and note

that E(X) = 0 and E(X2) = var(X) = var(Y ) = n−2 × np(1− p). Now Chebyshov’s inequality gives

P(|Y − p| > ε) = P(|X| > ε) ≤ P(|X| ≥ ε) ≤ E(X2)/ε2,

and since p(1− p) ≤ 1/4 in the range 0 ≤ p ≤ 1,

E(X2)/ε2 = var(Y )/ε2 = p(1− p)/(nε2) ≤ 1/4/(100 × 0.22) = 1/16.
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Hoeffding’s inequality

Theorem 217. (Hoeffding’s inequality, no proof) Let Z1, . . . , Zn be independent random variables
such that E(Zi) = 0 and ai ≤ Zi ≤ bi for constants ai < bi. If ε > 0, then for all t > 0,

P

(
n∑

i=1

Zi ≥ ε

)

≤ e−tε
n∏

i=1

et
2(bi−ai)2/8.

This inequality is much more useful than the others for finding powerful bounds in practical situations.

Example 218. Show that if X1, . . . ,Xn
iid∼ Bernoulli(p) and ε > 0, then

P(|X − p| > ε) ≤ 2e−2nε2 .

For ε = 0.2 and n = 100, bound
P(|X − p| > ε).
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Note to Example 218

For the theoretical part, take Zi = (Xi − p)/n, and note that −p/n ≤ Zi ≤ (1− p)/n, so
bi − ai = 1/n. Then

P(|X − p| > ε) = P(
∑

Zi > ε) + P(−
∑

Zi > ε),

and each of these probabilities can be bounded by

e−tε
{
et

2(1/n)2/8
}n

= exp{t2/(8n)− tε}.

To minimise this with respect to t, we take t = 4nε, which leads to the result.
For the numerical part, just insert into the previous part and get 0.00067, which is much smaller than
the bound obtained using the Chebyshov inequality (Example 216).
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6.2 Convergence slide 239

Convergence

Definition 219 (Deterministic convergence). If x1, x2, . . . , x are real numbers, then xn → x iff for all
ε > 0, there exists Nε such that |xn − x| < ε for all n > Nε.

Probabilistic convergence is more complicated . . . We could hope that (for example) Xn → X if either

P(Xn ≤ x) → P(X ≤ x), x ∈ R,

or
E(Xn) → E(X)

when n → ∞.

Example 220. For n = 1, 2, . . . let Xn be the random variable such that

P(Xn = 0) = 1− 1/n, P(Xn = n2) = 1/n.

Then when n → ∞,

P(|Xn| > 0) = P(Xn = n2) = 1/n → 0,

E(Xn) = 0× (1− 1/n) + n2 × 1/n = n → ∞.

Does Xn → 0 or Xn → ∞? What does ‘converge’ mean for random variables?
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Modes of convergence of random variables

Definition 221. Let X,X1,X2, . . . be random variables with cumulative distribution function
F,F1, F2, . . .. Then
(a) Xn converges to X almost surely, Xn

a.s.−→ X, if

P
(
lim
n→∞

Xn = X
)
= 1;

(b) Xn converges to X in mean square, Xn
2−→ X, if

lim
n→∞

E{(Xn −X)2} = 0, where E(X2
n),E(X

2) < ∞;

(c) Xn converges to X in probability, Xn
P−→ X, if for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0;

(d) Xn converges to X in distribution, Xn
D−→ X, if

lim
n→∞

Fn(x) = F (x) at each point x where F (x) is continuous.
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Xn
a.s.−→ X

To understand this better:

! all the variables {Xn},X must be defined on the same probability space, (Ω,F ,P). It is not trivial
to construct this space (we need ‘Kolmogorov’s extension theorem’).

! Then to each ω ∈ Ω corresponds a sequence

X1(ω),X2(ω), . . . ,Xn(ω), . . .

which will converge, or not, as a sequence of real numbers.

! If Xn
a.s.−→ X, then

P
({
ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1 :

the set of values of ω for which Xn(ω) #→ X(ω) has probability 0.

Example 222. Let U ∼ U(0, 1), where Ω = [0, 1], U(ω) = ω, Xn(ω) = U(ω)n, n = 1, 2, . . ., and
X(ω) = 0. Show that Xn

a.s.−→ X.
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Note to Example 222

Here we note that for any 0 ≤ ω < 1, Xn(ω) = U(ω)n = ωn → 0 as n → ∞, so Xn(ω) → X(ω) for
every ω ∈ [0, 1). The only ω for which Xn(ω) #→ X(ω) is ω = 1, and this has zero probability of
occurring, so

P
({
ω : lim

n→∞
Xn(ω) = X(ω)

})
= P(U < 1) = 1,

as required.
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Relations between modes of convergence

! If Xn
a.s.−→ X, Xn

2−→ X or Xn
P−→ X, then X1,X2, . . . ,X must all be defined with respect to

only one probability space. This is not the case for Xn
D−→ X, which only concerns the

probabilities. This last is thus weaker than the others.

! These modes of convergence are related to one another in the following way:

Xn
a.s.−→ X ⇒

Xn
P−→ X ⇒ Xn

D−→ X

Xn
2−→ X ⇒

All other implications are in general false.

! The most important modes of convergence in this course are
P−→ and

D−→ , since we often wish

to approximate probabilities, and
D−→ gives us a way to do so.

Example 223. Let X1, . . . ,Xn
iid∼ (µ,σ2) with 0 < σ2 < ∞. Show that

X = (X1 + · · ·+Xn)/n
2−→ µ.

Example 224. Let Xn = (−1)nZ, where Z ∼ N (0, 1). Show that Xn
D−→ Z, but that this is the

only mode of convergence that applies here.
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Note to Example 223

Note that E(X) = µ, so by definition of the variance as var(X) = E[{X − E(X)}2], we have

E{(X − µ)2} = var(X) = σ2/n → 0, n → ∞,

which implies that X
2−→ µ, as required.
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Note to Example 224

For even n there is nothing to prove, since then Xn = (−1)nZ = Z, and then
P(Xn ≤ x) = P(Z ≤ x).
For odd n, Xn = (−1)nZ = −Z, so

P(Xn ≤ x) = P(−Z ≤ x) = P(Z ≥ −x) = 1− Φ(−x) = Φ(x) = P(Z ≤ x).

Hence Xn
D−→ Z, though this is trivial because Xn and Z have the same distribution for every n.

Now for n odd,

P(|Xn − Z| > ε) = P(|− Z − Z| > ε) = P(|Z| > ε/2) = 2Φ(−ε/2) #→ 0, n → ∞,

so Xn does not converge in probability to Z, and thus neither of the other modes of convergence can
be true either.
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Continuity theorem (reminder)

Theorem 225 (Continuity). Let {Xn}, X be random variables with cumulative distribution functions
{Fn}, F , whose MGFs Mn(t), M(t) exist for 0 ≤ |t| < b. If there exists a 0 < a < b such that

Mn(t) → M(t) for |t| ≤ a when n → ∞, then Xn
D−→ X, that is to say, Fn(x) → F (x) at each

x ∈ R where F is continuous.

! We could replace Mn(t) and M(t) by the cumulant-generating functions Kn(t) = logMn(t) and
K(t) = logM(t).

! We established the law of small numbers (Theorem 104 and Example 186, Poisson approximation
of the binomial distribution) by using this result.

! Here is another example:

Example 226. Let X be a random variable which has a geometric distribution with a probability of
success p. Calculate the limit distribution of pX when p → 0.
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Note to Example 226

Recall that if |a| < 1, then
∑∞

r=0 a
r = 1/(1 − a).

The MGF of pX is

E(etpX) =
∞∑

x=1

etpxp(1− p)x−1

= petp
∞∑

x=0

{etp(1− p)}x

=
petp

1− (1− p)etp
=

1

p−1e−tp − (1− p)/p
=

1

1 + (e−tp − 1)/p
→ 1

1− t
, p → 0,

which is the MGF of Y ∼ exp(1). We need t < 1.
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Combinations of convergent sequences

Theorem 227 (Combination of convergent sequences). Let x0, y0 be constants, X,Y, {Xn}, {Yn}
random variables, and h a function continuous at x0. Then

Xn
D−→ x0 ⇒ Xn

P−→ x0,

Xn
P−→ x0 ⇒ h(Xn)

P−→ h(x0),

Xn
D−→ X and Yn

P−→ y0 ⇒ Xn + Yn
D−→ X + y0, XnYn

D−→ Xy0.

The third line is known as Slutsky’s lemma. It is very useful in statistical applications.

Example 228. Let X1, . . . ,Xn
iid∼ (µX ,σ2X), Y1, . . . , Yn

iid∼ (µY ,σ2Y ), µX #= 0, σ2X ,σ2Y < ∞, and
define

Rn = Y /X, Y = n−1
n∑

j=1

Yj , X = n−1
n∑

j=1

Xj.

Show that Rn
P−→ µY /µX when n → ∞.
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Note to Example 228

Note that since σ2X < ∞, by Example 223, X
2−→ µX , and likewise Y

2−→ µY . Hence X
P−→ µX , by

the contents of slide 243, and since the function h(x) = 1/x is continuous at µX #= 0, it must be true

using line 2 of the theorem that 1/X
P−→ 1/µX , a constant. Therefore we have by line 3 that

Rn = Y × 1/X
D−→ µY × 1/µX ,

and as this is a constant, line 1 implies that Rn
P−→ µY × 1/µX , as required.

Probability and Statistics for SIC note 1 of slide 245

Convergence in distribution: Limits for maxima

! In applications, we often have to take into account the greatest or the smallest random variables
considered.

! A system of n composants can break down when any composant of the system becomes faulty.
What is the distribution of the failure time?

! Let X1, . . . ,Xn
iid∼ F , and Mn = max{X1, . . . ,Xn}. Then

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = F (x)n →
{
0, F (x) < 1,

1, F (x) = 1.

! Hence Mn must be renormalised to get a non-degenerate limit distribution. Let {an} > 0 and
{bn} be sequences of constants, and consider the convergence in distribution of

Yn = (Mn − bn)/an,

where an, bn are chosen so that a non-degenerate limit distribution for Yn exists.
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Examples

Example 229. Let X1, . . . ,Xn
iid∼ exp(λ), and let Mn be their maximum. Find an, bn such that

Yn = (Mn − bn)/an
D−→ Y , where Y has a non-degenerate distribution.

