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Section 0

Introduction
This course is about probability theory: the mathematical framework for formalising our

questions about random phenomena, and their mathematical study.
When we want to describe a random phenomena in the real world, we build a mathematical

model. This is itself an interesting process and a good model involves lots of well-chosen
simplifications and righteous choices - e.g. to model a coin toss, we usually discard the
possibility of it landing on the edge, or without further knowledge we consider the heads
and tails equiprobable, although that may not be the case for example already because of
different weight distributions. But this all is not the topic of this course.

In this course we will study the general mathematical framework and formulation of such
models and then discuss the mathematical tools necessary and useful to study such models.
Hopefully we also have some time to discuss some interesting models.
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Section 1

Basic framework
In this chapter we discuss some basic but important notions of probability theory:

• Probability space
• Random variables
• Independence

1.1 Probability space
Our first aim is to motivate the notion of a probability space or a probabilistic model. To

do this let us consider two examples:
(1) A random number with values in {1, 2, . . . , 12} e.g. something that comes from a

lottery.
(2) Describing the weather in Lausanne the day after.

In describing these two random phenomena we will still use everyday vocabulary / intuitions.
Thereafter we will give the mathematical definitions that will fix the vocabulary for the rest
of the course.

(1) Random number. To describe a random number mathematically, we basically need
three inputs:

• The set of all possible outcomes: in this case Ω = {1, 2, 3, . . . , 12}
• The collection of yes / no questions that we can answer about the actual outcome,
i.e. this random number. For example:
– Is this number equal to 3?
– Is this number even?
– Is this number smaller than 4?

To each of these questions we put in correspondence the subset of outcomes that
corresponds to the answer yes: {3}, {2, 4, 6, 8, 10, 12} or {1, 2, 3} respectively. We
call each such subset an event.
• Finally, to each event E ⊆ Ω we want to assign a numerical value P(E) ∈ [0, 1] that
we call the probability. This should correspond to the fraction of times an event
happens if the random number is given to us many times, e.g. if the lottery is played
many times. 2

Here the set of possible outcomes was easy and directly given by the problem. Also it is
natural to assume that each subset E ⊆ Ω is an event - or in other words that for each E we
can ask the question: is the number in E? This means that the we can take the collection
of events to correspond to all subsets of Ω.

Determining the probability really depends on what we want to model - e.g. if we are
trying to model the lottery, we may assume that all numbers are equally likely and then we

2In fact, one uses probabilistic models also to model phenomena that only happens once. In that case
probability measures somehow our degree of belief.
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rediscover the model from high-school: we set P(E) = |E|/|Ω|. However, if we wanted to
describe the sum of two dice, we would need to choose the numbers P(E) very differently! 3

Now, if we want our model to correspond to the intuitive notion of probability and to
predict the fraction of repeated experiments, then these choices are not quite free - we
need to add some constraints. E.g. we cannot put in an arbitrary function P: indeed, if
we have two events E1 ⊆ E2 then we should have P(E1) ≤ P(E2) as every time E1 hap-
pens, also E2 happens. We should also have P(Ω) = 1 as something always happens and
P(E ∪F ) = P(E) +P(F ) if E and F are disjoint (why?). Of course not all these constraints
are distinct - some might imply others and when giving the definition of a probability space
below we will purify and choose only some conditions that will then mathematically imply
all the others.

(2) Weather in Lausanne the day after. We would again want to make the three deci-
sions, but here the task is already harder at the very first step. What should be the state
space? A natural state space could probably be all possible microscopic states of the at-
mosphere up to 20km of height over Lausanne...but here we of course have many arbitrary
choices - why 20 km, how wide should we look over Leman etc? And in any case, any natural
state would be impossibly complicated!

Luckily, we do not actually need to worry about it - we only have to assign probabilities
to all the events in the collection of events. And we have some freedom in choosing this
collection events - it could be determined by our possibility to measure the states, e.g. we
are able to measure the temperature up to some precision, or the density of CO2 or water
molecules to some precision and this determines some subsets of the state space.

However, as with the probability function, also for the collection of events there are some
natural consistency conditions: we would assume that if one can observe if event E happened,
we should be also able to measure if its complement Ec happened. Or if we are able to say
if E happened or if F happened, we should be able to say if one of the two happened - i.e.
E ∪ F should also be an event. And in fact it comes out that this is all we need!

Naturally, setting up probabilities for this model is also horribly complicated - there are
no natural symmetry assumptions like the one we used for the uniform distribution. Also,
even the best physicist in the world will not be able to describe the natural probability
distribution of all microscopic states of the atmosphere, especially as it will heavily depend
on what is happening just before! Thus, our only choice basically is to try to somehow use the
combination of our knowledge about atmospheric processes together with our observations
from history to set up some estimates for the model; and then naturally we will try to
improve it with every next day. Luckily, this difficult task is not up to us but rather the
office of meteo and the statisticians!

Remark 1.1. Finally, before giving the mathematical definitions, let us stress again that all
three components of the model - the sample space, the set of events and their probabilities -
are inputs that we choose to build our model. When trying to model a real world phenomena
we usually make simplifications for each of these choices. For example, for the coin toss we
use only two outcomes: heads and tails, although theoretically edge is also possible. Also, we
usually set probabilities to be a half, although that is not exactly true either.

3See Exercise sheet 1.
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1.2 Mathematical definition of a probability space
We are now ready to use our mathematical filter and give a mathematical definition of a

probability space. In fact, we first use the mathematical purifier to come up with a definition
in the restricted setting where Ω is a finite set, and then generalize it further.

Indeed, the discussions above lead us directly to:

Definition 1.2 (Elementary probability space, Kolmogorov 1933 ). An elementary proba-
bility space is a triple (Ω,F ,P), where

• Ω is a finite set, called the state or sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2,∈ F , then also A1 ∪ A2 ∈ F .

F is called the collection of events and any A ∈ F is called an event.
• And finally, we have a function P : F → [0, 1] satisfying P(Ω) = 1 and additivity for
disjoint sets: if A1, A2 ∈ F are pairwise disjoint, then

P(A1 ∪ A2) = P(A1) + P(A2).

This function P is called the probability

Notice that some properties discussed above, like the fact that for events E1 ⊆ E2, we
have P(E1) ≤ P(E2), follow directly from the definition.4

Now, most phenomena in the real world can be described by finite sets just because we
are able to measure things only to a finite level of precision. However, like the notion of
a continuous or differentiable function helps to simplify our mathematical descriptions of
reality and thus improve our understanding, continuous probability spaces also make the
mathematical descriptions neater, simpler and thereby also make it easier to understand and
study the underlying random phenomena.

Some natural examples where infinite sample spaces come in: an uniform point on a line
segment e.g. stemming from breaking a stick into several pieces; the position on the street
where the first raindrop of the day falls; or the space of all infinite sequences of coin tosses.
In all these cases the mathematically natural state space is even uncountable. Countably
infinite state spaces can also come up: for example if we want to model the first moment
that a repeated coin toss comes up heads, the value might be 1, 2, 3 or with very very small
probability also 1010, so a natural state space would contain all natural numbers.

So let us state the general definition:

Definition 1.3 (Probability space, Kolmogorov 1933 ). A probability space is a triple
(Ω,F ,P), where

• Ω is a set, called the state or sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called the collection of events or a σ-algebra and any A ∈ F is called an event.
4See Exercise sheet 1.
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• And finally, we have a function P : F → [0, 1] satisfying P(Ω) = 1 and additivity for
disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

P(
⋃
n≥1

An) =
∑
n≥1

P(An).

This function P is called the probability

Notice the only differences are 1) we do not assume Ω to be finite 2) we assume that
the set of events is stable under countable unions 3) we assume also the additivity of the
probability under countable unions.

Exercise 1.1. Show that each elementary probability space is a probability space.

In fact probability spaces are an example of a general notion of measure spaces - probability
spaces are just measure spaces with total mass equal to 1.

Definition 1.4 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a
triple (Ω,F , µ), where

• Ω is a set, called the sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called a σ-algebra and any A ∈ F is called a measurable set.
• And finally, we have a function µ : F → [0,∞] satisfying µ(∅) = 0 and countable
additivity for disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An).

This function µ is called a measure. If µ(Ω) <∞, we call µ a finite measure.

Geometrically we interpret:
• Ω as our space of points
• F as the collection of subsets for which our notion of volume can be defined
• µ our notion of volume: it gives each measurable set its volume.

It is important to make this link to measure theory as many properties of probability spaces
directly come from there. Yet it is also good to keep in mind that probability theory is not
just measure theory - as M. Kac has put it well, ’Probability is measure theory with a soul’
and we adhere to this philosophical remark.

Remark 1.5. You should compare the definition of a probability space / measure space with
the definition of a topological space: there also we use a collection of subsets with certain
properties to attach structure to the set. A question you should ask is: why do we use exactly
countable unions and intersections for the events, and not finite or arbitrary?

1.3 Some basic properties of probability spaces
We start by a few small remarks about the definition of a probability space:

6



Remark 1.6. It is worth considering why ask for countable stability of the σ-algebra or
countable additivity of the probability measure. Whereas this is more a meta-mathematical
question, it is good to keep it in mind throughout the course. Let us here just offer two simple
observations.

First, countable sums naturally come up when we take limits of finite sums. In fact, count-
able additivity can be seen to be equivalent to certain form of continuity for the probability
measure (see below).

Second, allowing for arbitrary unions leads easily to power-sets, and sums of uncountably
many positive terms cannot be finite (see the exercise sheet).

Exercise 1.2. Show that the countable additivity in the axioms of a probability space can
be replaced with finite additivity plus the following statement: for any decreasing sequence of
events E1 ⊇ E2 ⊇ E3 . . . we have that P(∩ni=1Ei)→ 0 as n→∞.
? Does this hold in a general measure space?

Also we would like to remark another setting that explains well the usefulness of σ-algebras:

Remark 1.7. Often in real life we only obtain information about the world step by step,
and thus if we want to keep on working on the same probability space (which is helpful as
then P will only need to be extended not redefined), we can consider a sequence of σ-algebras
F1 ⊆ F2 ⊆ F3 . . . called a filtration - each day we can ask some more yes/no questions
because we already for example know what happened on the previous day and maybe also
have learned something new. All possible information is contained in the power set P(Ω).

Probability spaces are usually classified in two types:

Definition 1.8 (Discrete and continuous probability spaces). Probability spaces (Ω,F ,P)
with a countable sample space Ω are called discrete probability spaces and those with an
uncountable sample space are called continuous probability spaces.

In this course we will mainly work with discrete probability spaces, as they are technically
easier to deal with. However, continuous probability spaces come up naturally and we won’t
be able to fully avoid them either.

Their technical difference can be summoned in the following proposition, whose non-
examinable proof will be left for enthusiasts.

Proposition 1.9. Let Ω be countable and F a σ−algebra on Ω. Then one can find disjoint
events E1, E2, · · · ∈ F such that for every E ∈ F we can express E = ∪i∈IEEi.

Essentially, this says that for every discrete probability space it suffices to determine P(Ei)
for a countable collection of disjoint sets Ei, and thereafter for every other set E we can use
countable additivity to extend P. Notice that this means it is first easy to check whether
a given P satisfies all the axioms and even more importantly it is easy to check when two
probability measures are equal.

For continuous probability spaces this does not necessarily hold - the useful σ-algebras
are usually more complicated. To examplify why one doesn’t want to necessarily use the
power-set consider the following proposition, whose proof is in the appendix and relies on
the axiom of choice:

Proposition 1.10. There is no probability measure P on ([0, 1],P([0, 1])) that is invariant
under shifts, i.e. such that for any A ∈ P([0, 1]), α ∈ [0, 1), we have that P(A+α mod 1) =
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P(A), where here we denote A + α mod 1 := {a + α mod 1 : a ∈ A}, the set obtained by
shifting A by α, modulo 1.

In fact, it comes out that the only way to remedy this situation is to make the relevant
σ−algebra smaller. We would still want to be able to answer yes or no to questions like: is
my random number equal to {x} or is it in an interval (a, b)? Thanks to the fact that we
have only countable additivity, this does not imply that our σ-algebra would need to be the
power-set. And thanks to the properties of the σ−algebras, we can always construct at least
some σ−algebra containing all our favourite sets - see the exercise sheet.

Let us now state some immediate consequences of the definitions about the σ−algebras
and the probability measures:

Lemma 1.11 (Stability of the σ − algebra). Consider a set Ω with a σ-algebra F .
(1) If A1, A2, . . . ,∈ F , then also

⋂
n≥1An ∈ F .

(2) Then also Ω ∈ F and if A,B ∈ F , then also A \B ∈ F .
(3) For any n ≥ 1, if A1, . . . , An ∈ F , then also A1∪· · ·∪An ∈ F and A1∩· · ·∩An ∈ F .

Proof of Lemma 1.11. By de Morgan’s laws for any sets (Ai)i∈I , we have that⋂
i∈I

Ai = (
⋃
i∈I

Aci)
c.

