Faculté des sciences de base

INTRODUCTION AUX PROBABILITÉS Série 2

Exercice 1. Soient Ω un ensemble quelconque et \mathcal{F} une collection de sous-ensembles de Ω qui est stable sous unions arbitraires dans le sens où si $(E_i)_{i\in I}$ est une collection quelconque de sous-ensembles dans \mathcal{F} , alors $\bigcup_{i\in I} E_i \in \Omega$.

Montrez que si \mathcal{F} contient tous les ensembles $\{x\}$, elle contient nécessairement tous les sous-ensembles de Ω .

Exercice 2. Une manière d'étendre la définition d'une somme à des ensembles non dénombrables est la suivante. Étant donnés Ω un ensemble quelconque et une fonction positive $f:\Omega\to[0,1]$, nous définissons la somme $\sum_{\omega\in\Omega}f(\omega)$ comme étant égale à sup $\sum_{\omega\in\Omega'}f(\omega')$ où le sup porte sur tous les sous-ensembles finis $\Omega'\subseteq\Omega$.

Montrez que cette somme ne peut être finie que s'il n'y a qu'un nombre au plus dénombrable de ω pour lesquels $f(\omega) > 0$.

Exercice 3. Montrez qu'il n'existe pas de mesure de probabilité \mathbb{P} sur $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ qui soit invariante par translation, c'est-à-dire telle que pour tout $A \in \mathcal{P}(\mathbb{Z})$ et $n \in \mathbb{Z}$, on ait $\mathbb{P}(A+n) = \mathbb{P}(A)^1$.

Exercice 4. Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et A_1, A_2, \ldots des événements.

- 1. Montrez que $\Omega \in \mathcal{F}$ et que $A_1 \setminus A_2 \in \mathcal{F}$.
- 2. Montrez que si pour tout $n \geq 1$, on a $A_n \supseteq A_{n+1}$, alors lorsque $n \to \infty$, il est vrai que $\mathbb{P}(A_n) \to \mathbb{P}(\bigcap_{k\geq 1} A_k)$.
 - * Cela est-il valable pour des espaces mesurés généraux?

Exercice 5. Montrez que, dans les axiomes d'un espace de probabilité, l'additivité dénombrable peut être remplacée par l'additivité finie plus l'énoncé suivant : pour toute suite décroissante d'événements $E_1 \supseteq E_2 \supseteq E_3 \dots$ avec $\cap_{i \ge 1} E_i = \emptyset$, nous avons que $\mathbb{P}(\cap_{i=1}^n E_i) \to 0$ lorsque $n \to \infty$.

* Cela est-il valable dans un espace mesuré général?

Exercice 6. [Intersection des σ -algèbres] Soient Ω et I deux ensembles non vides. Supposons que pour chaque $i \in I$, \mathcal{F}_i soit une σ -algèbre sur Ω .

- Montrez que $\mathcal{F} := \bigcap_{i \in I} \mathcal{F}_i$ est également une σ -algèbre sur Ω .
- Maintenant, soit \mathcal{G} un sous-ensemble quelconque de $\mathcal{P}(\Omega)$. Montrez qu'il existe une σ -algèbre qui contient \mathcal{G} et qui est incluse dans toute autre σ -algèbre contenant \mathcal{G} . Celle-ci est appelée la σ -algèbre engendrée par \mathcal{G} .
- Utilisez ceci pour définir une σ -algèbre naturelle sur [0,1].

0.1 \star Pour le plaisir (non-examinable) \star

Exercice 7. Soient Ω dénombrable et \mathcal{F} une σ -algèbre sur Ω . Montrez qu'on peut trouver des événements disjoints $E_1, E_2, \dots \in \mathcal{F}$ tels que pour tout $E \in \mathcal{F}$, on ait $E = \bigcup_{i \in I_E} E_i$.

Exercice 8. [Connexité des graphes aléatoires uniformes] On s'intéresse au modèle d'un graphe aléatoire uniforme : nous considérons l'ensemble de tous les graphes simples sur n sommets, chacun ayant une probabilité égale. On dit qu'un graphe est connexe si pour tous deux sommets v, w, il existe une suite finie de sommets $v_0 = v, v_1, \ldots, v_m = w$ telle qu'il y ait une arête entre chaque v_i et v_{i-1} . Montrez que la probabilité que le graphe aléatoire uniforme soit connexe tend vers 1 lorsque $n \to \infty$.

^{1.} Ici, comme d'habitude, $A + n = \{a + n : a \in A\}$.