Example 230. Let X1, . . . ,Xn
iid∼ U(0, 1), and let Mn be their maximum. Find an, bn such that

Yn = (Mn − bn)/an
D−→ Y , where Y has a non-degenerate distribution.
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Note to Example 229

We have
P(Yn ≤ y) = F (bn + any)

n = {1− exp(−bnλ− anλy)}n ,

and on setting an = 1/λ, bn = log n/λ, we have

P(Yn ≤ y) = {1− exp(−y)/n}n → exp{− exp(−y)},

which is the Gumbel distribution function.
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Note to Example 230

We have
P(Yn ≤ y) = F (bn + any)

n = (bn + any)
n,

and on setting an = 1/n, bn = 1, we have (since Mn < 1) that

P(Yn ≤ y) = P{n(Mn − 1) ≤ y} = (1 + y/n)n → exp(y), y < 0

which is the distribution function of −Z, where Z ∼ exp(1).
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Fisher–Tippett theorem

Theorem 231. Suppose that X1, . . . ,Xn
iid∼ F , where F is a continuous cumulative distribution

function. Let Mn = max{X1, . . . ,Xn}, and suppose that the sequences of constants {an} > 0 and

{bn} can be chosen so that Yn = (Mn − bn)/an
D−→ Y , where Y has a non-degenerate limit

distribution H(y) when n → ∞. Then H must be the generalised extreme-value (GEV)
distribution,

H(y) =

{
exp

[
− {1 + ξ(y − η)/τ}−1/ξ

+

]
, ξ #= 0,

exp [− exp {−(y − η)/τ}] , ξ = 0,

where u+ = max(u, 0), and η, ξ ∈ R, τ > 0.
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Example

The graph below shows the distributions of Mn and of Yn for n = 1, 7, 30, 365, 3650, from left to

right, for X1, . . . ,Xn
iid∼ N(0, 1). The panel on the right also shows the limit distribution (bold),

H(y) = exp{− exp(−y)}.
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6.3 Laws of Large Numbers slide 250

Law of large numbers

The first part of our limit results concern the behaviour of averages of independent random variables.

Theorem 232. (Weak law of large numbers) Let X1,X2, . . . be a sequence of independent identically
distributed random variables with finite expectation µ, and write their average as

X = n−1(X1 + · · ·+Xn).

Then X
P−→ µ; i.e., for all ε > 0,

P(|X − µ| > ε) → 0, n → ∞.

! Thus, under mild conditions, the averages of samples of important size converge towards the
expectation of the distribution from which the sample is taken.

! If the Xi are independent Bernoulli trials, we return to our primitive notion of probability as a limit
of relative frequencies. The circle is complete.
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Weak law of large numbers

! The graphs below show the behaviour of X when Xi has two finite moments (on the left), only
E(|Xi|) < ∞ (centre), E(Xi) doesn’t exist (and so var(X) does not exist either) (on the right).

! When E(Xi) does not exist, the possibility of huge values of Xi implies that X cannot converge.
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Remarks

! The weak law is easy to prove under the supplementary hypothesis that var(Xj) = σ2 < ∞. We
calculate E(X) and var(X), then we apply Chebyshov’s inequality. For any ε > 0,

P(|X − µ| > ε) ≤ var(X)/ε2 =
σ2

nε2
→ 0, n → ∞.

! The same result applies to smooth functions of averages, empirical quantiles, and other statistics.

! Let X1, . . . ,Xn
iid∼ F , where F is a continuous cumulative distribution function, and let

xp = F−1(p) be the p quantile of F . By noting that

X(.np/) ≤ xp ⇔
n∑

j=1

I(Xj ≤ xp) ≥ <np=

and applying the weak law to the sum on the right, we have X(.np/)
P−→ xp.
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Strong law of large numbers

In fact, a stronger result is true:

Theorem 233. (Strong law of large numbers) Under the conditions of the last theorem, X
a.s.−→ µ:

P
(
lim
n→∞

X = µ
)
= 1.

! This is stronger in the sense that for all ε > 0, the weak law allows the event |X − µ| > ε to occur
an infinite number of times, though with smaller and smaller probabilities. The strong law excludes
this possibility: it implies that the event |X − µ| > ε can only occur a finite number of times.

! The weak and strong laws remain valid under certain types of dependence amongst the Xj .
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6.4 Central Limit Theorem slide 255

Standardisation of an average

The law of large numbers shows us that the average X approaches µ when n → ∞. If var(Xj) < ∞,
then Lemma 166 tells us that

E(X) = µ, var(X) = σ2/n,

so, for all n, the difference between X and its expectation relative to its standard deviation,

Zn =
X − E(X)

var(X)1/2
=

X − µ√
σ2/n

=
n1/2(X − µ)

σ

has expected value zero and unit variance.

What is the limiting behaviour of Zn?
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Central limit theorem

Theorem 234 (Central limit theorem (CLT)). Let X1,X2, . . . be independent random variables with
expectation µ and variance 0 < σ2 < ∞. Then

Zn =
n1/2(X − µ)

σ
D−→ Z, n → ∞,

where Z ∼ N(0, 1).

Thus

P

{
n1/2(X − µ)

σ
≤ z

}
.
= P(Z ≤ z) = Φ(z)

for large n.

The following page shows this effect for X1, . . . ,Xn
iid∼ exp(1); the histograms show how the empirical

densities of Zn approach the density of Z.
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Note to Theorem 234

The cumulant-generating function of

Zn =
(
X − µ

)
/(σ2/n)1/2 =

n∑

j=1

(n−1/2/σ)Xj − n1/2µ

σ

is

KZn(t) =
n∑

j=1

KXj
(tn−1/2/σ)− n1/2µ

σ
t,

where
KXj

(t) = tµ+ 1
2t

2σ2 + o(t2), t → 0.

Thus

KZn(t) = n
[
tn−1/2µ/σ + 1

2(tn
−1/2/σ)2σ2 + o{t2/(nσ2)}

]
− n1/2t

µ

σ
→ t2/2, n → ∞,

is the CGF of Z ∼ N (0, 1). Thus the result follows by the continuity theorem, Theorem 185.
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Use of the CLT

The CLT is used to approximate probabilities involving the sums of independent random variables.
Under the previous conditions, we have

E




n∑

j=1

Xj



 = nµ, var




n∑

j=1

Xj



 = nσ2,

so ∑n
j=1Xj − nµ
√
nσ2

=
n(X − µ)√

nσ2
=

n1/2(X − µ)

σ
= Zn

can be approximated using a normal variable:

P




n∑

j=1

Xj ≤ x



 = P

{∑n
j=1Xj − nµ
√
nσ2

≤ x− nµ

(nσ2)1/2

}
.
= Φ

{
x− nµ

(nσ2)1/2

}
.

The accuracy of the approximation depends on the underlying variables: it is (of course) exact for
normal Xj , works better if the Xj are symmetrically distributed (e.g., uniform), and typically is
adequate if n > 25 or so.
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Example

Example 235. A book of 640 pages has a number of random errors on each page. If the number of
errors on each page follows a Poisson distribution with expectation λ = 0.1, what is the probability
that the book contains less than 50 errors?

When
∑n

j=1Xj takes whole values, we can obtain a better approximation using a continuity correction:

P




n∑

j=1

Xj ≤ x



 .
= Φ

{
x+ 1

2 − nµ

(nσ2)1/2

}

;

this can be important when the distribution of
∑n

j=1Xj is quite discrete.
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Note to Example 235

We take µ = σ2 = 0.1 and n = 640. The expected number of errors is nµ = 640λ = 64, and the
variance is nσ2 = 64, as the variable is Poisson. Thus we seek

P




n∑

j=1

Xj ≤ 49



 = P

(∑n
j=1Xj − 64

√
64

≤ 49− 64√
64

)
.
= Φ(−15/8) = 0.03.

The true number is 0.031. With continuity correction we take Φ{(−15 + 0.5)/8} = 0.035.
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Delta method

We often need the approximate distribution of a smooth function of an average.

Theorem 236. Let X1,X2, . . . be independent random variables with expectation µ and variance
0 < σ2 < ∞, and let g′(µ) #= 0, where g′ is the derivative of g. Then

g(X)− g(µ)

{g′(µ)2σ2/n}1/2
D−→ N(0, 1), n → ∞.

This implies that for large n, we have g(X)
·∼ N

{
g(µ), g′(µ)2σ2/n

}
. Combined with Slutsky’s

lemma, we have

g(X)
·∼ N

{
g(µ), g′(X)2S2/n

}
, S2 =

1

n− 1

n∑

j=1

(Xj −X)2.

Example 237. If X1, . . . ,Xn
iid∼ exp(λ), find the approximate distribution of logX.
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8 Statistical Inference slide 318

8.1 Introduction slide 319

Introduction

The study of mathematics is based on deduction:

axioms ⇒ consequences.

In the case of probability, we have

(Ω,F ,P) ⇒ P(A),P(A | B),P(X ≤ x),E(Xr), . . .

Inferential statistics concern induction—having observed an event A, we want to say something about
a probability space (Ω,F ,P) we suppose to be underlying the data:

A
?⇒ (Ω,F , P ).

In the past the term inverse probability was given to this process.
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Statistical model

! We assume that the observed data, or data to be observed, can be considered as realisations of a
random process, and we aim to say something about this process based on the data.

! Since the data are finite, and the process is unknown, there will be many uncertainties in our
analysis, and we must try to quantify them as well as possible.

! Several problems must be addressed:

– specification of a model (or of models) for the data;

– estimation of the unknowns of the model (parameters, . . .);

– tests of hypotheses concerning a model;

– planning of the data collection and analysis, to answer the key questions as effectively as
possible (i.e., minimise uncertainty for a given cost);

– decision when faced with uncertainties;

– prediction of future unknowns;

– behind the other problems lies the relevance of the data to the question we want to answer.
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Definitions

Notation: we will use y and Y to represent the data y1, . . . , yn and Y1, . . . , Yn.

Definition 244. A statistical model is a probability distribution f(y) chosen or constructed to learn
from observed data y or from potential data Y .

! If f(y) = f(y; θ) is determined by a parameter θ of finite dimension, it is a parametric model,
and otherwise it is a nonparametric model.

! A perfectly known model is called simple, otherwise it is composite.

Statistical models are (almost) always composite in practice, but simple models are useful when
developing theory.

Definition 245. A statistic T = t(Y ) is a known function of the data Y .

Definition 246. The sampling distribution of a statistic T = t(Y ) is its distribution when Y ∼ f(y).

Definition 247. A random sample is a set of independent and identically distributed random
variables Y1, . . . , Yn, or their realisations y1, . . . , yn.
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Examples

Example 248. Assume that y1, . . . , yn is a random sample from a Bernoulli distribution with unknown
parameter p ∈ (0, 1). Then the statistic

t =
n∑

j=1

yj

is considered to be a realisation of the random variable

T =
n∑

j=1

Yj,

whose sampling distribution is B(n, p).

Example 249. Assume that y1, . . . , yn is a random sample from the N (µ,σ2) distribution, with µ, σ2

unknown. Then y = n−1(y1 + · · ·+ yn) and s2 = (n− 1)−1
∑n

j=1(yj − y)2 are statistics, realisations
of the random variables

Y = n−1(Y1 + · · ·+ Yn), S2 =
1

n− 1

n∑

j=1

(Yj − Y )2.