Property (1) follows from this, as if A1, A2, · · · ∈ F , then by the definition of a σ-algebra
also Ac1, Ac2, · · · ∈ F and hence

(
⋃
i≥1

Aci)
c ∈ F .

For (3), again by de Morgan laws, it suffices to show that A1∪· · ·∪An ∈ F . But this follows
from the definition of a σ-algebra, as A1 ∪ · · · ∪ An =

⋃
i≥1Ai with Ak = ∅ for k ≥ n+ 1.

Point (2) is left as an exercise. �

In a similar vein, the basic conditions on the measure give rise to several natural properties:

Proposition 1.12 (Basic properties of a probability measure). Consider a probability space
(Ω,F ,P). Let A1, A2, · · · ∈ F . Then

(1) For any A ∈ F , we have that P(Ac) = 1− P(A).
(2) For any n ≥ 1, and A1, . . . , An disjoint, we have finite additivity

P(A1) + · · ·+ P(An) = P(A1 ∪ · · · ∪ An).

In particular if A1 ⊆ A2 then P(A1) ≤ P(A2).
(3) If for all n ≥ 1, we have An ⊆ An+1, then as n → ∞, it holds that P(An) →

P(
⋃
k≥1Ak).

(4) We have countable subadditivity (also called the union bound): P(
⋃
n≥1An) ≤

∑
n≥1 P(An).

(5) If for all n ≥ 1, we have An ⊇ An+1, then as n → ∞, it holds that P(An) →
P(
⋂
k≥1Ak).

Proof. Properties 1, 4 and second part of 2 were included in the Exercise sheet 1. The first
part of property 2 follows like in the lemma above by taking An+1 = An+2 = · · · = ∅ and
using countable additivity.
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So let us prove property 3: Write B1 = A1 and for n ≥ 2, Bn = An/An−1. Then Bn are
disjoint,

⋃N
n=1 Bn = AN and

⋃
n≥1Bn =

⋃
n≥1An.

Thus by countable additivity

P(
⋃
i≥1

Ai) = P(
⋃
i≥1

Bi) =
∑
i≥1

P(Bi)

But P is non-negative, so ∑
i≥1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi)

By countable additivity again
n∑
i=1

P(Bi) = P(
n⋃
i=1

Bn) = P(An)

and (2) follows.
�

1.4 Random variables
In fact when studying a random phenomena we certainly don’t want to restrict ourselves

to yes and no questions. For example, in our model of a random number among {1, 2, . . . , 12}
the natural question is not ’Is this number equal to 5?’ but rather ’What number is it?’.
Similarly in our example of discussing the weather, it is more natural to ask ’What is the
temperature?’, ’How much rain will there be in the afternoon?’?

Such numerical observations about our random phenomena will be formalised under the
name of random variables. In essence they give a number for each state and thus as such are
just functions X : Ω→ R from the state-space to real numbers. However, we may not want
to include all such functions for consistency reasons. Indeed, we want to be able to ask yes
/ no questions about our random numbers, e.g. Is the random number equal to 3? Is the
temperature more than 18? But again the answer yes / no corresponds to certain subsets
of states in the universe and as such should be events in our model. Thus there is a link
between the collection of events, and and the collection of functions that can act as random
variables. Let us without further give the general definition:

Definition 1.13 (Random variable). Let (Ω,F ,P) be a probability space. We call a function
X : Ω → R a random variable if for every interval (a, b) the set X−1((a, b)) := {ω ∈ Ω :
X(ω) ∈ (a, b)} is an event on the original probabiliuty space, i.e. belongs to F .

There is a simplification in the case of discrete probability spaces:

Lemma 1.14 (Random variables on discrete probability spaces). Let (Ω,F ,P) be a discrete
probability space. Then X : Ω → R is a random variable if and only if for every y ∈ R we
have that X−1({y}) ∈ F .
Proof. This can be verified carefully from the definitions and will be on the exercise sheet. �

For the structurally minded the definition of a random variable might look somewhat
arbitrary. And indeed, I have been hiding one piece of information - the natural collection
of events on R that we alluded to a little bit already in the previous subsection. We will
directly state it on Rn.
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Definition 1.15 (Borel σ-algebra). The smallest σ-algebra on Rn that contains all open
boxes of the form (a1, b1)× · · · × (an, bn) is called the Borel σ-algebra. We denote it by FB
Remark 1.16. In fact this definition is even more general: given any topological space
(X, τ), the smallest σ-algebra containing all open sets is called the Borel σ-algebra. You will
see on the exercise sheet that this more general definition reduces to the previous one in the
case of Rn with its Euclidean topology.

Based on this an equivalent, possibly more structural definition of a random variable is as
follows: a function X : Ω→ R is a random variable if the preimage of every set in the Borel
σ−algebra under X is an event. 5

An important notion that comes with random variables is its law:
Lemma 1.17 (The law of a random variable). Let (Ω,F ,P) be a probability space and
X : Ω→ R a random variable.

Then there is a probability measure PX induced on (R,FB) by defining PX(F ) := P(X−1(F )
for every F ∈ FB. This probability measure PX is called the law (or distribution) of a random
variable X.

This is a lemma and not a definition as it needs to be proved that indeed PX is a probability
measure on (R,FB).

Proof of Lemma. We need to verify the axioms on a probability measure for a probability
space:

• We have PX(R) = P(Ω) = 1
• Similarly PX(F ) = P(X−1(F )) ∈ [0, 1] for all F ∈ FB
• Finally it remains to check countable additivity: let F1, F2, . . . be disjoint sets in FB.
Then
PX(

⋃
i≥1

Fi) = P(X−1(
⋃
i≥1

Fi)) = P(
⋃
i≥1

X−1(Fi)) =
∑
i≥1

P(X−1(Fi)) =
∑
i≥1

PX(Fi).

Here we used the definition in the first and last equality, the properties of preimages
in the second equality and the fact that X−1(Fi) are disjoint together with countable
additivity in the third equality.

�

In words we showed that each random variable X induces a probability measure on the real
numbers by just forgetting about the whole context and just concentrating on the number
we see. For example in the case of weather in Lausanne, the temperature will give us a
random variable and by just looking at its value and nothing else we have just a random
real-valued number. Or more simply, if if we throw two fair coins and count the nunmber of
heads, their sum will be a random variable that takes values in the set {0, 1, 2}. Thus the
notion of the law of random variable gives us a way to compare random quantities arising in
very different contexts.
Definition 1.18 (Equality in law). Let X, Y be two random variables defined possibly on
different probability spaces. We say that X and Y are equal in law or equal in distribution,
denoted X ∼ Y if for every E ∈ FB we have that PX(E) = PY (E).

5In measure theory such functions would be called measurable functions from (Ω,F) to (R,FB); notice
the similarity with the definition of continuous functions in your topology course.
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We stress that when looking at the law of random variable the context gets forgotten -
we only concentrate on the numerical value and the initial probability space (Ω,F ,P) only
helps to determine PX but plays no role thereafter. This means that we can nicely connect
different random phenomena between each other. For example the indicator functions of
all events that have probability p, independently on which probability space they have been
defined, have the same law. Or more concretely, for example the following random variables
have the same law:

• Number of heads in two independent tosses
• Number of prime factors when we choose uniformly a number among {1, 2, 3, 4}.

In some sense a large part of this course will be about studying and describing probability
laws of random variables.
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Section 2

Conditional probability and independence
In general, if we learn something new about our random phenomena, this knowledge

influences and often changes our predictions for the rest of the model.
• For example in the case of a uniform random number between 1 and 12, if someone
tells you that this number is even, then the probability of seeing 1 will suddenly be
0, but the probability of seeing 2 will rise from 1/12 to 1/6.
• In the case of weather in Lausanne, if someone tells us that it rains the whole day,
then it is less likely to also be above 35 degrees.

The aim of this section is to set up the vocabulary to talk about how the knowledge about
some event or random variable influences the probabilities we should assign to other events.
This leads us to talk about conditional probabilities and to discuss the case where events
do not influence each other, giving rise to an important notion of probability theory called
independence.

2.1 Conditional probability
We have already considered (in the course and on the example sheets) many unpredictable

situations where several events naturally occur either at the same time or consecutively: a
sequence of coin tosses or successive steps in a random walk, or different links or edges
in a random graph. In all these cases, the fact that one event has happened could easily
influence the others. For example, if you want to model the financial markets tomorrow, it
seems rather advisable to take into account what happened today. To talk about the change
of probabilities when we have observed something, we introduce the notion of conditional
probability:

Definition 2.1 (Conditional probability). Let (Ω,F ,P) be a probability space and E ∈ F
with P(E) > 0. Then for any F ∈ F , we define the conditional probability of the event F
given E (i.e. given that the event E happens), by

P(F |E) :=
P(E ∩ F )

P(E)
.

Recall that E ∩ F is the event that both E and F happen. Hence, as the denominator is
always given by P(E), the conditional probability given E is proportional to P(E ∩ F ) for
any event F . Here is the justification for dividing by P(E):

Lemma 2.2. Let (Ω,F ,P) be a probability space and E ∈ F with P(E) > 0. Then P (·|E)
defines a probability measure on (Ω,F), called the conditional probability measure given E.

Proof. First, notice that P is indeed defined for every F ∈ F . Next, P(∅|E) = P(∅)/P(E) = 0
and P(Ω|E) = P(E)/P(E) = 1. So it remains to check countable additivity.

So let F1, F2, . . .F be disjoint. Then also E ∩ F1, E ∩ F2, . . . are also disjoint. Hence

P(
⋃
i≥1

Fi|E) =
P((
⋃
i≥1 Fi) ∩ E)

P(E)
=

P(
⋃
i≥1(Fi ∩ E))

P(E)
=
∑
i≥1

P(Fi ∩ E)

P(E)
=
∑
i≥1

P(F1|E),
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and countable additivity follows.
�

It should be remarked that conditional probability of an event might sometimes be similar
to the initial probability (we will see more about this very soon), but it might also be
drastically different. A somewhat silly but instructive example is the following:

• Conditional probability of the event Ec, conditioned on E is always zero, no matter
what the original probability was;
• similarly the conditional probability of E, conditioned on E is always 1.

Or for a more senseful exercise consider the following:

Exercise 2.1 (Random walk and conditional probabilities). Consider the simple random
walk of length n.

• What is the probability that the walk ends up at the point n at time n? Now, suppose
that the first step was −1. What is the probability that the walk ends up at the point
n at time n now?
• Suppose that n is even. What is the probability that the walk ends up at the point 0
at time n? Now, suppose that the first step was −1. What is the probability that the
walk ends up at the point 0 at time n now?

One also has to be very careful about the exact conditioning, as two similarly sounding
conditionings can induce very different conditional probabilities. In general, we need to know
something extra about the relation of two events to know how the probability of one changes
when conditioned on the other.

There are some cases where these relations and thus conditional probabilities are easy:
• When E ⊆ F , then the conditional probability of F given E is just 1.
• When F ⊆ Ec, then the conditional probability of F given E is just 0.
• The third case is when F and E are so called independent: in that case P(F |E) =
P(E) basically by definition (we will come back to that).

In general, there are not many tools to calculate conditional probabilities, but there is one
very useful tool called the Bayes’ formula or the Bayes’ rule:

2.1.1 Bayes’ rule
Proposition 2.3 (Bayes’ rule). Let (Ω,F ,P) be a probability space and E,F two events of
positive probability. Then

P(E|F ) =
P(F |E)P(E)

P(F )

It’s not only that the statement looks innocent, but also the proof is a one-liner - by
definition of conditional probability, we can write

P(E|F )P(F ) = P(E ∩ F ) = P(F |E)P(E).

Still, it is a very nice observation that allows us not only to calculate, but also is behind the
framework of Bayesian statistics / Bayesian thinking about probability.

Let us here analyse a simple example.
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Example 2.4. Consider the situation with three different coins: one has heads on both sides,
one has tails on both sides, and one is a fair coin. Now someone picked using some procedure
one of the three types of coins, told you that she tossed a coin and heads came up. Which
coin did she toss?

The relevant probability space that contains the three coins and three tosses is as follows.
First, the state space is pairs the product space {Ch, Ct, Cf} × {H,T} - the first coordinate
describes the type of the coin, the second the result of the toss. As a σ−algebra we take the
whole σ−algebra as we can ask both about what came up on top, and then which coin it was.

We know that to define P on a finite set with the power-set it suffices to define P for
every element of the state-space. From the assumptions P({Ch, T}) = P({Ct, H}) = 0 and
P({Cf , T}) = P({Cf , H}). If we further set pf = P({coin = Cf}), ph = P({coin = Ch}),
pt = P({coin = Ct}) it also has to hold that pf + pt + ph = 1, leaving two free parameters
altogether.

Let us now calculate the probabilities that we were interested in. Clearly,

P({coin = Ct}|{toss = H}) = 0

as the coin with two tails sides could not have produced heads. For the other combinations it
is easiest to use Bayes’ formula to calculate

P({coin = ch}|{toss = H}) =
P({toss = H}|{coin = Ch})P({coin = Ch})

P({toss = H})
=

P({coin = Ch})
P({toss = H})

and

P({coin = cf}|{toss = H}) =
P({toss = H}|{coin = Cf})P({coin = Cf})

P({toss = H})
=

P({coin = Cf})
2P({toss = H})

.

