INTRODUCTION AUX PROBABILITÉS Série 10

Exercice 1. Montrez que l'espérance d'une variable aléatoire Binomiale Bin(n, p) est égale à np. Montrez également qu'une variable aléatoire géométrique de paramètre 0 est intégrable et que son espérance est égale à <math>1/p.

Exercice 2. L'espérance est seulement un paramètre d'une variable aléatoire. Ainsi l'on ne peut pas tirer trop de conclusions sur une variable aléatoire juste à partir de la connaissance de celle-ci comme nous l'allons montrer ci-dessous. En considérant des variables aléatoires discrètes :

- Trouvez une variable aléatoire intégrable X telle que $\mathbb{E}(X) = 0$, mais $\mathbb{P}(X = 0) = 0$;
- Trouvez une variable aléatoire intégrable X telle que $\mathbb{E}(X) = 1$, mais $\mathbb{P}(X = 0) \ge 0.9999$;
- De même, trouvez une variable aléatoire positive telle que $\mathbb{E}(X) \leq 0.0001$, mais telle que X puisse prendre des valeurs arbitrairement grandes;
- Trouvez une variable aléatoire intégrable telle que $\mathbb{E}(X) = 1$, mais avec $\mathbb{P}(X < 0) > \mathbb{P}(X > 0)$;
- Démontrez que pour toute variable aléatoire discrète positive X, si $\mathbb{E}(X) = 0$, alors $\mathbb{P}(X = 0) = 1$.

Exercice 3. Soit X une variable aléatoire discrète intégrable avec support S. On suppose également que X^2 est intégrable. Montrez que $c = \mathbb{E}(X)$ minimise l'expression $g(c) := \sum_{x \in S} (x - c)^2 \mathbb{P}(X = x)$.

De plus, montrez à partir de la définition de l'espérance que la valeur de $g(\mathbb{E}(X))$ peut s'écrire $\mathbb{E}((X-\mathbb{E}(X))^2)$. Ceci est appelé la variance de X.

Exercice 4. [Propriétés de base de l'espérance] Le reste de la Proposition 4.4. Soient X, Y deux variables aléatoires discrètes intégrables. Alors l'espérance satisfait les propriétés suivantes :

- Pour tout $\lambda \in \mathbb{R}$, $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$;
- si $X \ge 0$ (i.e. $\mathbb{P}(X \ge 0) = 1$), alors $\mathbb{E}(X) \ge 0$;
- si $X \geq Y$ (i.e. $\mathbb{P}(X \geq Y) = 1$), alors $\mathbb{E}(X) \geq \mathbb{E}(Y)$. En déduire que si $\mathbb{P}(c \leq X \leq C) = 1$, alors $c \leq \mathbb{E}(X) \leq C$;
- on a $\mathbb{E}(|X|) > |\mathbb{E}(X)|$.

Exercice 5. [Statistiques d'ordre] Soit $\overline{X} = (X_1, \dots, X_n)$ un vecteur aléatoire de variables aléatoires i.i.d. définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Pour chaque $j = 1 \dots n$, soit $X^{(j)}$ le j-ème plus grand parmi X_1, \dots, X_n^{-1} . En particulier $X^{(1)} = \max_{1 \leq i \leq n} X_i$ et $X^{(n)} = \min_{1 \leq i \leq n} X_i$. Montrez que $\overline{X}_o = (X^{(1)}, \dots, X^{(n)})$ est également un vecteur aléatoire. De plus, montrez que :

- La fonction de répartition de $X^{(1)}$ est donnée par $(F_{X_1}(x))^n$;
- La fonction de répartition de $X^{(n)}$ est donnée par $1 (1 F_{X_1}(x))^n$.

Exercice 6. Soit $\overline{X} = (X_1, X_2)$ un vecteur gaussien de moyenne $\overline{\mu}$ et matrice de covariance C, i.e. de densité jointe

$$f_{\overline{X}}(x_1, x_2) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(C)}} \exp\left(-\frac{1}{2} (\overline{x} - \overline{\mu})^T C^{-1} (\overline{x} - \overline{\mu})\right).$$

Montrez que si $\overline{Y} = (Y_1, Y_2)$ est un vecteur gaussien standard de moyenne 0 et matrice de covariance égale à la matrice identité, alors on peut toujours trouver une matrice 2×2 A et un vecteur bidimensionnel b tels que $X = (X_1, X_2)$ ait la même loi que AY + b.

^{1.} Seule la valeur des variables et non pas leur indice compte : si plusieurs X_j sont égaux, par exemple $X_1 = X_2$ et $X_2 > X_k$ pour $3 \le k \le n$, on peut de manière équivalente poser $X^{(1)} = X_1$ ou $X^{(1)} = X_2$.

$0.1 \star \text{Pour le plaisir (non-examinable)} \star$

Exercice 7. [* Variable aléatoire continue sans densité] Rappelez-vous de l'ensemble de Cantor issu des espaces topologiques et métriques : on commence par l'intervalle unité, puis on enlève le tiers central (1/3, 2/3), i.e. on définit $C_1 = [0, 1/3] \cup [2/3, 1]$. À l'étape suivante, on enlève le tiers central de [0, 1/3] et [2/3, 1] pour obtenir $C_2 = [0, 1/9] \cup [2/9, 3/9] \cup [6/9, 7/9] \cup [8/9, 1]$. On continue indéfiniment. L'ensemble résultant est appelé l'ensemble de Cantor et peut être vu comme une intersection des ensembles fermés C_i obtenus à chaque étape.

- Désignez par $(C_{i,j})_{1 \leq j \leq 2^i}$ les 2^i intervalles disjoints formant l'ensemble C_i . En utilisant le théorème d'extension de Carathéodory, ou autre, montrez qu'il existe une unique variable aléatoire X_C à valeurs dans $([0,1],\mathcal{F}_{[0,1]})$ telle que pour tout $i \geq 0$, et tout $1 \leq j \leq 2^i$, on ait $\mathbb{P}(X \in C_{i,j}) = 2^{-i}$.
- Montrez que X_C est une variable aléatoire continue.
- Montrez que X_C n'admet pas de fonction de densité. [Indice : vous pouvez supposer que si X admet une densité, alors pour tout x et tout ϵ suffisamment petit, on doit avoir $\mathbb{P}(X \in [x, x + \epsilon]) \leq D\epsilon$ pour un certain D qui peut dépendre de x].