Find the sampling distribution of Y .
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Note to Example 249

If µ and σ2 are finite, then elementary computations (see Lemma 166) give

E(Y ) = E



n−1
n∑

j=1

Yj



 = n−1nE(Yj) = µ, var(Y ) =
n∑

j=1

n−2var(Yj) = σ2/n,

since the Yj are independent and all have variance σ2. These results do not rely on normality of the
Yj, but the variance computation does need independence. We see that the larger n is, the smaller is
the variance of Y . This backs up our intuition that a larger sample is more informative about the
underlying phenomenon—but the data must be sampled independently, and the variance must be finite!
If in addition the Yj are normal, then Y is a linear combination of normal variables, and so has a
normal distribution,

Y ∼ N (µ,σ2/n),

so we have a very precise idea of how Y will behave (or, rather, we would have, if we knew µ and σ2).
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8.2 Point Estimation slide 324

Statistical models

We would like to study a set of individuals or elements called a population based on a subset of this
set called a sample:

! statistical model: the unknown distribution F or density f of Y ;

! parametric statistical model: the distribution of Y is known except for the values of parameters
θ, so we can write F (y) = F (y; θ), but with θ unknown;

! sample (must be representative of the population): “data” y1, . . . , yn, often supposed to be a

random sample, i.e., Y1, . . . , Yn
iid∼ F ;

! statistic: any function T = t(Y1, . . . , Yn) of the random variables Y1, . . . , Yn;

! estimator: a statistic θ̂ used to estimate a parameter θ of f .
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Example

Example 250. If we assume that Y1, . . . , Yn
iid∼ N (µ,σ2) but with µ,σ2 unknown, then

! this is a parametric statistical model;

! µ̂ = Y is an estimator of µ, whose observed value is y;

! σ̂2 = n−1∑n
j=1(Yj − Y )2 is an estimator of σ2, whose observed value is n−1∑n

j=1(yj − y)2.

Note that:

! a statistic T is a function of the random variables Y1, . . . , Yn, so T is itself a random variable;

! the sampling distribution of T depends on the distribution of the Yj;

! if we cannot deduce the exact distribution of T from that of the Yj, we must sometimes make do
with knowing E(T ) and var(T ), which give partial information on the distribution of T , and thus
may allow us to approximate the distribution of T (often using the central limit theorem).
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Estimation methods

There are many methods for estimating the parameters of models. The choice among them depends
on various criteria, such as:

! ease of calculation;

! efficiency (getting estimators that are as precise as possible);

! robustness (getting estimators that don’t fail calamitously when the model is wrong, e.g., when
outliers appear).

The trade-off between these criteria depends on what assumptions we are willing to make in a given
context.
Examples of common methods are:

! method of moments (simple, can be inefficient);

! maximum likelihood estimation (general, optimal in many parametric models);

! M-estimation (even more general, can be robust, but loses efficiency compared to maximum
likelihood).
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Method of moments

! The method of moments estimate of a parameter θ is the value θ̃ that matches the theoretical
and empirical moments.

! For a model with p unknown parameters, we set the theoretical moments of the population equal
to the empirical moments of the sample y1, . . . , yn, and solve the resulting equations, i.e.,

E(Y r) =

∫
yrf(y; θ) dy =

1

n

n∑

j=1

yrj , r = 1, . . . , p.

! We thus need as many (finite!) moments of the underlying model as there are unknown
parameters.

! We may have more than one choice of moments to use, so in principle the estimate is not unique,
but in practice we usually use the first r moments, because they give the most stable estimates.

Example 251. If y1, . . . , yn is a random sample from the U(0, θ) distribution, estimate θ.

Example 252. If y1, . . . , yn is a random sample from the N (µ,σ2) distribution, estimate µ and σ2.
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Example 251

! Standard computations show that if Y ∼ U(0, θ), then E(Y ) = θ/2. To find the moments
estimate of θ, we therefore solve the equation

E(Y ) = y, i.e., θ/2 = y,

to get the estimate θ̃ = 2y.

! Simulations show that with n ≥ 12 the distribution of the random variable θ̃ is very close to
normality, as we would expect, because the central limit theorem gives a good approximation to
the distribution of θ̃ for small n, owing to the symmetry of the uniform distribution.
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Example 252

The theoretical values of the first two moments are

E(Y ) = µ, E(Y 2) = var(Y ) + E(Y )2 = σ2 + µ2,

and the corresponding sample versions are

y = µ̃, n−1
n∑

j=1

y2j = σ̃2 + µ̃2.

Solving these gives

µ̃ = y, σ̃2 = n−1




n∑

j=1

y2j − n y2



 = n−1
n∑

j=1

(yj − y)2,

as can be seen by expanding out the right-hand expression:

n∑

j=1

(yj − y)2 =
n∑

j=1

y2j −
n∑

j=1

2yyj + ny2 =
n∑

j=1

y2j − 2ny2 + ny2 =
n∑

j=1

y2j − ny2.
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Maximum likelihood estimation

This is a much more general and powerful method of estimation, but in practice it usually requires
numerical methods of optimisation.

Definition 253. If y1, . . . , yn is a random sample from the density f(y; θ), then the likelihood for θ is

L(θ) = f(y1, . . . , yn; θ) = f(y1; θ)× f(y2; θ)× · · ·× f(yn; θ).

The data are treated as fixed, and the likelihood L(θ) is regarded as a function of θ.

Definition 254. The maximum likelihood estimate (MLE) θ̂ of a parameter θ is the value that
gives the observed data the highest likelihood. Thus

L(θ̂) ≥ L(θ) for each θ.
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Calculation of the MLE θ̂

We simplify the calculations by maximising 2(θ) = logL(θ) rather than L(θ).
The approach is:

! calculate the log-likelihood 2(θ) (and plot it if possible);

! find the value θ̂ maximising 2(θ), which often satisfies d2(θ̂)/dθ = 0;

! check that θ̂ gives a maximum, often by checking that d22(θ̂)/dθ2 < 0.

Example 255. Suppose that y1, . . . , yn is a random sample from an exponential density with unknown
λ. Find λ̂.

Example 256. Suppose that y1, . . . , yn is a random sample from a uniform density, U(0, θ), with
unknown θ. Find θ̂.
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Note to Example 255

The likelihood is

L(λ) = λ e−λy1 × · · ·× λ e−λy2 = λne−λ(y1+···+yn), λ > 0,

so the log likelihood is
2(λ) = logL(λ) = n log λ− nλy.

Thus the maximum likelihood estimate λ̂ is the solution to

d2(λ)

dλ
=

n

λ
− ny = 0,

and so λ̂ = 1/y.
To check that λ̂ gives a maximum, we note that the second derivative of 2(λ) is

d22(λ)

dλ2
= − n

λ2
< 0, λ > 0,

so the log likelihood is concave, and therefore λ̂ gives the unique maximum.
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Note to Example 256

The density is f(y; θ) = θ−1I(0 < y < θ), so since the observations are independent, the likelihood is

L(θ) =
n∏

j=1

θ−1I(0 < yj < θ) = θ−nI(0 < y1, . . . , yn < θ) = θ−nI(θ > m), θ > 0,

where m = max(y1, . . . , yn); note that
∏

j I(0 < yj < θ) = I(m < θ). Viewed as a function of θ this

is maximised at θ̂ = m, which is therefore the MLE.
In this case the maximum is NOT found by differentiation of the likelihood, which is not differentiable
at θ̂.
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M-estimation

! This generalises maximum likelihood estimation. We maximise a function of the form

ρ(θ;Y ) =
n∑

j=1

ρ(θ;Yj),

where ρ(θ; y) is (if possible) concave as a function of θ for all y. Equivalently we minimise
−ρ(θ;Y ).

! We choose the function ρ to give estimators with suitable properties, such as small variance or
robustness to outliers.

! Taking ρ(θ; y) = log f(y; θ) gives the maximum likelihood estimator.

Example 257. Let Y1, . . . , Yn
iid∼ f with E(Yj) = θ, and take ρ(y; θ) = −(y − θ)2. Find the least

squares estimator of θ.

Example 258. Let Y1, . . . , Yn
iid∼ f such that E(Yj) = θ, and take ρ(y; θ) = −|y − θ|. Find the

corresponding estimator of θ.
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Note to Example 257

We want to maximise

ρ(θ; y) = −
n∑

j=1

(yj − θ)2,

and this is equivalent to minimising the sum of squares

−ρ(θ; y) =
n∑

j=1

(yj − θ)2

with respect to θ. Differentiation gives

−dρ(θ; y)

dθ
= −

n∑

j=1

2(yj − θ),

and setting this equal to zero gives θ̂ = y. The second derivative is

−d2ρ(θ; y)

d2θ
= 2n > 0,

so the minimum is unique.
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Note to Example 258

We want to maximise

ρ(θ; y) = −
n∑

j=1

|yj − θ|,

and we note that if θ > y then −|y − θ| = y − θ and if θ < y then −|y − θ| = θ − y, so the respective
derivatives with respect to θ are −1 and +1. This implies that

−dρ(θ; y)

dθ
= P (θ)−N(θ),

where P (θ) is the number of yj for which θ < yj and N(θ) = n− P (θ) is the number of yj for which
θ > yj. Hence when regarded as a function of θ,

−dρ(θ; y)

dθ
= 2P (θ)− n

is a step function that has initial value n for θ = −∞, drops by 2 at each yj, and takes value −n when
θ = +∞. If n is odd, then 2P (θ)−n equals zero when θ is the median of the sample, and if n is even,
then 2P (θ)− n equals zero on the interval y(n/2) ≤ θ ≤ y(n/2+1). In this latter case we can take the
median to be (y(n/2) + y(n/2+1))/2 for uniqueness.
Thus this choice of function ρ yields the sample median as an estimator.
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Bias

How should we compare estimators?

Definition 259. The bias of the estimator θ̂ of θ is

b(θ) = E(θ̂)− θ.

! Interpretation of the bias:

– if b(θ) < 0 for all θ, then on average θ̂ underestimates θ;

– if b(θ) > 0 for all θ, then on average θ̂ overestimates θ;

– if b(θ) = 0 for all θ, then θ̂ is said to be unbiased.

! If b(θ) ≈ 0, then θ̂ is ‘in the right place’ on average.

Example 260. Let Y1, . . . , Yn
iid∼ N (µ,σ2). Find the bias and variance of µ̂ = Y and the bias of

σ̂2 = n−1∑
j(Yj − Y )2.
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Note to Example 260

! In Example 249 we saw that
E(Y ) = µ, var(Y ) = σ2/n,

so the bias of µ̂ = Y as an estimator of µ is E(Y )− µ = 0.

! To find the expectation of σ̂2 = n−1
∑

j(Yj − Y )2, note that
n∑

j=1

(Yj − Y )2 =
n∑

j=1

{
Yj − µ− (Y − µ)

}2

=
n∑

j=1

(Yj − µ)2 − 2
n∑

j=1

(Yj − µ)(Y − µ) +
n∑

j=1

(Y − µ)2

=
n∑

j=1

(Yj − µ)2 − 2n(Y − µ)2 + n(Y − µ)2

=
n∑

j=1

(Yj − µ)2 − n(Y − µ)2,

which implies that

E






n∑

j=1

(Yj − Y )2




 = E






n∑

j=1

(Yj − µ)2




− nE
{
(Y − µ)2

}

= nvar(Yj)− nvar(Y )

= nσ2 − nσ2/n

= (n− 1)σ2.