Thus we see that
P({coin = ch}|{toss = H})
P({coin = cf}|{toss = H})

=
2P({coin = ch})
P({coin = cf})

= 2ph/pf

and given that

P({coin = ch}|{toss = H}) + P({coin = cf}|{toss = H}) = 1

we conclude our estimates

P({coin = cf}|{toss = H}) =
pf

pf + 2ph

and
P({coin = ch}|{toss = H}) =

2ph
pf + 2ph

.

What can we conclude? The first thing is maybe that without having any knowledge of how
likely each coin was to begin with, we cannot say much about the final answer, as it contains
that information! What we assume about the initial probability of each coin matters a lot:
if we estimate that the coin with two heads was very unlikely compared to the fair coin, say
ph = 0.000001pf , then after seeing heads our estimate gives P({coin = cf}|{toss = H}) =
0.999999. If however we have no reason to believe that any one coin was more likely to be
taken than any other, for example because the person tossing the coin just picked it randomly
among the three possibilities, then we have pf = ph = pt = 1/3 and our formula gives
P({coin = cf}|{toss = H}) = 1/3 and P({coin = ch}|{toss = H}) = 2/3.

14



However, an important point is that independently of the initial probabilities, we can say
how the probabilities or rather the rations of probabilities changed - our guess that it was
the coin was heads/heads went up two times w.r.t. to the fair coin. An in fact, as you will
see on the exercise sheet if we could follow more tosses we would become more and more
knowledgeable which coin it was, independently of our possibly bad initial estimate. This
is also the idea behind Bayesian approach to probability models - we may not know all the
parameters to begin with, but we can then just fill them with guesses and as we observe more
and more about the world, we can a posteriori improve on these guesses and make our models
better.

2.1.2 Law of total probability
Although conditional probabilities are often tricky, they are necessary to deal with and

even useful. For example, they help to decompose the probability space. Indeed, the following
result is a generalization of the following intuitive result: if you know that exactly one of
three events E1, E2, E3 happens, then to understand the probability of any other event F , it
suffices to understand the conditional probabilities of this event, conditioned on each of Ei,
i.e. the probabilities P(F |Ei).
Proposition 2.5 (Law of total probability). Let (Ω,F ,P) be a probability space. Further,
let I be countable and (Ei)i∈I be disjoint events with positive probability Ω =

⋃
i∈I Ei. Then

for any F ∈ F , we can write

P(F ) =
∑
i∈I

P(F |Ei)P(Ei).

Proof. As Ω =
⋃
i∈I Ei we have P(F ) = P

(
F ∩ (

⋃
i∈I Ei)

)
.

Now rewrite F ∩ (
⋃
i∈I Ei) =

⋃
i∈I(F ∩Ei). Because (Ei)i∈I are disjoint, so are (F ∩Ei)i∈I .

Hence again by countable additivity for disjoint sets

P(F ) = P

(⋃
i∈I

(F ∩ Ei)

)
=
∑
i∈I

P(F ∩ Ei).

Now, by definition P(F ∩ Ei) = P(F |Ei)P(Ei) and the proposition follows.
�

Remark 2.6. In fact pretty much the same proof works if Ei don’t cover the full space, but
we only know that P(Ω \ (

⋃
iEi)) = 0. This generalisation is left as an exercise.

2.2 Independence of events
Conditional probabilities are of course not at all difficult when the probability of an event

does not change under conditioning - i.e. when P(E|F ) = P(E). Such pairs of events are
called independent. In fact the rigorous definition is slightly different:
Definition 2.7 (Independence for two events). Let (Ω,F ,P) be a probability space. We say
that two events E,F are independent if P(E ∩ F ) = P(E)P(F ).

Observe that when P(F ) > 0, then we get back to the intuitive statement of independence,
i.e.that P(E|F ) = P(E). Indeed, if E and F are independent we can write

P(E|F ) =
P(E ∩ F )

P(F )
=

P(E)P(F )

P(F )
= P(E).
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We have chosen the other definition, as then we automatically also include the case where
possibly P(F ) = 0.

Example 2.8. Consider our model of a uniform random number among {1, 2, 3, . . . , 12} and
the events E1 := {the number is equal to 1}, E2 := {the number is divisible by 2}, E3 :=
{the number is divisible by 3}. Which of these are independent?

From a direct calculation, we have P(E1) = 1/12, P(E2) = 1/2 and P(E3) = 1/3.
But also we can directly calculate that P(E1 ∩ E2) = P(E1 ∩ E3) = 0 and P(E2 ∩ E3) =
P({the number is divisible by 6} = 1/6. We conclude that E2, E3 are independent, but E1

and E2 are not, neither are E1, E3.

Already in this examples we actually had three events and one could also ask if there is
some sort of notion of joint independence that generalises to more events. And indeed there
are two different ways to generalize independence to several events:

• mutual or joint independence
• and pairwise independence

The stronger and more important notion is that of mutual independence.

Definition 2.9 (Mutual independence). Let (Ω,F ,P) be a probability space and let I be an
index set. Then the events (Ei)i∈I are called mutually independent if for any finite subsets
I1 ⊆ I we have that

P

(⋂
i∈I1

Ei

)
= Πi∈I1P(Ei).

Sometimes one does not have the full mutual independence or at least does not know it
holds, and just pairwise independence can be asserted. There are similar notions of k−wise
independence too.

Definition 2.10 (Pairwise independence). Let (Ω,F ,P) be a probability space and let I be
an index set. Then the events (Ei)i∈I are called pairwise independent if for any i 6= j ∈ I
the events Ei and Ej are independent.

It is important to notice that, whereas mutual independence clearly implies pairwise in-
dependence, the opposite is not true in general:

Exercise 2.2 (Pairwise independent but not mutually independent). Consider the probabil-
ity space for two independent coin tosses. Let E1 denote the event that the first coin comes
up heads, E2 the event that the second coin comes up heads and E3 the event that both coin
come up on the same side. Show that E1, E2, E3 are pairwise independent but not mutually
independent.

Finally, one can also talk about independence of collections of events. This will be impor-
tant when we try to generalize the notion of independence from events to random variables

Definition 2.11 (Mutual independence of collections of events). Consider two collections
events (Ei)i∈I and (Fj)j∈J all defined on the same probability space. We say that they are
independent if for all i ∈ I, j ∈ J :

P(Ei ∩ Fj) = P(Ei)P(Fj).
16



In case of several different collections of events (Ej,i)i∈Ij for j = 1 . . . , we say that these
collections are mutually independent if for any finite subset J1 ⊆ J and any events Ej,ij with
j ∈ J1, it holds that

P

(⋂
j∈J1

Ej,ij

)
= Πj∈J1P(Ej,ij).

Equivalently, we ask any subset of events Ej,ij from different collection to be mutually inde-
pendent.

Before going to the independence of random variables, here are some basic properties of
independence for events:

Lemma 2.12 (Basic properties). Let (Ω,F ,P) be a probability space.
• If E is an event with P(E) = 1 then it is independent of all other events.
• If E,F are independent, then also Ec and F are independent. In particular every
event with P(E) = 0 is independent of all other events.
• Finally, if an event is independent of itself, then P(E) ∈ {0, 1}.

Proof. This is on the example sheet.
�

2.3 Independence of random variables
We now formalise the notion of independence for random quantities, i.e. random variables.

Recall that (the law of) a random variable X is characterized by all events {X ∈ (a, b)} for
intervals (a, b). The mutual independence of random variables is then defined as mutual
independence of these sets of events. More precisely,

Definition 2.13 (Mutually independent random variables). Let I be an index set and (Xi)i∈I
a family of random variables defined on the same probability space (Ω,F ,P). We say that
these random variables are mutually independent if for every finite set J ⊆ I and all set of
intervals ((aj, bj))j∈J we have that

P(
⋂
j∈J

{Xj ∈ (aj, bj)}) = Πj∈JP(Xj ∈ (aj, bj).

Remark 2.14. The more structurally sound definition would use instead as the collection all
Borel sets Ej ∈ FB. However, that is impractical, and in fact turns out (via some non-trivial
measure theory) to be equivalent to the condition above.

There are naturally more equivalent conditions. For example, a useful one as we see later
is the following:

Exercise 2.3. Consider random variables X1, X2, . . . defined on the same probability space
(Ω,F ,P). Then X1, X2, . . . are mutually independent if and only if for every m ≥ 2 and all
pairs aj ∈ R we have that

P(
⋂

1≤j≤m

{Xj ≤ aj}) = Π1≤j≤mP(Xj ≤ aj).

Further, we again have a very nice and simple condition for random variables defined on
discrete probability spaces.
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Lemma 2.15 (Independence on the discrete probability space). Let X1, . . . , Xn be defined
on a discrete probability space. Then X1, . . . , Xn are mutually independent if and only if for
every s1 . . . , sn ∈ R, we have that

P(
n⋂
i=1

{Xi = si}) = Πn
i=1P(Xi = si).

The same holds more generally if X1, . . . , Xn are defined on any probability space but each
take only a discrete number of values with full probability, i.e. for each of them there is some
countable set Si such that P(Xi ∈ Si) = 1. 6

Proof. This is left as an exercise. �

As a sanity check it is now simple to see that the indicator events E,F of two events are
independent if and only if E,F are independent as events: indeed P({1E = x}{1F = y}) is
equal to

1x=11y=1P(E)P(F ) + 1x=11y=0P(E)P(F c) + 1x=01y=1P(Ec)P(F ) + 1x=01y=0P(Ec)P(F c)

which in turn can be rewritten as

(1x=1P(E) + 1x=0P(Ec))(1x=1P(F ) + 1x=0P(F c)) = P({1E = x})P({1F = x}.

Exercise 2.4 (Simple symmetric random walk). Prove that for a simple random walk of
length n all the increments of the walk, i.e. ∆i = Si − Si−1 for i = 1 . . . n, are mutually
independent random variables.

The notion of independent random variables is very important and widely used - often
also just because otherwise it is very difficult to do any calculations!

Remark 2.16 (i.i.d. random variables). Often one talks about collection of i.i.d. random
variables (Xj)j∈J - this means that (Xj)j∈J are mutually independent (first ’i’) and all have
the same probability law, i.e. are identically distributed (the ’i.d.’). Intuitively, this corre-
sponds to repeating the very same random situation or experiment over and over again.

Now, we started the course by constructing probability spaces and then defining random
variables on it. However, there are natural cases where one would like to go in the opposite
direction - we know from observation or experience that we would like to study a bunch
of independent random variables and our question is how to construct a probability space
where they live? This might sound somewhat silly, but in fact mathematically it is not an
easy question! We will partly deal with this question in the next subsection.

2.4 Independence and product probability spaces
Whereas independence is a probabilistic concept, it comes out that it is related also to a

structure in measure spaces.
Let us consider an example to see this.

Example 2.17 (The space for n fair coin tosses). We have seen that the probability space
for n fair coin tosses can be modelled by taking the state space Ω to be the set of all n-tuples

6Such random variables are called discrete random variables, as we will see soon.
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{x1, . . . , xn} of length n with each xi ∈ {H,T}, then taking F to be the power set and finally
setting the probability of each singleton, i.e. each n-tuple, to be 2−n.

Now, let us look at this as follows:
• Each n-tuples is just an element of the product space {H,T}× · · · {H,T}, so we can
use as Ω the product space. Let’s denote also by Ω0 = {H,T} the state spaces for the
coordinates.
• The power-set is the smallest σ−algebra containing all sets of the form E1×· · ·×En
with each Ei in the power-set of a single coordinate {H,T}
• The uniform probability measure on Ω satisfies by definition

P(E1 × · · ·En) = P0(E1) · · ·P0(En),

where P0 is the uniform probability measure on the space of a single toss.
• Finally the fact that the tosses are independent comes down to the following: all
events F1, . . . , Fn of the form Fi = Ω0 × Ω0 × . . . Ei × · · · × Ω0 with Ei ∈ Fi are
mutually independent: indeed for i 6= j we have for example

P(Ω0×Ω0×. . . Ei×· · ·×Ω0∩Ω0×Ω0×. . . Ej×· · ·×Ω0) = P(Ω0×Ω0×Ei×Ω0 · · ·×Ej×Ω0 · · ·×Ω0)

which by above equals P0(Ei) × P0(Ej) which again by above is equal to the product
of P(Ω0 × Ω0 × . . . Ei × · · · × Ω0) and P(Ω0 × Ω0 × . . . Ej × · · · × Ω0.

So we see that in some sense the product structure goes in hand with independence. And
indeed, this is the general rule - mutual independence of random variables is naturally linked
to products of probability spaces.

Let us follows this through mathematically, by first discussing product spaces in general
and then looking at the construction of probability spaces for independent random variables.