Therefore

E
(
σ̂2
)
= n−1E






n∑

j=1

(Yj − Y )2




 =
n− 1

n
σ2,

and the bias of σ̂2 is

E(σ̂2)− σ2 =
(n− 1)σ2

n
− σ2 = −σ

2

n
.

Therefore on average σ̂2 underestimates σ2, by an amount that should be small for large n.
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Bias and variance
High bias, low variability Low bias, high variability

High bias, high variability The ideal: low bias, low variability

! θ = bullseye, supposed to be the real value

! θ̂ = red dart thrown at the bullseye, value estimated using the data
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Mean square error

Definition 261. The mean square error (MSE) of the estimator θ̂ of θ is

MSE(θ̂) = E{(θ̂ − θ)2} = · · · = var(θ̂) + b(θ)2.

This is the average squared distance between θ̂ and its target value θ.

Definition 262. Let θ̂1 and θ̂2 be two unbiased estimators of the same parameter θ. Then

MSE(θ̂1) = var(θ̂1) + b1(θ)
2 = var(θ̂1)

MSE(θ̂2) = var(θ̂2) + b2(θ)
2 = var(θ̂2),

and we say that θ̂1 is more efficient than θ̂2 if

var(θ̂1) ≤ var(θ̂2).

If so, then we prefer θ̂1 to θ̂2.

Example 263. Let Y1, . . . , Yn
iid∼ N (µ,σ2), with large n. Find the bias and variance of the median M

and the average Y . Which is preferable? What if outliers might appear?
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Note to Example 263

! We’ve already seen in Lemma 166 that

E(Y ) = µ, var(Y ) = σ2/n,

so the bias of Y as an estimator of µ is E(Y )− µ = 0.

! Results from Example 240 give that for large n,

E(M)
.
= µ, var(M) =

πσ2

2n
,

so both estimators are (approximately) unbiased (in fact exactly unbiased), but

var(M)

var(Y )
=
π

2
> 1,

so M is less efficient than Y , because the latter has a smaller variance.
However if there are outliers, we have seen that the median M is little changed, whereas the
average Y can be badly affected. Our choice between these estimators will depend on how much
we fear that our data will be contaminated by bad values.

Probability and Statistics for SIC note 1 of slide 334

Delta method

In practice, we often consider functions of estimators, and so we appeal to another version of the delta
method (Theorem 236).

Theorem 264 (Delta method). Let θ̂ be an estimator based on a sample of size n, such that

θ̂
·∼ N (θ, v/n),

for large n, and let g be a smooth function such that g′(θ) #= 0. Then

g(θ̂)
·∼ N

{
g(θ) + vg′′(θ)/(2n), vg′(θ)2/n

}
.

This implies that the mean square error of g(θ̂) as an estimator of g(θ) is

MSE
{
g(θ̂)

}
≈
{
vg′′(θ)

2n

}2

+
vg′(θ)2

n
.

Thus for large n we can disregard the bias contribution.

Example 265. Let Y1, . . . , Yn
iid∼ Poiss(θ). Find two estimators of P(Y = 0), and compare their

biases and variances.
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Note to Example 265

! Let ψ = g(θ) = exp(−θ) = P(Y = 0).

! The two estimators are T1 = n−1∑ I(Yi = 0) and T2 = exp(−Y ).

! Simple computations (e.g., noting that nT1 ∼ B(n,ψ)) give

E(T1) = ψ, var(T1) = ψ(1 − ψ)/n.

Thus T1 is unbiased and has MSE ψ(1 − ψ)/n.

! For T2 we note that θ̂ = Y has mean and variance θ and θ/n, and hence

E(T2)
.
= exp(−θ) + θ exp(−θ)/(2n), var(T2)

.
= θ exp(−2θ)/n.

Therefore T2 has positive bias θ exp(−θ)/(2n) but

var(T2)

var(T1)
=

θ exp(−2θ)

exp(−θ){1− exp(−θ)}
=

θ

eθ − 1
< 1

for all θ > 0.
Therefore T2 is preferable to T1 in terms of variance (especially if θ is large).
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Efficiency and robustness

! Under certain conditions, notably that y1, . . . , yn are really from the assumed model f(y; θ), and if
f is ‘nice’, the maximum likelihood estimator θ̂ has good properties: for large n, E(θ̂)

.
= θ, and

var(θ̂) is minimal, so no estimator is better than θ̂.

! In reality we are never certain of the model, and often we sacrifice some efficiency (small variance
under an ideal model) for robustness (good estimation even if there are outliers, or if the assumed
model is incorrect).

! If θ is a p× 1 vector, the same ideas apply. For example, for M-estimation we maximise

n∑

j=1

ρ(θ; yj)

with respect to the vector θp×1, giving an estimator θ̂p×1, which often has an approximate
Np(θ, V ) distribution.
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8.3 Interval Estimation slide 337

Pivots

A key element of statistical thinking is to assess uncertainty of results and conclusions.
Let t = 1 be an estimate of an unknown parameter θ based on a sample of size n:

! if n = 105 we are much more sure that θ ≈ t than if n = 10;

! as well as t we would thus like to give an interval which will be wider when n = 10 than when
n = 105, to make the uncertainty of t explicit.

We suppose that we have

! data y1, . . . , yn, which are regarded as a realisation of a

! random sample Y1, . . . , Yn drawn from a

! statistical model f(y; θ) whose unknown

! parameter θ is estimated by the

! estimate t = t(y1, . . . , yn), which is regarded as a realisation of the

! estimator T = t(Y1, . . . , Yn).

We therefore need to link θ and Y1, . . . , Yn.

Definition 266. Let Y = (Y1, . . . , Yn) be sampled from a distribution F with parameter θ. Then a
pivot is a function Q = q(Y, θ) of the data and the parameter θ, where the distribution of Q is known
and does not depend on θ. We say that Q is pivotal.
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Example

Example 267. Let Y1, . . . , Yn
iid∼ U(0, θ) with θ unknown,

M = max(Y1, . . . , Yn), Y = n−1
∑

Yj .

! Show that Q1 = M/θ is a pivot.

! Use the central limit theorem to find an approximate pivot Q2 for large n, based on Y .
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Note to Example 267

! We first note that Q1 is a function of the data and the parameter, and that

P(M ≤ x) = FY (x)
n = (x/θ)n, 0 < x < θ,

so
P(Q1 ≤ q) = P(M/θ ≤ q) = P(M ≤ θq) = (θq/θ)n = qn, 0 < q < 1.

which is known and does not depend on θ. Hence Q1 is a pivot.

! In Example 119(a) we saw that if Y ∼ U(0, θ), then E(Y ) = θ/2 and var(Y ) = θ2/12. Hence
Lemma 166(c) gives that Y has mean θ/2 and variance θ2/(12n), and for large n,

Y
·∼ N{θ/2, θ2/(12n)} using the central limit theorem. Therefore

Q2 =
Y − θ/2√
θ2/(12n)

= (3n)1/2(2Y /θ − 1)
·∼ N (0, 1).

Thus Q2 depends on both data and θ, and has an (approximately) known distribution: hence Q2 is
an (approximate) pivot. (In fact it is exact, if we could know the distribution of Y exactly.)
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Confidence intervals

Definition 268. Let Y = (Y1, . . . , Yn) be data from a parametric statistical model with scalar
parameter θ. A confidence interval (CI) (L,U) for θ with lower confidence bound L and upper
confidence bound U is a random interval that contains θ with a specified probability, called the
(confidence) level of the interval.

! L = l(Y ) and U = u(Y ) are statistics that can be computed from the data Y1, . . . , Yn. They do
not depend on θ.

! In a continuous setting (so < gives the same probabilities as ≤), and if we write the probabilities
that θ lies below and above the interval as

P (θ < L) = αL, P (U < θ) = αU ,

then (L,U) has confidence level

P (L ≤ θ ≤ U) = 1− P (θ < L)− P (U < θ) = 1− αL − αU .

! Often we seek an interval with equal probabilities of not containing θ at each end, with
αL = αU = α/2, giving an equi-tailed (1− α)× 100% confidence interval.

! We usually take standard values of α, such that 1− α = 0.9, 0.95, 0.99, . . .
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Construction of a CI

! We use pivots to construct CIs:

– we find a pivot Q = q(Y, θ) involving θ;

– we obtain the quantiles qαU
, q1−αL

of Q;

– then we transform the equation

P{qαU
≤ q(Y, θ) ≤ q1−αL

} = (1− αL)− αU

into the form
P(L ≤ θ ≤ U) = 1− αL − αU ,

where the bounds L, U depend on Y , q1−αL
and qαU

, but not on θ.

! In many cases, the bounds are of a standard form (see below).

Example 269. In Example 267, find CIs based on Q1 and on Q2.

Example 270. A sample of n = 16 Vaudois number plates has maximum 523308 and average 320869.
Give two-sided 95% CIs for the number of cars in canton Vaud.
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Note to Example 269

! The p quantile of Q1 = M/θ is given by p = P(Q1 ≤ qp) = qnp , so qp = p1/n. Thus

P{α1/n
U ≤ M/θ ≤ (1− αL)

1/n} = 1− αL − αU ,

and a little algebra gives that

P{M/(1 − αL)
1/n ≤ θ ≤ M/α1/n

U } = 1− αL − αU ,

so
L = M/(1− αL)

1/n, U = M/α1/n
U .

! For Q2 = (3n)1/2(2Y /θ − 1)
·∼ N (0, 1), the quantiles are z1−αL

and zαU
, so

P{zαU
≤ (3n)1/2(2Y /θ − 1) ≤ z1−αL

} = 1− αL − αU ,

and hence we obtain

L =
2Y

1 + z1−αL
/(3n)1/2

, U =
2Y

1 + zαU
/(3n)1/2

;

note that for large n these are L ≈ 2Y {1− z1−αL
/(3n)1/2} and U ≈ 2Y {1− zαU

/(3n)1/2}.
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Note to Example 270

! We set αU = αL = 0.025, with M and Y observed to be m = 523308 and y = 320869.

! For Q1 with n = 16 we have α1/n
U = 0.0251/16 = 0.794, (1− αL)1/n = 0.9751/16 = 0.998, so

L = m/(1− αL)
1/n = 524135, U = m/α1/n

U = 659001.

Note that this CI does not contain m (and this makes sense).

! For Q2 = (3n)1/2(2Y /θ − 1)
·∼ N (0, 1), the quantiles are zαU

= −z1−αL
= −1.96, so we obtain

L =
2y

1 + 1.96/(3n)1/2
= 500226, U =

2y

1− 1.96/(3n)1/2
= 894903.

This is much wider than the other CI, and includes impossible values, as we already know that
θ ≥ m.

! Clearly we prefer the interval based on Q1.
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Interpretation of a CI

! (L,U) is a random interval that contains θ with probability 1− α.

! We imagine an infinite sequence of repetitions of the experiment that gave (L,U).

! In that case, the CI that we calculated is one of an infinity of possible CIs, and we can consider
that our CI was chosen at random from among them.

! Although we do not know whether our particular CI contains θ, the event θ ∈ (L,U) has
probability 1− α, matching the confidence level of the CI.

! In the figure below, the parameter θ (green line) is contained (or not) in realisations of the 95% CI
(red). The black points show the corresponding estimates.
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One- and two-sided intervals

! A two-sided confidence interval (L,U) is generally used, but one-sided confidence intervals,
of the form (−∞, U) or (L,∞), are also sometimes required.

! For one-sided CIs, we take αU = 0 or αL = 0, giving respective intervals (L,∞) or (−∞, U).

! To get a one-sided (1− α)× 100% interval, we can compute a two-sided interval with
αL = αU = α, and then replace the unwanted limit by ±∞ (or another value if required in the
context).

Example 271. A sample of n = 16 Vaudois number plates has maximum 523308. Use the pivot Q1

to give one-sided 95% CIs for the number of cars in canton Vaud.
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Note to Example 271

! We set αU = αL = 0.05, with M observed to be m = 523308.

! For Q1 with n = 16 we have α1/n
U = 0.051/16 = 0.829, (1− αL)1/n = 0.951/16 = 0.997, so

L = m/(1 − αL)
1/n = 524988.3, U = m/α1/n

U = 631061.6.

! For the interval of form (L,∞), we have have (524988.3,∞), with the interpretation that we are
95% sure that the number of cars in the canton is at least 524988.3 (which we would interpret as
524988, for practical purposes).

! For the interval of form (−∞, U), we have have (−∞, 631061.6), but since we have observed
m = 523308, we replace the lower bound, giving (523308, 631061.6). We are 95% sure that the
number of cars in the canton is lower than 631062 but it must be at least 523308.
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Standard errors

In most cases we use approximate pivots, based on estimators whose variances we must estimate.

Definition 272. Let T = t(Y1, . . . , Yn) be an estimator of θ, let τ2n = var(T ) be its variance, and let
V = v(Y1, . . . , Yn) be an estimator of τ2n. Then we call V 1/2, or its realisation v1/2, a standard error
for T .

Theorem 273. Let T be an estimator of θ based on a sample of size n, with

T − θ

τn

D−→ Z,
V

τ2n

P−→ 1, n → ∞,

where Z ∼ N (0, 1). Then by Theorem 227 we have

T − θ

V 1/2
=

T − θ

τn
× τn

V 1/2

D−→ Z, n → ∞.

Hence, when basing a CI on the Central Limit Theorem, we can replace τn by V 1/2.
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Approximate normal confidence intervals

! We can often construct approximate CIs using the CLT, since many statistics that are based on
averages of Y = (Y1, . . . , Yn) have approximate normal distributions for large n. If T = t(Y ) is an
estimator of θ with standard error

√
V , and if Theorem 273 applies, then

T
·∼ N(θ, V ),

and so (T − θ)/
√
V

·∼ N(0, 1). Thus

P
{
zαU

< (T − θ)/
√
V ≤ z1−αL

}
.
= Φ(z1−αL

)− Φ(zαU
) = 1− αL − αU ,

implying that an approximate (1− αL − αU )× 100% CI for θ is

(L,U) = (T −
√
V z1−αL

, T −
√
V zαU

).

Recall that if αL,αU < 1/2, then z1−αL
> 0 and zαU

< 0, so L < U .

! Example 269 is an example of this, with T = 2Y and V = T 2/(3n), since for large n,

L ≈ T − Tz1−αL
/(3n)1/2, U ≈ T − TzαU

/(3n)1/2.

! Often we take αL = αU = 0.025, and then z1−αL
= −zαU

= 1.96, giving the ‘rule of thumb’
(L,U) ≈ T ± 2

√
V for a two-sided 95% confidence interval.
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Normal random sample

An important case where exact CIs are available is the normal random sample.

Theorem 274. If Y1, . . . , Yn
iid∼ N (µ,σ2), then

Y ∼ N (µ,σ2/n)
(n− 1)S2 =

∑n
j=1(Yj − Y )2 ∼ σ2χ2

n−1

}
independent

where χ2
ν represents the chi-square distribution with ν degrees of freedom.

The first result here implies that if σ2 is known, then

Z =
Y − µ√
σ2/n

∼ N (0, 1).

is a pivot that provides an exact (1− αL − αU ) confidence interval for µ, of the form

(L,U) =

(
Y − σ√

n
z1−αL

, Y − σ√
n
zαU

)
, (4)

where zp denotes the p quantile of the standard normal distribution.
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Unknown variance

! In applications σ2 is usually unknown. If so, Theorem 274 implies that

Y − µ√
S2/n

∼ tn−1,
(n− 1)S2

σ2
∼ χ2

n−1

are pivots that provide confidence intervals for µ and σ2, respectively, i.e.,

(L,U) =

(
Y − S√

n
tn−1(1− αL), Y − S√

n
tn−1(αU )

)
, (5)

(L,U) =

(
(n− 1)S2

χ2
n−1(1− αL)

,
(n− 1)S2

χ2
n−1(αU )

)
, (6)

where:

– tν(p) is the p quantile of the Student t distribution with ν degrees of freedom;

– χ2
ν(p) is the p quantile of the chi-square distribution with ν degrees of freedom.

! For symmetric densities such as the normal and the Student t , the quantiles satisfy

zp = −z1−p, tν(p) = −tν(1− p),

so equi-tailed (1− α)× 100% CIs have the forms

Y ± n−1/2 σ z1−α/2, Y ± n−1/2 S tn−1(1− α/2).
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Two giants of 20th century statistics

Left: William Sealy Gosset (‘Student’) (1876–1937)
Right: Ronald Aylmer Fisher (1890–1962)

(Source: Wikipedia)
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Chi-square and Student probability densities
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Left: χ2
ν densities with ν = 1, 2, 4, 6, 10. Right: tν densities with ν = 1 (bottom centre), 2, 4, 20, ∞

(top centre).
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Example

Example 275. Suppose that the resistance X of a certain type of electrical equipment has an
approximate N (µ,σ2) distribution. A random sample of size n = 9 has average x = 5.34 ohm and
variance s2 = 0.122 ohm2.

! Find an equi-tailed two-sided 95% CI for µ.

! Find an equi-tailed two-sided 95% CI for σ2.

! How does the interval for µ change if we are later told that σ2 = 0.122?

! How does the calculation change if we want a 95% confidence interval for µ of form (L,∞)?
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Note to Example 275

! We want 1− α = 0.95, so α = 0.05 and we take αU = αL = 0.025. The formula (5) gives
(5.25, 5.43) ohms.

! Formula (6) gives (0.0066, 0.0529) ohms2 as the interval for σ2, giving
(
√
0.0066,

√
0.0529) = (0.081, 0.230) ohms as the interval for σ (which must be positive).

! In this case σ2 is known, so we should use (4). We replace t9(0.975) = 2.306 with z0.975 = 1.96,
giving (5.26, 5.42) ohm. This interval is a factor 2.306/1.96 = 1.18 shorter, because there is no
uncertainty about the value of σ.

! Now we want U = ∞, so we take αU = 0 and αL = 0.05, and replace the first interval above by

(
Y +

S√
n
tn−1(αL),∞

)
ohms,

which gives (5.27,∞) ohms.
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Comments

! The construction of confidence intervals is based on pivots, often using the central limit theorem
to approximate the distribution of an estimator, and thus giving approximate intervals.

! A confidence interval (L,U) not only suggests where an unknown parameter is situated, but its
width U − L gives an idea of the precision of the estimate.

! In most cases
U − L ∝

√
V ∝ n−1/2,

so multiplying the sample size by 100 increases precision only by a factor of 10.

! Having to estimate the variance using V decreases precision, and thus increases the width.

! To get a one-sided (1− α)× 100% interval, we can compute a two-sided interval with
αL = αU = α, and then replace the unwanted limit by ±∞ (or another suitable limit).

! In some cases, especially normal models, exact CIs are available.
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8.4 Hypothesis Tests slide 352

Statistical tests

Example 276. I observe 115 heads when spinning it a 5Fr coin 200 times, and 105 heads when tossing
it.

! Give a statistical model for this problem.

! Is the coin fair?
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Note to Example 276

! On the assumption that the spins are independent, and that heads occurs with probability θ, the
total number of heads R ∼ B(n = 200, θ), and if the coin is fair, θ = 1/2.

! One way to see if the coin is fair is to compute a 95% CI for the unknown θ, and see if the value
θ = 1/2 lies in the interval.

! An unbiased estimator for θ is θ̂ = R/n (and in fact this is the MLE, and the moments estimator),
and its variance is θ(1− θ)/n, which we can estimate by V = θ̂(1− θ̂)/n, so our discussion of
confidence intervals tells us that an approximate 95% confidence for θ is

θ̂ ± z1−α/2

√
V = θ̂ ± 1.96

√
V ,

which gives
tosses: (0.456, 0.594) spins: (0.506, 0.644),

suggesting that since the 95% confidence interval for spins does not contain 1/2, the coin is not
fair for spins, but that it is fair for tosses.

! Note that if we had had R = 85 for tosses, then we would get interval (0.356, 0.494), and would
also have concluded that the coin is not fair for tosses.

! Similar computations for the CI with α = 99% give

tosses: (0.434, 0.616) spins: (0.485, 0.665),

so if we take a wider confidence interval, we conclude that the coin is fair for spins also.
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Confidence intervals and tests

! We can use confidence intervals (CIs) to assess the plausibility of a value θ0 of θ:

– If θ0 lies inside a (1− α)× 100% CI, then we cannot reject the hypothesis that θ = θ0, at
significance level α.

– If θ0 lies outside a (1− α)× 100% CI, then we reject the hypothesis that θ = θ0, at
significance level α.

! The discussion of the scientific method at the start of §7 (slide 267) tells us that data cannot
prove correctness of a theory (hypothesis), because we can always imagine that future data or a
new experiment might undermine it, but data can falsify theory. Hence we can reject or not
reject (provisionally accept) a hypothesis, but we cannot prove it.

! The decision to reject or not depends on the chosen significance level α: we will reject less often if
α is small, since then the CI will be wider.

! If α is small and we do reject, this gives stronger evidence against θ0.

! Use of a two-sided CI (L,U) implies that seeing either θ0 < L or θ0 > U would be evidence
against the theory. This is true for Example 276, but in general we should consider whether to use
(−∞, U) or (L,∞) instead.
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Null and alternative hypotheses

In a general testing problem we aim to use the data to decide between two hypotheses.

! The null hypothesis H0, which represents the theory/model we want to test.

– For the coin tosses, H0 is that the coin is fair, i.e., P(heads) = θ = θ0 = 1/2.

! The alternative hypothesis H1, which represents what happens if H0 is false.

– For the coin tosses, H1 is that the coin is not fair, i.e., P(heads) #= θ0.

! When we decide between the hypotheses, we can make two sorts of error:

Type I error (false positive): H0 is true, but we wrongly reject it (and choose H1);

Type II error (false negative): H1 is true, but we wrongly accept H0.

Decision
Accept H0 Reject H0

State of Nature H0 true Correct choice (True negative) Type I Error (False positive)
H1 true Type II Error (False negative) Correct choice (True positive)
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Taxonomy of hypotheses

Definition 277. A simple hypothesis entirely fixes the distribution of the data Y , whereas a
composite hypothesis does not fix the distribution of Y .