2.4.1 Construction of product spaces
So let us have a brief look at the construction of product spaces. Consider probability

spaces (Ωi,Fi,Pi) for i = 1, 2 . . . . Then to construct the product probability space we need
a product σ−algebra and a product measure.

(1) The product σ−algebra FΠ is simple and natural: it is the smallest σ−algebra con-
taining all Ei1 × · · · × Ein with Eij ∈ Fij for all j = 1 . . . n and {ij}j=1...n a finite
subset of N.

(2) The product probability measure PΠ of P1,P2, . . . on (Πi≥1Ωi,FΠ) also sounds simple:
it is the only probability measure such that

P(Ei1 × · · · × Ein) = Πn
j=1Pi(Eij)

for all Ei1 × · × Ein with Eij ∈ Fij for j = 1 . . . n. However, its construction and
uniqueness even in the case of finite products is technical for general probability
spaces and out of the scope of this course.

Thus we will state the following theorem without proof, which you will see in the measure
theory or the third year probability course:

Theorem 2.18 (Product measure // admitted). For i ∈ N, let (Ωi,Fi,Pi) be probability
spaces. Then there exists a unique probability measure PΠ on (Πi∈NΩi,FΠ) such that for any
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finite subset J ⊂ N and any event E of the form E = Πi∈NFi with Fi = Ωi for i /∈ J and
Fi = Ei ∈ Fi for i ∈ J , we have that

(2.1) PΠ(E) = Πi∈JPi(Ei).
We call such a measure the product measure of the collection ((Ωi,Fi,Pi))i≥1.

It is rather easy to see the existence and uniqueness in the case of a finite number of
discrete probability spaces, so let us do that. Below, we state it in the case where the
σ−algebras are equal to the power set, but as discussed before (see Proposition 1.9, this
essentially encompasses the case of general σ−algebras on discrete spaces.

Lemma 2.19 (Discrete product spaces). Let (Ωi,P(Ωi),Pi) for i = 1 . . . n be discrete proba-
bility spaces. Then the product probability PΠ measure on (Πn

i=1Ωi,FΠ) exists and is unique.

Proof. On the example sheet
�

2.4.2 Probability spaces for independent random variables
We will now follow through the philosophy alluded to above:
• if we are given some laws of random variables and we want to construct a common
probability space on which all of these random variables are defined and are moreover
mutually independent, then we should use product spaces.

We will again state this proposition in a larger generality than we prove it.

Theorem 2.20 (Existence of probability spaces with independent random variables // partly
admitted). Consider random variables (Xi)i≥1. Then we can find a common probability space
(Ω,F ,P) and random variables (X̃i)i=1≥1 defined on (Ω,F ,P) such that

• For all i ≥ 1, X̃i and has the law of Xi

• Moreover, the random variables (X̃i)i≥1 are mutually independent.

Example 2.21. Suppose you have a coin that is not fair, but comes up heads with probability
p ∈ (0, 1). How would you model the sequence of independent n such tosses?

The assumption of all sequences being equally likely does not make sense any longer (e.g.
think of the case when p is near 1, then certainly the sequence of all zeros and all ones
cannot have the same probabilities). However, the assumption of mutual independence and
its relation to product measures are useful.

Indeed, we can define the probability space as follows:
• we take the product space of n copies of ({0, 1},P({0, 1}),Pp) , where Pp such that it
gives 1 with probability p and 0 with probability 1− p.

Notice that in this probability space, the probability of a fixed sequence of n tosses with m
heads and tails n−m is exactly pm(1− p)n−m. If we further want to calculate the probability
that we have exactly m heads we have to sum over all sequences with m heads and we get(
n
m

)
pm(1− p)n−m. Check that

∑n
m=0

(
n
m

)
pm(1− p)n−m = 1!

Let us now give the proof of the theorem in the case when all the random variables are
defined on discrete probability spaces. For a slightly more natural statement, see the exercise
sheet
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Proof of Theorem 2.20, case of finite products of random variables on discrete spaces. Suppose
we have discrete probability spaces (Ωi,P(Ωi),Pi) and random variables Xi : Ωi → R.

By the Lemma 2.19 above, we can construct the product probability space corresponding
to these probability spaces, denoted (ΩΠ = Πn

i=1Ωi,FΠ,PΠ).
Now, define X̃i(ω1, . . . , ωn) := Xi(ωi). One can check that X̃i thus defined are all random

variables and they are defined to have the same law as Xi. Indeed, by the definition of X̃i

and the product measure

PX̃i(E) = PΠ(Ω1 × Ω2 · · · ×X−1
i (E)× . . . · · · × Ωn) = PXi(E).

Finally, we need to check that the random variables (X̃i)i=1...n are mutually independent
on the space (Πn

i=1Ωi,FΠ,PΠ). From the identity

{w : ΩΠ : X̃j(ω) ∈ Ej} = {Ω1 × · · · ×X−1
i (E)× · · · × Ωn}

we have that:
PΠ(

⋂
i=1...n

{X̃i ∈ Ei}) = PΠ(Πn
i=1X

−1
i (Ei)).

By the definition of product measure this equals Πn
1=1PXi(Ei), which in turn equals Πn

i=1PX̃j(Ej)
by equality in law. The last expression is equal to Πn

i=1PΠ(X̃i ∈ Ei) by definition and we
conclude. �

Let us finish this section by playing with an important example.

2.4.3 Erdös-Renyi random graph
Our aim in this section is to describe and study random graphs. Graphs are simple math-

ematical structures that help to describe networks like social networks, or logistic networks
or why not the network of neurons in the brain.

Definition 2.22 (Simple graph). Let n ∈ N. A simple graph is a pair G = (V,E) where V
is a set of points V = {v1, . . . , vn}, called vertices, and E is a subset of {{vi, vj} : (vi, vj) ∈
V × V, vi 6= vj}, i.e. a set of unordered pairs of distinct vertices, called edges.

You can imagine the graph as drawing all the n points v1, . . . , vn on the plane and then
drawing a line between vi and vj to say they are connected if and only if {vi, vj} ∈ E.

If the networks are very big, like the brain or the social network in Facebook, it is both
impractical and unfeasible to describe them in all detail. Moreover, it comes out that usually
they start resembling certain random networks. Thus in order to understand properties of
these real world networks, one often studies the simplified models of random networks.

The easiest model of a random network, or in our mathematical language of a random
graph, is the Erdös-Renyi random graph where we include each edge with probability p > 0.

Example 2.23 (Erdös-Renyi random graph). For n ∈ N consider a set of vertices V of size
n and let E be the set of all undirected edges between these vertices.

The Erdös-Renyi random graph Gn,p of size n and edge parameter p ∈ [0, 1] is then defined
by including each possible edge independently with probability p.

To define the relevant probability space we let
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• The state space should include all possible graphs with the vertex set V . We observe
that this can be done by determining the edge set. So we let Ω = {0, 1}E be the set of
all possible edge configurations on n vertices - we interpret 1 to mean that an edge is
present.
• We assume that we can check for any edge if it is present or not, and thus set F =
P(Ω)
• Finally, we set each edge to be present with probability p independently of others. In
other words for each ω ∈ Ω we set

Pp({ω}) := p|ω|(1− p)n−|ω|,

where ω ∈ Ω is an edge configuration and |ω| is the number of edges in this configu-
ration.

Finally, we can identify each element ω also with the resulting graph Gn,p(ω) = (V,E(ω)).

What are some questions that we would like to look at? Roughly we would like to answer
how the graph look likes when n is very large, i.e. tending to infinity. Of course sometimes
one could be also interested in n small, but then one could actually explicitly describe the
probability of each possible graph and picture it.

Now to describe how the graph looks like we could consider the following questions:
(1) How many edges are present?
(2) Is the graph connected, i.e. can one find for each v, w ∈ V a set of edges e1, . . . , en

such that each ei, ei−1 share a vertex and e1 is connected to v and en connected to
w?

(3) If yes, what is the maximal distance between two vertices?
(4) If no, how many different connected components are there?
(5) What is the biggest connected component?
(6) ...
Each of these questions is about a single graph, i.e. a single configuration ω. Thus in

the random graph model they correspond either to an event or random variable, whose
probability or law we can study.

For example, NE : Ω → N given by NE(ω) := |ω| attaches to each ω its number of
edges and thus corresponds to the first question. Similarly the event F := {ω is connected}
corresponds to the second question. Of course there are also more complex questions, which
arise when one consideres several questions at the same time.

One is interested in both how the probability of these events behaves for p ∈ [0, 1] fixed
and n→∞, but also how this behaviour changes when we change p. Notice that a priori p
does not need to be constant, we can also easily consider a sequence of graphs Gn,p(n) where
p(n) is a function of n.

Studying the properties of Erdös-Renyi random graphs was and still is a very active
research topic, with hundreds if not thousands of papers written about them. We will try to
just get a very small taste of this research.

Let us concentrate on one notion, that of connectivity and look at some scenarios. Notice
that when p = 1 then the graph is connected with probability 1 and when p = 0 it is
disconnected with probability 1. We will try to get a grasp what happens with pn ∈ (0, 1)
possibly changing with n.

22



Claim 2.24. Let p ∈ (0, 1) be fixed. Then as n → ∞ the probability of the graph being
connected converges to 1 almost surely i.e. with probability 1.

This is maybe not so surprising as with fixed probability p we will have lots of edges:
indeed, if you think of edges as coin tosses, you would expect to have a proportion p of all
edges to be present, which makes pn(n− 1)/2 edges!

Proof. We will prove that Pp({Gn,p is not connected})→ 0 as n→∞. First notice that

{Gn,p is not connected} = ∪v 6=w∈V { v, w not connected by a path}.
Thus by the union bound

Pp({Gn,p is not connected}) ≤ 1/2
∑

v 6=w∈V

Pp({ v, w not connected by a path}),

where the 1/2 comes from the fact that we count each edge twice in the sum. But because
of symmetry of the model, each pair of edges is equivalent, so we can write the right hand
side as n(n− 1)/4Pp({ v, w not connected by a path}).

Thus we want to bound the probability that v and w are not connected by a path. First,
just looking at the edge {v, w} is not enough - this edge is absent with probability 1 − p,
which doesn’t go to zero. However, there are many other ways to connect these two vertices.

One way is to use an intermediate vertex z: then v and are not connected if and only if w
there is no vertex z such that both {z, w} and {z, v} belong to the edge set. Thus we can
write

Pp({ v, w not connected by a path}) ≤
∏

z∈V \{v,w}

Pp({{v, z} /∈ E} ∪ {{w, z} /∈ E}).

But now Pp({{v, z} /∈ E} ∪ {{w, z} /∈ E}) = 1 − Pp({{v, z} ∈ E} ∩ {{w, z} ∈ E} = 1 − p2

and hence
Pp({ v, w not connected by a path}) ≤ (1− p2)n−2.

This clearly goes to zero as n → ∞ and thus any two fixed vertices will be connected with
probability going to 1.

We now come back to our initial probability of all pairs being connected and bound:

Pp({Gn,p is not connected}) ≤ n(n− 1)(1− p2)n−2/4.

This is also nicely goes to zero!
�

In fact, if we look at the proof more carefully we see that the claim is true as long as
p = p(n) goes to zero with n sufficiently slowly. In other words the exact same proof gives
us

Claim 2.25. Let (pn)n≥1 be a sequence of numbers in [0, 1] satisfying pn ≥ n−1/4 . Then as
n → ∞ the probability of the graph being connected converges to 1 almost surely i.e. with
probability 1.

Proof. We follow the proof above and notice that for 1 ≥ pn ≥ n−1/4 we still have that

n(n− 1)(1− p2)n−2/4→ 0

as n→∞. �
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On the other hand, we have that

Claim 2.26. Let (pn)n≥1 be a sequence of numbers in [0, 1] such that pn ≤ n−2 . Then as
n → ∞ the probability of the graph being connected converges to 0 almost surely i.e. with
probability 1.

This will be on the exercise sheet. But notice the interesting phenomena: there seems to
be a sort of threshold effect. If pn decays very fast, the probability of connectedness goes to
0; if decays slowly enough it goes to 1. Why doesn’t it go to some other number between 0
and 1? Where is the exact threshold? It is a non-trivial theorem that says this threshold is
exactly at pn = logn

n
!
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Section 3

Random variables and random vectors
In this chapter, we will look more closely into random variables and n-tuples of random

variables, called random vectors.

3.1 The cumulative distribution function of a random variable
Recall that we call two random variables equal in law, when the probability measures

they induce on (R,FB) are equal - this allowed us to compare random variables defined on
different probability spaces, coming up in different contexts.

Our first aim is to see how to classify and compare random variables more easily. Indeed,
for now one has to actually determine We already saw that the law of each random variable
is described by the probability over all possible events, but this is a description that is very
difficult to deal with.

It comes out that all the information about the law of a random variable can be uniquely
encoded using what is called a cumulative distribution function.
Definition 3.1 (Cumulative distribution function). We call a function F : R → [0, 1] a
(cumulative) distribution function (abbreviated c.d.f.) if it satisfies the following conditions:

(1) F is non-decreasing;
(2) F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→∞;
(3) F is right-continuous, i.e. for any x ∈ R and any sequence (xn)n≥1 ∈ [x,∞) such

that xn → x, we have that F (xn)→ F (x).