Example 278. If

H0 : Y1, . . . , Yn
iid∼ N (0, 1), H1 : Y1, . . . , Yn

iid∼ N (0, 3),

then both hypotheses are simple.

Example 279. If θ0 is fixed (e.g., θ0 = 1/2) and

H0 : R ∼ B(n, θ0), H1 : R ∼ B(n, θ), θ ∈ (0, θ0) ∪ (θ0, 1),

then H0 (‘the coin is fair’) is simple but H1 (‘the coin is not fair’) is composite.

Example 280. If µ, σ2 are unknown and F is a unknown (but non-normal) distribution, and

H0 : Y1, . . . , Yn
iid∼ N (µ,σ2), H1 : Y1, . . . , Yn

iid∼ F,

then both H0 (‘the data are normally distributed’) and H1 (‘the data are not normally distributed’) are
composite.
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True and false positives: Example

! H0 : T ∼ N (0, 1) and H1 : T ∼ N (µ, 1), with µ > 0.

! Reject H0 if T > t, where t is some cut-off, so we

– reject H0 incorrectly (false positive) with probability

α(t) = P0(T > t) = 1− Φ(t) = Φ(−t)

– reject H0 correctly (true positive) with probability

β(t) = P1(T > t) = P(T − µ > t− µ) = 1− Φ(t− µ) = Φ(µ− t).

H0 False positive probability α(t)

H1

True positive probability β(t)

t
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ROC curve

Definition 281. The receiver operating characteristic (ROC) curve of a test plots β(t) against
α(t) as the cut-off t varies, i.e., it shows (P0(T ≥ t),P1(T > t)), when t ∈ R.

! In the example above, we have α = Φ(−t), so t = −Φ−1(α) = −zα, so equivalently we graph

β(t) = Φ(µ+ zα) ≡ β(α) against α ∈ [0, 1].

! Here is the ROC curve for the example above, which has µ = 2 (in red). Also shown are the ROC
curves for µ = 0, 0.4, 3, 6. Which is which?
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Example, II

! In case you need help, here are the densities for three of the cases:

H0

H1

t

H0

H1

t

H0

H1

t
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Size and power

! As µ increases, it becomes easier to detect when H0 is false, because the densities under H0 and
H1 become more separated, and the ROC curve moves ‘further north-west’.

! When H0 and H1 are the same, i.e., µ = 0, then the curve lies on the diagonal. Then the
hypotheses cannot be distinguished.

! In applications, µ is usually unknown, so we fix α (often at some conventional value,e.g., 0.05,
0.01) and then accept the resulting β(α).

! We also call (particularly in statistics books and papers)

– the false positive probability the size α of the test, and

– the true positive probability the power β of the test.

Definition 282. Let P0(·) and P1(·) denote probabilities computed under null and alternative
hypotheses H0 and H1 respectively. Then the size and power of a statistical test of H0 against H1 are

size α = P0(reject H0), power β = P1(reject H0).
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Power and confidence intervals

! If the test is based on a (1− α)× 100% CI, the size is the probability that the true value of the
parameter lies outside the CI, so it is α.

! Taking a smaller value of α gives a wider interval, so it must decrease the power.

! Usually the width of the interval (L,U) satisfies

U − L ∝ n−1/2,

so increasing n gives a narrower interval and will increase the power of the test. This makes sense,
because having more data should allow us to be more certain in our conclusions.

! Unfortunately, not all tests correspond to confidence intervals, so we need a more general approach.

! For example, checking the fit of a model is not usually possible using a confidence interval . . .
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Testing goodness of fit

We may want to assess whether a statistical model fits data appropriately.

Example 283. In a legal dispute, it was claimed that the numbers below were faked:

261 289 291 265 281 291 285 283 280 261 263 281 291 289 280

292 291 282 280 281 291 282 280 286 291 283 282 291 293 291

300 302 285 281 289 281 282 261 282 291 291 282 280 261 283

291 281 246 249 252 253 241 281 282 280 261 265 281 283 280

242 260 281 261 281 282 280 241 249 251 281 273 281 261 281

282 260 281 282 241 245 253 260 261 281 280 261 265 281 241

260 241

Real data could be expected to have final digits uniformly distributed on {0, 1, . . . , 9}, but here we have

0 1 2 3 4 5 6 7 8 9

14 42 14 9 0 6 2 0 0 5

How strong is the evidence that the final digits are not uniform?
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Karl Pearson (1857–1936)

(Source: University College London)
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Pearson statistic

Definition 284. Let O1, . . . , Ok be the number of observations of a random sample of size
n = n1 + · · ·+ nk falling into the categories 1, . . . , k, whose expected numbers are E1, . . . , Ek, where
Ei > 0. Then the Pearson statistic (or chi-square statistic) is

T =
k∑

i=1

(Oi − Ei)2

Ei
.

Definition 285. Let Z1, . . . , Zν
iid∼ N (0, 1), then W = Z2

1 + · · ·+ Z2
ν follows the chi-square

distribution with ν degrees of freedom, whose density function is

fW (w) =
1

2ν/2Γ(ν/2)
wν/2−1e−w/2, w > 0, ν = 1, 2, . . . ,

where Γ(a) =
∫∞
0 ua−1e−u du, a > 0, is the gamma function.

! If the joint distribution of O1, . . . , Ok is multinomial with denominator n and probabilities
p1 = E1/n, . . . , pk = Ek/n, then T

·∼ χ2
k−1, the approximation being good if k−1∑Ei ≥ 5.

! We can use T to check the agreement between the data O1, . . . , Ok and the theoretical
probabilities p1, . . . , pk.
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Pearson statistic: Rationale

! If Oi ≈ Ei for all i, then T will be small, otherwise it will tend to be bigger.

! If the joint distribution of O1, . . . , Ok is multinomial with denominator n and probabilities
pi = Ei/n, then each Oi ∼ B(n, pi), and thus

E(Oi) = npi = Ei, var(Oi) = npi(1− pi) = Ei(1− Ei/n) ≈ Ei,

thus Zi = (Oi − Ei)/
√
Ei

·∼ N (0, 1), for large n, and we would imagine that

T =
k∑

i=1

(Oi − Ei)2

Ei
=

k∑

i=1

Z2
i

·∼ χ2
k,

but the constraint
∑

iOi = n means that only k − 1 of the Zi can vary independently, thus
reducing the degrees of freedom to k − 1.
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Null and alternative hypotheses for Example 283

! Null hypothesis, H0: the final digits are independent and distributed according to the uniform
distribution on 0, . . . , 9. This simple null hypothesis implies that O0, . . . , O9 have the multinomial
distribution with probabilities p0 = · · · = p9 = 0.1, and since

∑
Ej/10 > 5, we have

P0(T ≤ t)
.
= P(χ2

9 ≤ t), t > 0.

! Alternative hypothesis, H1: the final digits are independent but not uniform, so O0, . . . , O9

follow a multinomial distribution with unequal probabilities, p0, . . . , p9. This hypothesis is
composite, and the parameter θ ≡ (p1, . . . , p9) is of dimension 9, as p0 = 1− p1 − · · ·− p9. Under
this model,

P1(T > t) ≥ P(χ2
9 > t), t > 0.

! Since values of T tend to be smaller under H0 than under H1, we should large values of T to be
evidence against H0 in favour of H1.

! We verify this on the following slides.
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Monte Carlo simulations of T , n = 50

Pearson’s statistics for 10,000 sets of data when testing H0 : p0 = · · · = p9 = 0.1, when: (a) (top) the
data are generated under H0; (b) (bottom) the data are generated with a multinomial distribution
having p0 = p1 = 0.15, p2 = · · · = p9 = 0.0875. The values of T tend to be bigger under (b). The red
line shows the χ2

9 density.
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Monte Carlo simulations of T , n = 100, 50

Pearson’s statistics for 10,000 sets of data when testing H0 : p0 = · · · = p9 = 0.1, when: (a) (top) the
data are generated with p0 = p1 = 0.15, p2 = · · · = p9 = 0.0875, and n = 100; (b) (bottom) the data
are generated with p0 = p1 = 0.2, p2 = · · · = p9 = 0.075 and n = 50. The red line shows the χ2

9

density.
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Example

The simulations in the previous figures show that

! under H0, we indeed have T
·∼ χ2

9, even with n = 50;

! under H1, the distribution of T is shifted to the right;

! the size of the shift under H1 will determine the power of the test, which depends on the sample
size n and on the non-uniformity of (p0, . . . , p9).

Example 286 (Example 283, continued). Our data

0 1 2 3 4 5 6 7 8 9
14 42 14 9 0 6 2 0 0 5

give observed value of T equal to tobs
.
= 158.

! For a test of H0 at significance level α = 0.05, note that the (1− α) quantile of the χ2
9

distribution is 16.92. Since tobs > 16.92, we can reject H0 at significance level 0.05.

! In fact,
P0(T ≥ tobs)

.
= P(χ2

9 ≥ 158) < 2.2× 10−16,

so seeing data like this would be essentially impossible under H0. It is almost certain that the
observed final digits did not come from a uniform distribution.
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Evidence and P-values

A statistical hypothesis test has the following elements:

! a null hypothesis H0, to be tested against an alternative hypothesis H1;

! data, from which we compute a test statistic T , chosen such that large values of T provide
evidence against H0;

! the observed value of T is tobs, which we compare with the null distribution of T , i.e., the
sampling distribution of T under H0;

! we measure the evidence against H0 using the P-value

pobs = P0(T ≥ tobs),

where small values of pobs suggest that either

– H0 is true but something unlikely has occurred, or

– H0 is false.

! If pobs < α, then we say that the test is significant at level α or significant at the α× 100%
level.

! If we must make a decision, then we reject H0 if pobs < α, where α is the significance level of the
test, and we (provisionally) accept H0 if pobs ≥ α.

Probability and Statistics for SIC slide 370

Examples

Example 287. Recast Example 276 in terms of P-values.

Example 288. Ten new electricity meters are measured for quality control purposes, resulting in the
data

983 1002 998 996 1002 983 994 991 1005 986

Is there a systematic divergence from the standard value of 1000?
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Note to Example 287

! Under H0 we have R ∼ B(n, θ0), and therefore R
·∼ N{nθ0, nθ0(1 − θ0)} by the central limit

theorem. Since values of R far from nθ0 in either direction would be evidence against H0, this
suggests taking

T = {R− E(R)}2/var(R) = (R − nθ0)2/{nθ0(1− θ0} = (R− 100)2/50,

since here n = 200 and θ0 = 1/2 yield E(R) = 100 and var(R) = 50.

! Since T = Z2, where Z ∼ N (0, 1) we have that T
·∼ χ2

1 under H0.

! This gives tobs = 0.5 for the tosses, and tobs = 4.5 for the spins, with corresponding P-values

P0(T ≥ tobs)
.
= P(χ2

1 ≥ 0.5)
.
= 0.480, P0(T ≥ tobs)

.
= P(χ2

1 ≥ 4.5)
.
= 0.034.