Given a random variable X, we define its cumulative distribution function as follows:
Proposition 3.2 (Cum.dist. function of a random variable). For each random variable X
(defined on some probability space (Ω,F ,P)), the function FX(x) := PX((−∞, x]) defines a
cumulative distribution function (c.d.f).

Proof. Set FX(x) = P(X ∈ (−∞, x]). Then as (−∞, x] ⊆ (−∞, y] for x ≤ y, we have by (1)
of Proposition 1.12 that F is non-decreasing.

Let us next check right-continuity of F . So let (xn)n≥1 be any sequence in [x,∞) converging
to x. Then setting An := ∩1≤k≤n(−∞, xk] we get that

⋂
n≥1An = (−∞, x]. By continuity of

P, i.e. (5) of Proposition 1.12, it follows that PX(An)→ PX((−∞, x]). But now notice that
as xn → x, we have that for any n large enough {−∞, yn} ⊆ Amn for some mn chosen such
that mn →∞ as n→∞. It follows that FX(y) ≤ FX(yn) ≤ PX(Amn) and we conclude that
FX(yn)→ FX(y) as n→∞.

The final two claims are on the example sheet.
�

In fact, it comes out the conversely each cumulative distribution function gives rise to a
unique law of a random variable.
Theorem 3.3 (Laws of random variable are uniquely determined by c.d.f. // admitted).
Each cumulative distribution function F gives rise to a unique law of a random variable X
such that FX(x) = PX((−∞, x]). In other words c.d.f.s are in one to one correspondence
with probability measures P on (R,FB).
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We admit this theorem in the general case, but will again prove the discrete case. Let us
look at a simple example:

Example 3.4. Let us calculate the c.d.f of the so called Bernoulli random variable X that
takes value 1 with probability p and 0 with probability 1−p. Notice that all indicator functions
of events correspond to such random variables with P(E) = p.

We have FX(x) = (1 − p)1x≥0 + p1x≥1. More generally for a random variable that
takes only finite number of values x1, . . . , xn with probabilities p1, . . . , pn, we have FX(x) =∑

i=1...n p11x≥xi. (Why?)

Thus we see that FX encodes the behaviour of X rather naturally. Let us now look at
this relation between the cumulative distribution function FX and the random variable X
more closely. By F (x−) we denote the limit of F (xn) with (xn)n≥1 → x from below, i.e. by
numbers xn < x.

Lemma 3.5 (C.d.f vs r.v.). Let X be a random variable on some probability space (P,Ω,F)
and FX its cumulative distribution function. Then for any x < y ∈ R

(1) P(X < x) = F (x−)
(2) P(X > x) = 1− F (x)
(3) P(X ∈ (x, y)) = F (y−)− F (x).
(4) P(X = x) = F (x)− F (x−).

Proof. This is on exercise sheet. �

Example 3.6. Let us also exhibit the c.d.f. of the uniform random variable U taking values
uniformly in [0, 1]. It is given by FU := x1x∈[0,1] + 1x>1. By the proposition above we can see
that for any interval (a, b) ⊆ [0, 1], P(U ∈ (a, b)) = b− a.

From above we see that all jumps of FX correspond to points where PX(X = x) > 0. In
fact there can be only countably many of them.

Lemma 3.7. A cumulative distribution function FX of a random variable X has at most
countably many jumps.

Proof. Let Sn be the set of jumps that are larger than 1/n and Ŝn any finite subset of Sn.
Then Ŝn is measurable and 1 ≥ P(X ∈ Sn) ≥ |Ŝn|n−1. Thus it follows that |Ŝn| ≤ n. As
this holds for any finite subset of Sn, we deduce that |Sn| ≤ n and in particular Sn is finite.

Now the set of all jumps can be written as a union
⋃
n≥1 Sn. Hence as each Sn is finite

and a countable union of finite sets is countable, we conclude. �

These jumps of a c.d.f. FX are sometimes called atoms of the law of X. More precisely,
we call s ∈ R an atom for the law of X if and only if P(X = s) > 0.

In the extreme case FX increases only via jumps, i.e. is piece-wise constant changing value
at most countable times. Precisely:

Definition 3.8 (Piece-wise constant with at most countable jumps). We say that f : R →
[0,∞) is piece-wise constant with countably many jumps iff there is some countable set S
and some real numbers cs > 0 for s ∈ S such that

∑
s∈S cs <∞ and

f(x) =
∑
s∈S

cs1x≥s.
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Notice that this set S could be dense, like the set of rational numbers, making it hard to
imagine as a staircase function!

In the other extreme FX could also be everywhere continuous. These observations help us
separate out two classes of random variables.

3.1.1 Classification of random variables
Definition 3.9 (Discrete vs continuous random variables). A random variable is called
discrete if its c.d.f. FX is piece-wise constant changing value at most countable many times.
It is called continuous if its c.d.f. FX is continuous.

These definitions look a bit abstract / non-telling from the probabilistic perspective and
a priori differs from the definition we gave on the example sheet! But no need to worry, it
does give the same object:

Exercise 3.1 (Discrete vs random variables ver 2). Consider a random variable X. Prove
that

• X is discrete, i.e. its cumulative distribution function FX is piece-wise constant, if
and only if there is a countable set S ⊆ R with P(X ∈ S) = PX(S) = 1.
• X is continuous if and only if for every y ∈ R, P(X = y) = PX({y}) = 0.

Notice that not every random variable is either discrete or continuous, there could be also
mixtures of the two, e.g. one could imagine a c.d.f. given by F (x) = 0.51x≥0 + 0.5x1x∈[0,1) +
1x≥1 (What does it correspond to?).

The following proposition says, the c.d.f. of any random variable can be written as a
convex combination of c.d.f-s of a discrete and continuous random variable.

Proposition 3.10. Any cumulative distribution function F can be written uniquely as convex
combination of a continuous c.d.f Fc and a piece-wise constant c.d.f. with countably many
jumps Fj i.e. for some a ∈ [0, 1] we have that F = aFj + (1− a)Fc.

Moreover, in a later the exercise sheet you will see how to interpret this as saying that
each random variable can be written as a random sum of a continuous and discrete random
variable.

Proof. If F is either continuous or piece-wise constant with countably many jumps, the
existence of such writing is clear. So suppose that F is neither. Write S for the countable
set of jumps of F . Define

F̂j(x) =
∑
s∈S

1x≥s(F (s)− F (s−)),

which is piece-wise continuous with countably many jumps.
We claim that F̂c := F − F̂j is continuous. Indeed, by definition both F and F̂j both

right-continuous, and thus is also their difference. Moreover, both are continuous at any
continuity point x of F , i.e. when x /∈ S as by definition then F (x) = F (x−) and one can
check the same for Fj. Finally, when s ∈ S, then again by definition of F̂j, we have that

F (s)− F (s−) = 1s≥s(F (s)− F (s−)) = F̂j(s)− F̂j(s−)

and thus F̂c is continuous at such s too.
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Now, as F is neither continuous nor piece-wise constant increasing with jumps, we have
that 0 < F̂j(∞) < 1 and 0 < F̂c(∞) < 1. Hence, we can define

Fj(x) :=
F̂j(x)

F̂j(∞)

and

Fc(x) :=
F̂c(x)

F̂c(∞)
.

By definition both of those are non-decreasing, right-continuous satisfying the correct limits
at ±∞ and hence are c.d.f-s for random variables. As Fj increases only via jumps and Fc is
continuous, we have the desired writing with a = F̂j(∞) and 1− a = F̂c(∞).

Uniqueness is left as an exercise. To see the uniqueness of the decomposition, suppose
that one can write

FX = aFY1 + (1− a)FY2 = bFZ1 + (1− b)FZ2 ,

where both Y1 and Z1 are discrete and Y2, Z2 continuous random variables. Then aFY1 −
bFZ1 has to be continuous, but also piecewise constant with countably many jumps. As
aFY1(−∞)− bFZ1(−∞) = 0, the only possibility is that it is constantly zero. As FY1(∞) =
1 = FZ1(∞), it follows that a = b and FY1 = FZ1 . Thus also FY2 = FZ2 and the proposition
follows.

�

3.2 Examples of discrete random variables
There are several families of laws of discrete random variables that come up again and

again. As we will see, sometimes these laws also have very nice mathematical characteriza-
tions.

Recall that to characterise the law of a random variable, we can either give the value of
PX(F ) for a sufficiently large set of F (e.g. all intervals) or give the c.d.f. For a discrete
random variable X it suffices to just determine the support S, i.e. the smallest set S ⊆ R
such that P(X ∈ S) = 1 and determine PX(X = s) for each s ∈ S (why?).

Bernoulli random variable
As mentioned already, a random variable that takes only values {0, 1}, taking value 1 with
probability p is called a Bernoulli random variable of parameter p. It is named after the
Swiss mathematician Bernoulli, who also thought that all sciences need mathematics, but
mathematics doesn’t need any. Leaving you to judge, let us see that these examples come
up very often.

Namely, on every probability space (Ω,F ,P), every indicator function of an event, i.e. 1E
gives rise to a Bernoulli random variable and the parameter p is equal to the probability of
the event. Indeed for any event E in a probability space (Ω,F ,P) the indicator function
1E : (Ω,F) → (R,F) is measurable and hence a random variable. Moreover, it is {0, 1}
valued by definition and P({1E = 1}) = P(E) = p.

Sometimes one talks about Bernoulli random variables more generally whenever there are
two different outcomes, e.g. also when the values are {−1, 1}. We then call it the Bernoulli
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random variable with values {−1, 1}.

Uniform random variable
Any random variable that takes values in a finite set S = {x1, . . . , xn}, each with equal
probability 1/n is called the uniform random variable on S. We call the law of this random
variable the uniform law. Its c.d.f is given by simply FX(x) = n−1

∑n
i=1 1x≥xi .

Examples are - a fair dye, the outcome of roulette, taking the card from the top of a
well-mixed pack of cards etc...Concretely, for a trivial example is that if we model a fair dye
on Ω = {1, 2, 3, 4, 5, 6}, F = P(Ω) and P(i) = 1/6, then the random variable X(ω) := ω ∈ R
gives rise to a uniform random variable.

We use this family of random variables every time we have no a priori reason to prefer one
outcome over the other. A fancy mathematical way of saying this would be to say that the
uniform law is the only probability law on a finite set that is invariant under permutations
of this set. We will also see on the example sheet that this is the so called maximum entropy
probability distribution with values in a finite set S.

Binomial random variable
A random variable that takes values in the set {0, 1, . . . , n}, and takes each value k with
probability

pk(1− p)n−k
(
n

k

)
is called a binomial random variable of parameters n ∈ N and 0 ≤ p ≤ 1 (why do the
probabilities sum to one?). We denote the law of such a binomial random variable by
Bin(n, p).

Notice that for n = 1, we have the Bernoulli random variable. Bernoulli random variable
comes up naturally in models of independent coin tosses, random graphs, or models of
random walks. The reason why it comes up so often is that it always describes the following
situation - we have a sequence of independent indistinguishable events and we count the
number of those who occur. Or in other words, the Binomial random variable Bin(n, p) can
be seen as a sum of n independent Ber(p) random variables.
Exercise 3.2 (Binomial r.v. is the number of occurring events). Suppose we have n mutually
independent events E1, . . . , Ek of probability p on some probability space (Ω,F ,P). Consider
the random number of events that occurs: X =

∑n
i=1 1Ei. Prove that X is a random variable

and has the law Bin(n, p).

For a concrete lively example, let’s go back to the Erdos-Renyi random graph on n ver-
tices, where each edge is independently included with probability p. We can then fix some
vertex v and consider the random variable Mv giving the number of vertices adjacent to v,
i.e. linked to v by an edge. The exercise above shows that this random variable has law
Bin(n− 1, p).

Geometric random variable
A random variable that takes values in the set N, each value k with probability p(1− p)k−1

for some 0 < p ≤ 1 is called a geometric random variable of parameter p. We denote the law
of a geometric random variable by Geo(p). One should again check that this even defines a
random variable, by seeing that the probabilities do sum to one.
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A geometric random variable describes the following situation: we have independent events
E1, E2, . . . each of success probability p and we are asking for the smallest index k such that
the event Ek happens. For example, Geo(1/2) describes the number of tosses needed to get
a first heads. This will be made precise on the exercise sheet.

There is also a nice property that characterizes the geometric r.v.:

Lemma 3.11 (Geometric r.v. is the only memoryless random variable). We say that a
random variable X with values in N is memoryless if for every k, l ∈ N we have that PX(X >
k + l|X > k) = PX(X > l). Every geometric random variable is memoryless, and in fact
these are the only examples of memoryless random variables on N.

Proof. Let us start by proving that the geometric random variable satisfies the memoryless
property. First, notice that if P(X = 1) = 1, then X is a degenerate geometric random
variable with p = 1. So we can suppose that we work in the case P(X > 1) > 0.

Let us check that a geometric r.v. is memoryless. First, it is easy to check that for a
geometric random variable X, we have that P(X > l) = (1 − p)l for some p ∈ (0, 1]. As by
the definition of conditional probability

P(X > k + l|X > k) =
P(X > k + l)

P(X > k)
,

it follows that P(X > k + l|X > k) = (1− p)k+l−k = (1− p)l = P(X > l) as desired.
Now, let us show that each random variable satisfying the memoryless property has the

law of a geometric random variable. Again if P(1) = 1, we are done. Otherwise we can write

P(X > 1 + l|X > 1)P(X > 1) = P(X > 1 + l).

As for a memoryless random variable P(X > l) = P(X > 1 + l|X > 1), we obtain

P(X > l)P(X > 1) = P(X > l + 1).

Thus inductively P(X > l) = P(X > 1)l and hence X is a geometric random variable of
parameter p = 1− P(X > 1). �

Poisson random variable

Poisson was a French mathematician who has famously said that the life is good for only
two things - mathematics and teaching mathematics. His random variables come up quite
often.

The Poisson random variable is a discrete random variable with values in {0} ∪ N and
taking the value k with probability

e−λ
λk

k!
for some λ > 0. We denote this distribution by Poi(λ). Poisson random variables de-
scribe occurrences of rare events over some time period, where events happening in any two
consecutive time periods are independent. For example, it has been used to model

• The number of visitors at a small off-road museum.
• More widely, the number of stars in a unit of the space.
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• Or more darkly, it was used to also model the number of soldiers killed by horse kicks
in the Prussian army.

One way we see the Poisson r.v. appearing is via a limit of the Binomial distribution if
the success probability p scales like 1/n:

Lemma 3.12 (Poisson random variable as the limit of Binomials). Consider the Binomial
distribution Bin(n, λ/n). Prove that as n→∞ it converges to Poi(λ) in the sense that for
every k ∈ {0} ∪ N, we have that

P(Bin(n, λ/n) = k)→ e−λ
λk

k!
.

Proof. By definition, for any fixed n ∈ N and k ∈ {0} ∪ N, we have

P(Bin(n, λ/n) = k) =

(
n

k

)
λk

nk

(
1− λ

n

)n−k
.

Using (
n

k

)
=

n!

(n− k)!k!
=
n(n− 1) · · · (n− k + 1)

k!
.

we can write

P(Bin(n, λ/n) = k) =
λk

k!

(
1− λ

n

)n
n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)−k
.

But now as n→∞ (
1− λ

n

)n
→ e−λ.

Moreover, for any fixed t > 0 also n−t
n
→ 1 as n→∞ and hence

n(n− 1) · · · (n− k + 1)

nk
→ 1

and (
1− λ

n

)−k
=

(
n− λ
n

)−k
→ 1,

proving the lemma. �

To connect this to the occurrences of rare events described before, one could think as
follows. Suppose we try to model the number of arrivals over time window [0, 1], say one
year in a distant location. We then cut a time-window [0, 1] into n equal time-segments of
length 1/n with n large, say into 365 days, so that we can suppose that at each time-segment,
say each day, there is at most one arrival. In this case we can describe the arrival or non-
arrival using Ber(p) or 1E for some event E. If we further suppose that all days are alike,
we can take this parameter p to be the same for all time-segments of the same length, e.g.
for all days. Moreover, if we suppose that an arrival in one time-segment does not influence
arrivals in other time-intervals, we can assume that all events E corresponding to different
time intervals are mutually independent. Hence the total number of arrivals is the number
of independent events happening, when the event probability is p - we saw above that this
gives a Bin(n, p) random variable. But now, if you check carefully the proof above, you see
that if p is not of the form λ/n for some λ > 0, then in fact the number of events will either
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go to infinity or go to zero - i.e. to have a non-trivial random variable in the limit n→∞,
we are forced to set p = λ/n.

Poisson random variables also behave very well under taking independent copies and taking
random subsets of them:

Exercise 3.3 (Poisson random variables). Let X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2) be two
independent random variables defined on the same probability space.

• Prove that then X1 +X2 is also a Poisson random variable with parameter λ1 + λ2.
• Let now Y1, Y2, . . . be independent Ber(p) random variables defined on the same prob-
ability space. Prove that X :=

∑X1

i=1 Yi also has the law of Poi(pλ) and X1 −X has
the law of Poi((1− p)λ) and is independent of X.

3.2.1 How to choose my distribution - the maximum entropy principle
We have now seen several examples of discrete random variables with special properties,

which may or may not have sounded relevant and were a bit different for each of the ex-
amples. A generic question is the following. Suppose we want to model some statistical
phenomena using a random variable. From the experiments or theory we can deduce some
weak constraints on the probability distribution of the variable - for example the support
of the distribution, i.e. which values it takes, and maybe some other parameters obtained
from repeated experiments like some sort of average. The question is: which probability
distribution should we choose as our model under these constraints?

Intuitively, we would like to choose a distribution that takes into account these constraints
and nothing more. Already Laplace used such an argument: his principle of insufficient
reason says that if we only know that we have n outcomes, we should assign each the
probability 1/n. It comes out that somehow the right generalization of this principle of
insufficient reason is the principle of maximum entropy - we should choose the probability
distribution with maximal entropy, given the constraints. This feels at least intuitively
natural, as we are then maximizing our surprise or uncertainty about what is happening.
The principle of maximum entropy was introduced by E. T. Jaynes in the 1950s.

To state this, let us first introduce the concept of entropy in the realm of discrete random
variables. This rich concept is also interesting in itself and I believe you have already met it
in your course of computer science as introduced by Shannon, although its origins go back
much further in thermodynamics. In essence the entropy of a random variable is a way to
formalise the notion of information content that we learn by observing an outcome.

Definition 3.13 (Discrete (Shannon) entropy). For a discrete random variable X with out-
come set S we define the entropy

H(X) := −
∑
s∈S

P(X = s) logP(X = s).

We also call it the entropy of the probability distribution P.

The mentioned link to information content can be thought of in two steps:
• First, to each event E, and in particular to each outcome {X = s} we assign a
measure of information content or surprise: − logP(E). We like this precise measure
more than just P(E) basically because log is additive under products and hence the
information content of two independent events adds up.
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• Then to measure the information content over all outcomes we take the weighted
average of − logP(X = s) as in the definition above. Such a weighted average is
called the mathematical expectation, as we will shortly see.

Remark 3.14. Often in computer science / information theory one rather uses log2 instead
of log - this in some sense is just a choice of units for the information content.
Example 3.15. One can directly check that for the uniform distribution on n points the
entropy is H = log n. Indeed then P(X = s) = 1/n for any s and the claim follows.

Notice that although we defined the discrete entropy for a random variable, it does not
depend on the exact values of the random variable - only on how many values with which
probability it takes. In particular for example it is direct to see the following Lemma.
Lemma 3.16. For any real-valued discrete random variable we have that H(X) = H(aX+b).

Further, the reason of choosing the logarithm in the definition, boils down to the following
facts:
Lemma 3.17. The entropy is non-negative: H(X) ≥ 0. Moreover, for independent discrete
random variables X, Y , we have that H(X, Y ) = H(X) +H(Y ).
Proof. The first part is evident from the fact that −p log p ≥ 0 for all p ∈ [0, 1] 7, The proof
of the second part is a direct computation on the example sheet. �

There are many ways to give mathematical characterisations of entropy, i.e. to give a set of
intuitive conditions for a measure of information content such that they uniquely characterise
the entropy functional. We will not do this in our course, but rather explain a property that
makes entropy appear - asymptotic equipartition property.

In this respect, consider i.i.d. non-trivial discrete random variables X1, X2, . . . , Xn taking
each of the values s ∈ S with positive probability. Then for each sequence of outcomes
(s1, s2, . . . , sn) we can calculate the probability P(X1 = s1, . . . , Xn = s2). By independence,
this is given by Πn

i=1P(Xi = si). As each of P(X1 = s) ∈ (0, 1), these probabilities decay
exponentially with n, i.e. should be roughly of the form exp(cn). Is this the case, and how
does this c > 0 behave? For a given sequence, this will clearly depend on the exact sequence
(s1, s2, . . . , sn), so one cannot expect an answer in full generality.

However, one can determine this exponent for a typical outcome sequence and it is given
by the entropy of X1:
Theorem 3.18 (Asymptotic equipartition property). Let X1, X2, . . . be i.i.d. non-trivial dis-
crete random variables, taking values s ∈ S with positive probability. Denote by p(s1, s2, . . . , sn)
the probability of the sequence of outcomes (s1, s2, . . . , sn). Then P(| − 1

n
log p(X1, . . . , Xn)−

H(X1)| > ε) converges to 0.
We will be able to give a simple proof and even a stronger statement of this result towards

the end of the course, but I encourage you already to try it out now - this maybe also helps
to understand how the notion we are about to introduce simplify our thinking.

As said, entropy has many contexts and many uses, but for us the aim was to help select
probability laws on discrete sets. Here are two results in this direction.

7If you wish we take the convention that 0 log 0 = 0, which of course also makes a lot of sense by taking
x > 0 and letting it tend to 0.
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Lemma 3.19 (Uniform distribution has maximum entropy). Consider all probability dis-
tributions on n points. Among such distributions, the uniform distribution is the unique
maximum entropy distribution.

Proof. Let Q = (qi)i=1...n denote a probability distribution on n points. We want to prove
that

H(Q) = −
n∑
i=1

qi log2 qi ≤ log2 n.

We use the fact that log x is concave on [0, 1]. Thus we have that

H(Q) =
n∑
i=1

(qi log2

n

qi
)− log2 n ≤ log2(

n∑
i=1

qin

qi
) = log2 n

2 − log2 n = log2 n,

where we also used that
∑n

i=1 qi = 1. Moreover, the equality holds only if qi = 1/n for all i,
so in fact the uniform distribution is the unique maximum entropy distribution �

Similarly we can single out the geometric random variable among all distributions with
outcomes in N, however with one extra constraint. Namely, it is maximum entropy distri-
bution on N among those distributions for which the so called mean or expectation is finite:∑

n≥1 nP(X = n) <∞.

3.3 Continuous random variables
Recall that we called a random variable X continuous if FX was continuous, i.e. without

any jumps. From Lemma 3.5 it follows that P(X = x) = 0 for all x ∈ R. Most often
continuous random variables arise via what is called a density function and this is also how
we will usually construct them.

Definition 3.20 (Continuous r.v. with density). Let X be a random variable and fX : R→
R be a non-negative integrable function with

∫
R fX(x)dx = 1. Then we say that a r.v. X has

density fX if for every x ∈ R

FX(t) =

∫ t

−∞
fX(x)dx.

8

Remark 3.21. We remark straight away that there are also continuous random variables
without a density (see starred section of the exercises).

Let us now look at the definition more closely. First, it is important to check the definition
even makes sense, i.e. that the FX defined actually is a cumulative c.d.f.:

Exercise 3.4. Consider a non-negative Riemann integrable function fX with
∫
R fX(x)dx =

1. Define FX(x) :=
∫ x
−∞ fX(x)dx.

• Prove that FX is a cumulative distribution function.

8You might have already heard that there are several notion of an integral. Here the natural integral to
use would be Lebesgue integral as then one can integrate over all Borel sets, which as you may have seen, is
not possible for the Riemann integral. But in fact for all the examples here thinking of Riemann integral is
quite sufficient.
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• Prove that if two random variables have the same density function, they have the
same law
• Prove that given FX , there is at most one continuous fX such that FX(t) :=

∫ t
−∞ fX(x)dx.

• Give examples to show that fX is however not uniquely defined by FX .

Further, let us look at an interpretation. Using Lemma 3.5 and the remark above that
P(X = x) = 0 for every a < b, we can also write

P(X ∈ (a, b)) = P(X ∈ [a, b]) =

∫ b

a

fX(x)dx.

it is important to notice that fX does not give you the probability of {X = x} at each point
- we already saw that for continuous random variables this probability is 0 for all x ∈ R.
However, taking b = a + ε, we can still obtain an interpretation of fX , explaining why it is
called the density function. Indeed, if for example fX is continuous, we can write

P(X ∈ (a, a+ ε)) =

∫ a+ε

a

fX(x)dx = εfX(a) + o(ε),

and thus one can think of εfX(a) as of the probability in being in the interval (a, a+ ε). In
particular, notice that ε−1P(X ∈ (a, a + ε)) → fX(a) as ε → 0. This is of course related
to the Fundamental theorem of calculus, which in the case of continuous fX tells us that
F ′X(x) = fX(x).

Let us now look at some examples. From the exercise above we see that to describe a
continuous random variable with density it suffices to give the density function: an integrable
non-negative function with total integral 1.

Uniform random variable on [a, b]
A random variable U with density fU(x) = 1

b−a1[a,b] is called a uniform random variable on
the interval [a, b] and is denoted sometimes U = U[a,b]. We have already met the uniform ran-
dom variable on [0, 1] - as expected its law PU is equal to the uniform / Lebesgue measure on
[0, 1], considered as a probability measure on R. It’s c.d.f is given by FU(x) = 10≤x min{x, 1}.
You can also think of it as the limit of discrete uniform random variables taking values in
{i/n : i = 1 . . . n} - we saw one way of making it precise on Exercise sheet 7.