! With α = 0.05 we would accept H0 for the tosses but reject it for the spins.

! With α = 0.01 we would accept H0 for both tosses and spins.

Probability and Statistics for SIC note 1 of slide 371
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Note to Example 288

! We assume that Y1, . . . , Yn
iid∼ N (µ,σ2), with σ2 unknown. We take

H0 : µ = µ0 = 1000, H1 : µ #= 1000.

! We know from Theorem 274 that under H0,

Z =
Y − µ0√
S2/n

∼ tn−1.

Here the alternative hypothesis H1 is two-sided, i.e., we will reject if either Y is much larger or
much smaller than µ0, so we should take

T =

∣∣∣∣∣
Y − µ0√
S2/n

∣∣∣∣∣ = |Z|,

and for a test at significance level α = 0.05 we therefore need to choose tα such that

α = P0(T > tα) = 1− P0 (−tα ≤ Z ≤ tα) .

But Z ∼ tn−1 is a pivot under H0, so 1− P0 (−tα ≤ Z ≤ tα) = 2P0(Z ≤ −tα), and this implies
that tα = −tn−1(α/2). With α = 0.025 and n = 10, we have t9(0.025) = −2.262 from the
tables, or R, as qt(0.025, df=9).

! For the data above, y = 994 and

s2 =
1

9

n∑

i=1

(yi − y)2 = 64.88.

! Now tobs = |(994 − 1000)/
√

64.88/10| = |− 2.35| = 2.35 > tα = 2.262, so we reject H0 at level
α = 5%.

! Alternatively we can compute the 95% confidence interval based on Z, which is
(988.238, 999.762). Since this does not contain µ0, H0 is rejected at the 5% level.

! If instead the alternative hypothesis is H1 : µ > 1000, then we take Z as the test statistic, since
we are likely to have positive Z under H1. In this case we need to choose tα such that

α = P0(Z > tα) = P0

{
Y − µ0√
S2/n

> tα

}

.

Since Z ∼ tn−1, we have that tα = t9(0.95) = 1.833, and since zobs = −2.35 < 1.833, we cannot
reject the null hypothesis at the 5% level. Indeed, having y = 994 suggests that it is not true that
µ > µ0.

! If the alternative hypothesis is H1 : µ < 1000, then we take T = −Z as the test statistic, since we
are likely to have negative Z under H1. In this case we need to choose tα such that

α = P0(−Z > tα) = P0

{
Y − µ0√
S2/n

< −tα

}

= P0

{
Y − µ0√
S2/n

< tn−1(α)

}

,

implying that tα = −tn−1(α) = tn−1(1− α). With α = 0.05, we therefore have tα = 1.833, and
since −zobs = 2.35 > tα = 1.833, we reject the null hypothesis at the 5% level. Having
y = 994 < µ0 suggests that maybe µ < µ0.
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Probability and Statistics for SIC note 2 of slide 371

Decision procedures and measures of evidence

We can use a test of H0 in two related ways:

! as a decision procedure, where we

– choose a level α at which we want to test H0, and then

– reject H0 (i.e., choose H1) if the P-value is less than α, or

– do not reject H0 if the P-value is greater than α.

! as a measure of evidence against H0, with

– small values of pobs suggesting stronger evidence against H0, but

– H1 need not be explicit, though the type of departure from H0 that we seek is implicit in the
choice of T .

! Knowing the exact value of pobs is more useful than knowing that H0 has been rejected, so the
measure of evidence is more informative.

! The strength of the evidence contained in a P-value can be summarised as follows:

α Evidence against H0

0.05 Weak
0.01 Positive
0.001 Strong
0.0001 Very strong
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Choice of α

! As with CIs, conventional values are often used, such as α = 0.05, 0.01, 0.001.

! The most common value is α = 0.05, which corresponds to a Type I error probability of 5%, i.e.,
H0 will be rejected once in every 20 tests, even when it is true.

! When many tests are performed, using large α can give many false positives, i.e., significant tests
for which in fact H0 is true.

! Consider a microarray experiment, where we test 1000 genes at significance level α, to see which
genes influence some disease. If only 100 genes have effects, we can write

P(H0) = 900/1000, P(H1) = 100/1000, P(S | H0) = α, P(S | H1) = β,

where α is the size of the test, β > α is its power, and S denotes the event that the test is
significant at level α. Bayes’ theorem gives

P(H0 | S) =
P(H0)P(S | H0)

P(H0)P(S | H0) + P(H1)P(S | H1)
=

0.9α

0.9α + 0.1β
.

Hence with α = 0.05, β = 0.8, say, P(H0 | S)
.
= 0.36, so over one-third of significant tests will not

be interesting. If instead we set α = 0.005, we have P(H0 | S)
.
= 0.05, which is more reasonable.

Probability and Statistics for SIC slide 373
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8.5 Comparison of Tests slide 379

Types of test

There are many different tests for different hypotheses. Two important classes of tests are:

! parametric tests, which are based on a parametric statistical model, such as

Y1, . . . , Yn
iid∼ N (µ,σ2), and H0 : µ = 0;

! nonparametric tests, which are based on a more general statistical model, such as

Y1, . . . , Yn
iid∼ f , et H0 : P(Y > 0) = P(Y < 0) = 1/2, i.e., the median of f is at y = 0

The main advantage of a parametric test is the possibility of finding a (nearly-)optimal test, if the
underlying assumptions are correct, though such a test could perform badly in the presence of outliers.
A nonparametric test is often more robust, but it will suffer a loss of power compared to a parametric
test, used appropriately.
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Medical analogy

We diagnose an illness based on symptoms presented by a patient:

Decision
Healthy Diseased

Patient Healthy True negative False positive
Diseased False negative True positive

In the graphic below, Symptom 1 gives perfect diagnoses, but Symptom 2 is useless. Think how the
probability of a correct diagnosis varies as the different lines move parallel to their slopes.
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ROC curve, II

! We previously met the ROC curve as a summary of the properties of a test.

! A good test will have an ROC curve lying as close to the upper left corner as possible.

! A useless test has an ROC curve lying on (or close to) the diagonal.

! This suggests that if we have a choice of tests, we should choose one whose ROC curve is as close
to the north-west as possible, i.e., we should choose the test that maximises the power for a given
size.

! This leads us to the Neyman–Pearson lemma, which says how to do this (in ideal
circumstances).
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Most powerful tests

! We aim to choose our test statistic T to maximise the power of the test for a given size.

! A decision procedure corresponds to partitioning the sample space Ω containing the data Y into a
rejection region, Y, and its complement, Y, with

Y ∈ Y ⇒ Reject H0, Y ∈ Y ⇒ Accept H0.

! In Example 287, Y = {(y1, . . . , yn) : |
∑

yj − 100|/50 > 1.96}.
! We aim to choose Y such that P1(Y ∈ Y) is the largest possible such that P0(Y ∈ Y) = α.

Lemma 289 (Neyman–Pearson). Let f0(y), f1(y) be the densities of Y under simple null and
alternative hypotheses. Then if it exists, the set

Yα = {y ∈ Ω : f1(y)/f0(y) > t}

such that P0(Y ∈ Yα) = α maximises P1(Y ∈ Yα), amongst all the Y ′ such that P0(Y ∈ Y ′) ≤ α.
Thus to maximise the power of a given threshold, we must base the decision on Yα.
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Note to Lemma 289

Suppose that a region Yα such that P0(Y ∈ Yα) = α does exist and let Y ′ be any other critical region
of size α or less. Then for any density f ,

∫

Yα

f(y) dy −
∫

Y ′

f(y) dy, (7)

equals ∫

Yα∩Y ′

f(y) dy +

∫

Yα∩Y ′

f(y) dy −
∫

Y ′∩Yα

f(y) dy −
∫

Y ′∩Yα

f(y) dy,

where Yα is the complement of Yα in the sample space, and this is
∫

Yα∩Y ′

f(y) dy −
∫

Y ′∩Yα

f(y) dy. (8)

If f = f0, (7) and hence (8) are non-negative, because Y ′ has size at most that of Yα. Suppose that
f = f1. If y ∈ Yα, then tαf0(y) > f1(y), while f1(y) ≥ tαf0(y) if y ∈ Yα. Hence when f = f1, (8) is
no smaller than

tα

{∫

Yα∩Y ′

f0(y) dy −
∫

Y ′∩Yα

f0(y) dy

}
≥ 0.

Thus the power of Yα is at least that of Y ′, and the result is established.
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Example

Example 290. (a) Construct an optimal test for the hypothesis H0 : θ = 1/2 in Example 276, with
α = 0.05.
(b) Do you think that θ = 1/2 for spins?
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Note to Example 290

! The joint density of n independent Bernoulli variables can be written as

f(y) = θr(1− θ)n−r, 0 < θ < 1, r =
∑

yj,

and H0 imposes θ = 1/2. Thus for any fixed θ we have

f1(y)

f0(y)
=

θr(1− θ)n−r

(1/2)r(1− 1/2)n−r
= {2(1 − θ)}n{θ/(1− θ)}r,

which is increasing in r if θ > 1/2 and is decreasing in r if θ < 1/2. Hence if θ > 1/2 we must take

Y1 = {y1, . . . , yn :
∑

yj ≥ r1}

for some r1, and if θ < 1/2 we must take

Y2 = {y1, . . . , yn :
∑

yj ≤ r2}

for some r2. So if we want to test H0 against (say) H1 : θ = 0.6, we take Y1, and if we want to
test H0 against (say) H1 : θ = 0.4, we take Y2.

! Suppose that we take H1 : θ = 0.6. Then we need to choose r1 such that

α = P0(Y ∈ Y1) = P0(R ≥ r1) = P0

{
R− n/2√

n/4
≥ r1 − n/2√

n/4

}
.
= 1−Φ

(
r1 − n/2√

n/4

)

and this implies that r1
.
= n/2 +

√
nz1−α/2. With n = 200 and α = 0.05 this is r1

.
= 111.6.

Since we observed R = 115 > r1, we reject H0 at the 5% significance level, and conclude that the
coin is biased upwards (but not downwards).

! Since the result does not depend on the value of θ chosen, provided θ > 0.5, we would also reject
against any other H1 setting θ > 1/2.

! A similar computation gives r2 = 88.37.

! If we are not sure of the value of θ, then we take a region of the form Y1 ∪ Y2. But in order for it
to have overall size α, we take α/2 for each of the regions, giving r1 = 113.86 and r2 = 86.14.
Since Y ∈ Y1 ∪ Y2, we still reject H0 at the 5% significance level, and conclude that the coin is
biased, without being sure in which direction it is biased.
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Power and distance

! A canonical example is where Y1, . . . , Yn
iid∼ N (µ,σ2), and

H0 : µ = µ0, H1 : µ = µ1.

! If σ2 is known, then the Neyman–Pearson lemma can be applied, and we find that the most
powerful test is based on Y and its power is Φ(zα + δ), where Φ(zα) = α, and

δ = n1/2 |µ1 − µ0|
σ

is the standardized distance between the models.

! We see that

– the power increases if n increases, or if |µ1 − µ0| increases, since in either case the difference
between the hypotheses is easier to detect,

– the power decreases if σ increases, since then the data become noisier,

– if δ = 0, then the power equals the size, because the two hypotheses are the same, and
therefore P0(·) = P1(·).

! Many other situations are analogous to this, with power depending on generalised versions of δ.

Probability and Statistics for SIC slide 385

Summary

! We have considered the situation where we have to make a binary choice between

– the null hypothesis, H0, against which we want to test

– the alternative hypothesis, H1,

using a test statistic T whose observed value is tobs, computing the P-value,

pobs = P0(T ≥ tobs),

which is computed assuming that H0 is true.

! We can consider pobs as a measure of the evidence in the data against H0.

! For a test with significance level α, we reject H0 and choose H1 if pobs < α.

! We must accept that we can make mistakes:

Decision
Accept H0 Reject H0

State of Nature H0 true Good choice Type I Error
H1 true Type II Error Good choice

! If we try to minimise the probability of Type II error (i.e., maximise power) for a given probability
of Type I error (fixed size), we can construct an optimal test, but this is only possible in simple
cases. Otherwise we usually have to compare tests numerically.
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9 Likelihood slide 387

9.1 Motivation slide 388

Motivation

Likelihood is one of the basic ideas of statistical inference and modelling. It gives a general and
powerful framework for dealing with all kinds of applications, in particular for

! finding estimators with the smallest variances in large samples; and

! constructing powerful tests.
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Illustration

! When we toss a coin, small asymmetries influence the probability of obtaining heads, which is not
necessarily 1/2. If Y1, . . . , Yn denote the results of independent Bernoulli trials, then we can write

P(Yj = 1) = θ, P(Yj = 0) = 1− θ, 0 ≤ θ ≤ 1, j = 1, . . . , n.

! Below is such a sequence for a 5Fr coin with n = 10:

1 1 1 1 1 0 1 1 1 1

Which values of θ seem to you the most and least credible:

θ = 0, θ = 0.3, θ = 0.9, θ = 0.99?

! How can we find the most plausible θ value(s)?
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Basic Idea

For a value of θ which is not very credible, the density of the data will be smaller: the higher the
density, the more credible the corresponding θ. Since the y1, . . . , y10 result from independent trials, we
have

f(y1, . . . , y10; θ) =
10∏

j=1

f(yj; θ) = f(y1; θ)× · · · × f(y10; θ) = θ5 × (1− θ)× θ4

= θ9(1− θ),

which we will consider as a function of θ for 0 ≤ θ ≤ 1, called the likelihood L(θ).
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Relative likelihood

! To compare values of θ, we only need to consider the ratio of the corresponding values of L(θ):

L(θ1)

L(θ2)
=

f(y1, . . . , y10; θ1)

f(y1, . . . , y10; θ2)
=
θ91(1− θ1)

θ92(1− θ2)
= c

implies that θ1 is c times more plausible than θ2.

! The most plausible value is θ̂, which satisfies

L(θ̂) ≥ L(θ), 0 ≤ θ ≤ 1;

θ̂ is called the maximum likelihood estimate.

! To find θ̂, we can equivalently maximise the log likelihood

2(θ) = logL(θ).

! The relative likelihood RL(θ) = L(θ)/L(θ̂) gives the plausibility of θ with respect to θ̂.
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Example

Example 291. Find θ̂ and RL(θ) for a sequence of independent Bernoulli trials.

The following graph represents RL(θ), for n = 10, 20, 100 and the sequence

1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1

1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1

1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1

1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1

1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0

! As n increases, RL(θ) gets closer to θ̂: values of θ which are far away from θ̂ become less credible
with respect to θ̂.

! This suggests that we could construct a CI by taking the set

{θ : RL(θ) ≥ c} ,

for some c. Later we will see how to choose c.
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Note to Example 291

The likelihood is

L(θ) = f(y; θ) =
n∏

j=1

f(yj; θ) =
n∏

j=1

θyj(1− θ)1−yj = θs(1− θ)n−s, 0 ≤ θ ≤ 1,

where s =
∑

yj and we have used the fact that the observations are independent. Therefore

2(θ) = s log θ + (n− s) log(1− θ), 0 ≤ θ ≤ 1.

Differentiation of this yields

d2(θ)

dθ
=

s

θ
− n− s

1− θ
,

d22(θ)

dθ2
= − s

θ2
− n− s

(1− θ)2
.

Setting d2(θ)/dθ = 0 gives just one solution, θ̂ = s/n = y, and since the second derivative is always
negative, this is clearly the maximum. Therefore

RL(θ) =
L(θ)

L(θ̂)
=

(
θ

θ̂

)s(1− θ

1− θ̂

)n−s

, 0 ≤ θ ≤ 1.
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Bernoulli sequence
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Bernoulli sequence
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9.2 Scalar Parameter slide 396

Likelihood

Definition 292. Let y be a set of data, whose joint probability density f(y; θ) depends on a parameter
θ, then the likelihood and the log likelihood are

L(θ) = f(y; θ), 2(θ) = logL(θ),

considered a function of θ.

If y = (y1, . . . , yn) is a realisation of the independent random variables of Y1, . . . , Yn, then

L(θ) = f(y; θ) =
n∏

j=1

f(yj; θ), 2(θ) =
n∑

j=1

log f(yj; θ),

where f(yj; θ) represents the density of one of the yj.
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Maximum likelihood estimation

Definition 293. The maximum likelihood estimate θ̂ satisfies

L(θ̂) ≥ L(θ) for all θ,

which is equivalent to 2(θ̂) ≥ 2(θ), since L(θ) and 2(θ) have their maxima at the same value of θ. The
corresponding random variable is called the maximum likelihood estimator (MLE).

! Often θ̂ satisfies
d2(θ̂)

dθ
= 0,

d22(θ̂)

dθ2
< 0.

In this course we will suppose that the first of these equations has only one solution (not always
the case in reality).

! In realistic cases we use numerical algorithms to obtain θ̂ and d22(θ̂)/dθ2.
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Information

Definition 294. The observed information J(θ) and the expected information (or Fisher
information) I(θ) are

J(θ) = −d22(θ)

dθ2
, I(θ) = E{J(θ)} = E

{
−d22(θ)

dθ2

}
.

They measure the curvature of −2(θ): the larger J(θ) and I(θ), the more concentrated 2(θ) and L(θ)
are.

Example 295. If y1, . . . , yn
iid∼ Bernoulli(θ), calculate L(θ), 2(θ), θ̂, var(θ̂), J(θ) and I(θ).
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Note to Example 295

We saw in Example 291 that

L(θ) = θs(1− θ)n−s, 2(θ) = s log θ + (n− s) log(1− θ), 0 ≤ θ ≤ 1,

that the MLE is θ̂ = s/n = y, and clearly

J(θ) = −d22(θ)

dθ2
=

s

θ2
+

n− s

(1− θ)2
.

Now treating θ̂ as a random variable, θ̂ = S/n, where S ∼ B(n, θ), we see that since E(S) = nθ and
var(S) = nθ(1− θ), we have after a little algebra that

var(θ̂) =
θ(1− θ)

n
, I(θ) = E{J(θ)} =

n

θ(1− θ)
, 0 < θ < 1.

Note that var(θ̂) = 1/I(θ).
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Limit distribution of the MLE

Theorem 296. Let Y1, . . . , Yn be a random sample from a parametric density f(y; θ), and let θ̂ be the
MLE of θ. If f satisfies regularity conditions (see below), then

J(θ̂)1/2(θ̂ − θ)
D−→ N (0, 1), n → ∞.

Thus for large n,

θ̂
·∼ N

{
θ, J(θ̂)−1

}
,

and a two-sided equi-tailed CI for θ with approximate level (1− α) is

I θ̂
1−α = (L,U) = (θ̂ − J(θ̂)−1/2z1−α/2, θ̂ + J(θ̂)−1/2z1−α/2).

We can show that for large n (and a regular model) no estimator has a smaller variance than θ̂, which

implies that the CIs I θ̂
1−α are as narrow as possible.

Example 297. Find the 95% CI for the coin data with n = 10, 20, 100.

n Tails θ̂ J(θ̂) I θ̂
0.95 IW

0.95

10 9 0.9 111.1 (0.72,1.08) (0.63, 0.99)
20 16 0.8 125.0 (0.62, 0.98) (0.59, 0.94)
100 69 0.69 467.5 (0.60, 0.78) (0.60, 0.78)
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Likelihood ratio statistic

Sometimes a CI based on the normal limit distribution of θ̂ is unreasonable. It is then better to use
2(θ) itself.

Definition 298. Let 2(θ) be the log likelihood for a scalar parameter θ, whose MLE is θ̂. Then the
likelihood ratio statistic is

W (θ) = 2
{
2(θ̂)− 2(θ)

}
.

Theorem 299. If θ0 is the value of θ that generated the data, then under the regularity conditions
giving θ̂ a normal limit distribution,

W (θ0)
D−→ χ2

1, n → ∞.

Hence W (θ0)
·∼ χ2

1 for large n.

Example 300. Find W (θ) when Y1, . . . , Yn
iid∼ Bernoulli(θ0).
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Note to Example 300

Since
2(θ) = s log θ + (n− s) log(1− θ), 0 ≤ θ ≤ 1,

and θ̂ = s/n = y, we have

W (θ) = 2
[
nθ̂ log(θ̂/θ) + n(1− θ̂) log{(1 − θ̂)/(1 − θ)}

]
,

and if we write θ̂ = θ + n−1/2a(θ)Z, where a2(θ) = θ(1− θ) and Z
D−→ N (0, 1), we end up after a

Taylor series or two with

W (θ)
.
= Z2 D−→ χ2

1.
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Implications of Theorem 299

! Suppose we want to test the hypothesis H0 : θ = θ0, where θ0 is fixed. If H0 is true, the theorem
implies that W (θ0)

·∼ χ2
1. The larger W (θ0) is, the more we doubt H0. Thus we can take

W (θ0) as a test statistic, whose observed value is wobs, and with

pobs = P
{
W (θ0) ≥ wobs

} .
= P

{
χ2
1 ≥ wobs

}

as significance level. The smaller pobs is, the more we doubt H0.

! Let χ2
ν(1−α) be the (1−α) quantile of the χ2

ν distribution. Theorem 299 implies that a CI for θ0

at the (1− α) level is the set

IW
1−α =

{
θ : W (θ) ≤ χ2

1(1− α)
}

=
{
θ : 2

{
2(θ̂)− 2(θ)

}
≤ χ2

1(1− α)
}

=
{
θ : 2(θ) ≥ 2(θ̂)− 1

2χ
2
1(1− α)

}
.

! With 1− α = 0.95 we have χ2
1(0.95) = 3.84. Thus the 95% CI for a scalar θ contains all θ such

that 2(θ) ≥ 2(θ̂)− 1.92. In this case we have

RL(θ) = L(θ)/L(θ̂) = exp{2(θ)− 2(θ̂)} ≥ exp(−1.92) ≈ 0.15;

compare with slide 395.
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