Exponential random variable
Let λ > 0. The random variable X with density fX(x) = λe−λx1x≥0 is called the exponential
random variable of parameter λ, and its law is denoted sometimes Exp(λ). (We will check
on the exercise sheet that the total mass is 1). In this case you can think of the exponential
random variable as a continuous friend of the geometric random variable, as it also satisfies
the memoryless property:

Exercise 3.5 (Exponential r.v. is the only memoryless random variable). We say that
continuous a random variable X satisfying P(X > 0) = 1 is memoryless if for every x, y > 0
we have that PX(X > x + y|X > y) = PX(X > x). Prove that the exponential random
variable is memoryless. Moreover, prove that every continuous memoryless random variable
has the law of the exponential random variable.

As geometric random variables, exponential random variables too are related to waiting
times, just the underlying process is no longer in discrete time (like a sequence of tosses) but
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continuous time (like waiting for the next call from a friend). We will be able to make some
more precise statements later in the course.

Gaussian random variable

Maybe the most important example of a random variable is that of a normal or Gaussian
random variable. Given two parameters µ ∈ R and σ ∈ R, we say that N has the law of a
normal random variable of mean µ and variance σ2, denoted N ∼ N (µ, σ2) if its density is
given by

fN(x) =
1√

2πσ2
exp(−(x− µ)2

2σ2
).

We call the law N (0, 1) the standard normal random variable, or the standard Gaussian.
Normal laws come up everywhere because of the so called Central limit theorem. A weak
version of it could be vaguely stated as follows:

• Let X1, X2, . . . be a sequence of i.i.d. random variables such that Xi has the same
law as −Xi and moreover, each Xi is bounded in the sense that there is some C > 0
with P(Xi < C) = 1. Let Sn =

∑n
i=1Xi. Then in the limit n → ∞ we have

that Sn√
n
becomes a normal random variable: for every interval (a, b), we have that

P( Sn√
n
∈ (a, b))→ P(N ∈ (a, b), where N is a Gaussian random variable.

For example in physics experiments often we rarely expect to get the ’exact’ value, but rather
it comes with an error. This error is assumed to be a sum of many independent smaller errors,
and thus, unless there is some bias that has not been accounted for, the observed values will
have a normal distribution around the actual value.

We will prove a version of this theorem towards the end of the course, after having devel-
oped more tools to work with random variables. There is a first version of this in the starred
section of the exercises.

It is common to mention here that although the normal random variable is the most used
one, its cumulative distribution function - that has earned its own notation Φµ,σ2 - given as
always by

Φµ,σ2(x) = P(N ≤ t) =
1√

2πσ2

∫ t

−∞
exp(−(x− µ)2

2σ2
)dx

does not admit a more explicit formula. So in the old days one had to really check a long
table with values to see give a numerical answer for, say, P(N > 12) or P(|N | < 200). I
suspect there might be more modern ways now...

One of the other important aspects of Gaussians are their intimate relation to linear
algebra: Gaussian random variables and random vectors behave extremely well under linear
transformations, making them already for this reasons central to many probabilistic models.

Here is a simple lemma in this spirit giving also a meaning to µ and σ2 as a shift and
scaling:

Lemma 3.22. Let Xµ,σ2 be a Gaussian random variable. Further Let X be a standard
Gaussian. Then σX + µ has the same law as Xµ,σ2.
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Proof. This is a direct computation. Let us denote by Fµ,σ2 the c.d.f. of Xµ,σ2 and by FX
the c.d.f. of X. Pick σ > 0 and let us calculate the c.d.f. of σX + µ:

FσX+µ(t) = P(σX + µ ≤ t) = P(X ≤ (t− µ)/σ) = FX =

∫ (t−µ)/σ

−∞

1

2π
exp(−x2/2)dx.

We now make a change of variable y = σx+ µ to see that the right hand side equals∫ t

−∞

1√
2πσ2

exp(−(y − µ)2/2σ2) = Fµ,σ2(t).

�

3.4 Random vectors
We already saw in the notes and on the example sheet that often several random variables

come up in the same probabilistic situation and are naturally defined on the same probability
space. So far we were looking mainly at their individual laws, or the situation when they
were independent. But this is not always the case. When one starts being interested in
the joint behaviour of several random variables, it is sometimes useful to think in terms of
random vectors:

Definition 3.23 (Random vectors and marginal laws). Consider a probability space (Ω,F ,P).
We say that (X1, X2, . . . , Xn) is a random vector if and only if each of X1, X2, . . . , Xn is a
random variable. The law PXi of each r.v. Xi is called its marginal law.

Marginal laws are just the individual laws of random variables Xi that appear as compo-
nents of a random vector and that we have been discussing so far. We know how to describe
those. Yet they don’t encode the relation between the random variables.

For example consider on the one hand (X1, X2), where bothX1 andX2 encode independent
fair coin tosses. On the other hand, consider (X1, X̃2), where X1 is a fair coin toss, but X̃2

is heads when X1 is tails and X̃2 is tails if X1 is heads. Then the marginal laws of the
vector (X1, X2) and (X1, X̃2) are the same (why?), yet they clearly describe very different
situations!

So how can we mathematically encode this relation between the random variables? In
fact, to look at joint laws, it is more natural to look at (X1, . . . , Xn) not as just a vector of
R-valued random variables, but rather as a Rn-valued random variable:

Lemma 3.24 (Joint law of random vectors). Let X = (X1, . . . , Xn) be a random vector
defined on (Ω,F ,P). Then (X1, . . . , Xn) as a vector is a (Rn,FB)-valued random variable
i.e. the map ω → (X1(ω), . . . , Xn(ω)) is measurable from (Ω,F) to (R,FB). In particular
a random vector induces a probability measure PX on (Rn,FB) called the joint law of the
vector X.

In the other direction, any (Rn,FE)-valued random variable gives rise to a random vector
according to the definition above.

We will not prove this lemma, but just remark that the underlying question here is mea-
surability: does measurability of each component as a function (Ω,F)→ (R,FE) guarantee
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the measurability of the function (Ω,F)→ (Rn,FE) and vice-versa. This should remind you
of your topology course and vector-valued continuous functions 9.

This set-up allows us to quickly prove the following basic result:

Lemma 3.25. Let X be a random vector in Rn and a any fixed vector in Rn. Then
∑n

i=1 aiXi

is a random variable. Also Πn
i=1Xi is a random variable.

On the exercise sheet you will prove by hand that the sum of two random variables X1

and X2 is a random variable - and you will see, it requires patience!

Proof. By above X is a measurable function from (Ω,F) to (Rn,FB). But now Φ : Rn → R
given by Φ(x) =

∑n
i=1 aixi is continuous from (Rn, τB) to (R, τB) and in particular it is

measurable.
But it is a direct check a concatenation f2 ◦ f1 of measurable maps f1 : (Ω,F)→ (Ω1,F1),

f2 : (Ω1,F1) → (Ω2,F2) is (Ω,F) → (Ω2,F2)-measurable. Thus
∑n

i=1 aiXi = Φ(X) is
measurable from (Ω,F) to (R, τE) and hence a random variable. �

3.4.1 Joint cumulative distribution function
Similarly to the case of a single random variable, random vectors can be characterised by

a certain family of functions.

Definition 3.26 (Joint cumulative distribution function). Any function F : Rn → [0, 1] is
called a joint cumulative distribution function (c.d.f.), if it satisfies the following conditions:

(1) F is non-decreasing in each coordinate.
(2) F (x1, . . . , xn)→ 1 when all of xi →∞.
(3) F (x1, . . . , xn)→ 0, when at least one of xi → −∞.
(4) F is right-continuous, meaning that for any sequence (xm1 , . . . , x

m
n )m≥1 such that for

all m ≥ 1 we have that xmi ≥ xi, it holds that F (xm1 , . . . , x
m
n )→ F (x1, . . . , xn).

Notice that for n = 1 we are back to the case of individual c.d.f. Moreover, if we send any
n− 1 coordinates to infinity, then we also obtain the c.d.f. of the remaining coordinate:

FXi(xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞).

As mentioned, each random vector uniquely identifies a joint c.d.f. and vice-versa. One
part of the proposition is again easy:

Proposition 3.27 (Joint c.d.f.s of random vectors). Let X := (X1, . . . , Xn) be a random
vector defined on some probability space (Ω,F ,P). Then

FX(x1, . . . , xn) := PX(X1 ≤ x1, . . . , Xn ≤ xn)

gives rise to a joint cumulative distribution function.

Proof. This is left as an exercise. �

9Indeed, the statement of interest here is the following. If (Ω,F) and ((Ωi,Fi))1≤i≤n are measurable
spaces, then the map f : (Ω,F) → (Π1≤i≤nΩi,FΠ) is measurable if and only if for every i = 1 . . . n the
map fi = pi ◦ f mapping (Ω, F ) → (Ωi,Fi) is measurable. Compare this to the following statement from
topology: if fi : (X, τX) → (Yi, τYi) are continuous, then so is f : (X, τX) → (Y1 × · · · × Yn, τΠ) given by
f = (f1, . . . , fn).
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However, the existence and uniqueness part given the joint c.d.f. is technical and thus
admitted.

Theorem 3.28 (Existence and uniqueness of random vectors via joint c.d.f. (admitted)).
Any joint c.d.f. gives rise to a unique joint law of a random vector.

Again, random vectors give us mainly a clearer way of looking at things. We can for
example now rephrase independence:

Lemma 3.29 (Independence using joint c.d.f.). Consider a random vector X = (X1, . . . , Xn)
defined on some probability space. Then X1, . . . , Xn are mutually independent if and only if
FX(x1, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn) for all x = (x1, . . . , xn) ∈ Rn.

Many relevant examples come actually from joint laws, where each marginal law is dif-
ferent. However, the case of Gaussian vectors is well-spread in machine learning / statistics
and elsewhere. To state this, we first define the notion of density for random vectors.

Definition 3.30 (Random vectors with density). Let X = (X1, . . . , Xn) be a random vector
and let fX be a non-negative integrable function 10 from Rn → [0,∞) with total integral equal
to 1. Then we say that fX is the joint density of X if and only for any box (a1, b1]×. . . (an, bn]

(3.1) PX̄(X1 ∈ (a1, b1], . . . , Xn ∈ (an, bn]) =

∫
(a1,b1]×···×(−an,bn]

fX(x̄)dx̄.

Similarly to the 1d case, we also have the interpretation of this density as representing
the probability of being in an infinitesimal neighbourhood around a point t = (t1, . . . , tn).
Indeed, if fX is continuous, then you can check that we have
(3.2) PX((X1, . . . , Xn) ∈ (t1, . . . , tn) + [−ε/2, ε/2]n) = fX(t1, . . . , tn)εn + o(εn).

Further, we can let ai → −∞, for every (t1, . . . , tn) ∈ Rn set

FX̄(t1, . . . , tn) :=

∫
(−∞,t1]×···×(−∞,tn]

fX(x̄)dx̄

and verify that this indeed gives rise to a c.d.f. Hence as joint c.d.f. characterise the joint
law of random variables, can define laws of random vectors via their density function.

We can now state the key example:

Gaussian random vector. The Gaussian (or also normal) random vector is denoted by
N (µ,C), where µ is a vector in Rn and C positive definite symmetric n×n matrix. We will
call µ the mean of the Gaussian vector, and the matrix C the covariance matrix – we will
get to the reasons for this vocabulary in a few lectures time. The density of the Gaussian
random vector is given by:

fX(x1, . . . , xn) =
1

(2π)n/2
√

det(C)
exp(−1

2
(x− µ)TC−1(x− µ)).

When µ = 0 and C is the n × n identity matrix In, we call the law N (0, In) the standard
Gaussian in Rn. In fact all Gaussian vectors in Rn are given by just linear transformations
of the standard Gaussian - this is what also makes the Gaussians ubiquitous, they behave

10Again, you can assume we are using the Riemann integral. In fact one could give a more natural
definition via Lebesgue integral, but this one works fine too.
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very well under linear transformations.
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Section 4

Mathematical expectation
We will continue working with random variables and start looking at several different

characteristics or properties of their law, based on the concept of mathematical expectation.
In many senses mathematical expectation of a probability distribution is the number that
one should give if asked for one single number to describe the distribution.

Mathematical expectation, or just ’expectation’, or ’expected value’, or ’mean’ is a fancy
name for taking the average in context of probability measures. Its introduction in the early
times of probability was roughly motivated by a very simple question:

• Suppose you are offered the following deal - a dice is thrown and you get as many
francs as many dots come up on the top of the dice; but you have to pay n francs
independently of the result in return. How many francs should you agree to pay?

Whereas what is really the ’right’ answer still depends on some further conditions and
assumptions. However, the following vaguely stated mathematical result gives some insight
into the problem (and was used in these old times of gambling!):

• Let X1, X2, . . . be independent random dice throws. Let Sn =
∑n

i=1Xi. Then in the
limit n→∞ we have that Sn

n
converges to 1+2+3+4+5+6

6
= 3.5.

This result is a specific case of the so called law of large numbers, and it tells you that the
average gain from one dice throw is 3.5. So would this mean that you should offer anything
below 3.5 francs? While pondering on this worldly problem, let us dig into the mathematical
theory.

4.1 Expected value of a discrete random variable
We start with the discrete case to lay clear foundations. The general case can be seen as

an extension of this:

Definition 4.1 (Expected value of a discrete random variable). Let X be a discrete random
variable defined on some probability space (Ω,F ,P) and with support S. We say that X
admits an expected value or that X is integrable if

∑
x∈S |x|P(X = x) <∞.

For an integrable random variable X, the expected value of X, denoted E(X) is defined as

E(X) =
∑
x∈S

xP(X = x).

Remark 4.2. Observe the following
• The condition for integrability is there of absolute summability - otherwise the order
in the sum would matter, and there would be no unique answer to the expectation.
We have that X is integrable if |X| is.
• The expectation only depends on the law PX of the random variable and not the
probability space on the background.
• Discrete random variables with finite support are always integrable.

Before proving some properties that make the expected value extremely useful, let us look
at some examples:
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Deterministic random variable
If a random variable X takes some value x ∈ R with probability 1, then its expectation is
also clearly equal to x

Bernoulli random variable
Let E be an event on a probability space, and consider the random variable 1E. As its
support is finite, it is integrable. From the definition of expectation, we directly have that
E(1E) = P(E). Thus in particular if X is a Ber(p) random variable, then its expectation is
just E(X) = p.

Uniform random variable
Consider the uniform random variable Un on {1, 2, . . . , n}. Again as it takes only finitely
many values, it is integrable. Its expected value is

E(Un) =
1

n

n∑
i=1

i =
n+ 1

2
.

Poisson random variable
Consider the Poisson random variable P of parameter λ > 0. The support of a Poisson
random variable is not finite and thus one needs to verify that it is integrable. But in fact,
the same computation also gives the expectation:

E(P ) =
∑
n≥0

nP(P = n) =
∑
n≥1

n
e−λλn

n!
= λe−λ

∑
m≥0

λm

m!
= λ.

Hence, even if a random variable can take arbitrary large values, its expectation can be finite.
This is, however, not always the case. For example

• Consider a random variable X such that it takes value 2n with probability 2−n. Then
clearly E(X) =∞ and X is not integrable.

If a random variable is non-negative, then its expected value doesn’t exist only if it is too
large, i.e. is infinite. Sometimes one still defines expected value for any positive random
variable, just saying that E(X) =∞, in case it is infinite.

You will see more examples on the exercise sheet:

Exercise 4.1 (Expectations of discrete random variables). Prove that the expected value of
a Binomial random variable Bin(n, p) is equal to np. Prove also that the expected value of a
geometric random variable of parameter p is equal to 1/p.

As mentioned, the expected value is in some sense the best single number to describe
a probability distribution. There are several reasons to say that and first is the follow-
ing: it minimizes the expected error we make in estimating the value of X just using one
deterministic number, when we measure the error in terms of average square differences.

Lemma 4.3. Let X be an integrable discrete random variable with support S. Suppose that
also X2 is integrable. Then c = E(X) minimizes the expression g(c) :=

∑
x∈S(x− c)2P(X =

x).
Moreover, show from the definition that the value of g(E(X)) can be written as E((X −

E(X)2). This is called the variance of X.
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Proof. This is on the example sheet.
�

Another good reason for liking expectation is the fact that it is a linear operator on random
variables. Together with this, let us also verify some other simple properties.

Proposition 4.4. Let X, Y be two integrable discrete random variables defined on the same
probability space. Then the expected value satisfies the following properties:

• It is linear: we have that E(λX) = λE(X) for all λ ∈ R. Further, X+Y is integrable
and E(X + Y ) = E(X) + E(Y ).
• If X ≥ 0 i.e. P(X ≥ 0) = 1 , then E(X) ≥ 0,
• If X ≥ Y i.e. P(X ≥ Y ) = 1 , then E(X) ≥ E(Y ). Deduce that if P(c ≤ X ≤ C) = 1,
then c ≤ E(X) ≤ C.
• We have that E(|X|) ≥ |E(X)|.

Proof. The fact that E(λX) = λE(X) follows directly from the definition. Let us next prove
that X + Y is integrable and E(X + Y ) = EX + EY . Denote by SX , SY the supports of X
and Y respectively. Denote by SX+Y the support of X + Y . Notice that

P(X + Y = s) =
∑
x∈SX

∑
y∈SY

P(X = x, Y = y)1x+y=s

Thus we can write∑
s∈SX+Y

|s|P(X + Y = s) =
∑

s∈SX+Y

∑
x∈SX

∑
y∈SY

|x+ y|P(X = x, Y = y)1x+y=s.

By triangle inequality we can bound |x+ y| ≤ |x|+ |y| and thus obtain

(4.1)
∑

s∈SX+Y

|s|P(X + Y = s) ≤
∑

s∈SX+Y

∑
x∈SX

∑
y∈SY

(|x|+ |y|)P(X = x, Y = y)1x+y=s.

Now, observe that for fixed x and y either P(X = x, Y = y) = 0 or x + y ∈ SX+Y and we
have that

P(X = x, Y = y) = P(X = x, Y = y)
∑

s∈SX+Y

1x+y=s.

Moreover, for fixed x by the law of total probability we have that∑
y∈SY

P(X = x, Y = y) = P(X = x).

Thus as everything in Equation (4.1) is positive, we can now switch the order of summation,
and to recognize the RHS as a sum of∑

x∈SX

∑
y∈SY

∑
s∈SX+Y

|x|P(X = x, Y = y)1x+y=s =
∑
x∈SX

|x|P(X = x)

and ∑
y∈SY

∑
x∈SX

∑
s∈SX+Y

|y|P(X = x, Y = y)1x+y=s =
∑
y∈SY

|y|P(Y = y).

Hence we bound∑
s∈SX+Y

|s|P(X + Y = s) ≤
∑
x∈SX

|x|P(X = x) +
∑
y∈SY

|y|P(Y = y)
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and deduce integrability. Thereafter, the same way of separating sums also gives that E(X+
Y ) = E(X) + E(Y ).

The rest of the exercise is on the example sheet.

E(X) =
∑
x∈SX

xP(X = x) ≤
∑
x∈SX

|x|P(X = x) = E(|X|),

�

A very similar proof gives that if X, Y are independent and integrable discrete random
variables, then XY is integrable and E(XY ) = E(X)E(Y ).

Exercise 4.2. Let X, Y be independent and integrable discrete random variables. Then XY
is integrable and E(XY ) = E(X)E(Y ).

This allows us to come to the other fundamental property of the expectation - the empirical
average converges to the mathematical expectation, allowing us to justify why we would
should maybe be happy to pay any less than 3.5 francs to repeatedly be able to play the
dice came from above...

Theorem 4.5 (A version of law of large numbers). Let X1, X2, . . . be i.i.d. integrable discrete
random variables such that X2

1 is also integrable. Then for every ε > 0

P(| 1
n

n∑
i=1

Xi − E(X1)| > ε)→ 0

as n→∞

Roughly, this law of large numbers says that if you repeat the same random experiment
independently n times to obtain i.i.d random variables X1, X2, . . . , Xn then as n → ∞
the average of Xi converges to the expectation of X1. This is quite remarkable that the
distribution of the variables does not play any larger role in this limit - only the integrability
and the expectation matter. Both of these theorems are related to so called ergodic theorems,
which roughly link the temporal (here n) and spatial (here E) averages.

We need one final ingredient before proving this:

Proposition 4.6 (Markov). Let X be a non-negative integrable discrete random variable.
Then P(X ≥ t) ≤ t−1E(X).

Remark 4.7. This and the independence claim of course hold also for the general random
variables, we just need to first define their expectation!

Proof of Theorem. By assumption there is some C such that EX2
1 < C. Let Sn = n−1

∑n
i=1Xi.

Our aim is to use the Markov’s inequality. However, as absolute value is hard to work
with we will instead use it for the square, which amends itself to linearity of exepctation and
the property of independence from above:

P(|Sn − E(X1)| > ε) = P((Sn − E(X1))2 > ε2) ≤ E((Sn − E(X1))2)/ε2.

So let us calculate E((Sn − EX1)2). First by writing out Sn, opening the brackets inside
expectation and then using linearity of expectation we have

E(|Sn − EX1|2) =
∑
i,j≤n

n−2E [(Xi − EX1)(Xj − EX1)] .
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We have that EXj = EX1. Thus we see that by linearity

E [(Xi − EX1)(Xj − EX1)] = E(XiXj) + (E(X1))2 − 2(E(X1))2 = E(XiXj)− (E(X1))2.

But for i 6= j, by independence also E(XiXj) = E(Xi)E(Xj) = (E(X1))2, giving us

E [(Xi − EX1)(Xj − EX1)] = 0

for i 6= j. Hence

E(|Sn − EX1|2) = n−2

n∑
i=1

(
E(X2

i )− (E(X1))2
)

= n−2n−1C → 0

as n→∞. Hence we see that

P(|Sn − EX1| > ε) ≤ ε−2n−1C → 0

and the theorem follows.
�

We are still to prove the claim in Exercise 4.2 and the Markov’s inequality. The first one
will be on the next example sheet, Markov’s inequality comes now:

Proof of Markov’s inequality: Let X be a non-negative discrete integrable random variable.
Then Yt = X1X≥t is also a non-negative discrete integrable random variable as Yt ≤ X. But
now observe that Yt ≥ t1X≥t and thus

E(X) ≥ E(Yt) ≥ E(t1X≥t).

But E(t1X≥t) = tP(X ≥ t) by linearity and the fact that 1E is Bernoulli random variable
We obtain E(X) ≥ tP(X ≥ t) as desired. �

Hopefully you got convinced that the notion of mathematical expectation is pretty useful.
We will now see how to generalize it to arbitrary, not necessarily discrete random variables.

4.2 Expected value of an arbitrary random variable
The idea for defining the expectation of a general random variable X is to approximate it

by discrete random variables. More precisely, given X, we define the discretizations of X as:

Xn(w) = 2−nb2nX(w)c =
∑
k∈Z

k2−n1X(w)∈[k2−n,(k+1)2−n).

Notice that Xn is indeed a discrete random variable - it is a non-decreasing function of X,
so it is a random variable, and it takes only countably many values, thus it is discrete.
The following exercise says that these discretizations really approximate the initial random
variable very well.

Exercise 4.3 (Discretizations are nice). Let X be a random variable defined on (Ω,F ,P).
and (Xn)n≥1 be the discretizations Xn = 2−nb2nXc =

∑
k∈Z k2−n1X∈[k2−n,(k+1)2−n).

Prove that for every ω ∈ Ω, we have that Xn(ω) ≤ X(ω) ≤ Xn(ω) + 2−n and thus the
sequence (Xn(ω))n≥1 converges to X(ω).

We can now use the definition of the expectation E(X) for discrete random variables X
to define expected value of an arbitrary random variable:
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Proposition 4.8 (Expected value of a random variable). Let X be a random variable defined
on some probability space. If E(|Xm|) <∞ for some m, then E(|Xn|) <∞ for all n and we
call X integrable. The expected value of X is then defined as

E(X) = lim
n→∞

E(Xn).

Remark 4.9. Observe again that the expectation only depends on the law of X and not on
the underlying probability space: this is clear in the case of discrete random variables, but
now notice that if X and Y have the same law, then so do the discretizations Xn and Yn.

Remark 4.10. A peek into future: if you consider (Ω,F ,P) = ([0, 1],FL,PU) where FL is the
Lebesgue σ−algebra and PU the Lebesgue measure (we also called it uniform measure). Then
for any integrable random variable X, which is just a measurable function from ([0, 1],FL)
to ([0, 1],FE), EX is its Lebesgue integral. You will see a more general construction in your
Analysis IV course using a larger family of approximations.

The idea for proving this proposition is just to show that the sequence E(Xn) is Cauchy.

Proof. Notice that from the Exercise 4.3 above we see that X1 − 1 ≤ Xn ≤ X1 + 1 and
hence |Xn| ≤ |X1|+ 1. Thus from Proposition 4.4 it follows that E(|Xn|) <∞ if and only if
E(|X1|) <∞ giving the first claim.

We now claim that E(Xn) is a Cauchy sequence. So consider m ≥ n. Then from Proposi-
tion 4.4 it follows that

|E(Xn)− E(Xm)| = |E(Xn −Xm)| ≤ E(|Xn −Xm|).

But we can bound |Xn−Xm| ≤ 2−n using Exercise 4.3. Hence |E(Xn)−E(Xm)| ≤ E(2−n) =
2−n. It follows that the sequence (E(Xn))n≥1 is Cauchy and thus converges to a unique limit
as n→∞. �

An easy but important sanity check is that this definition indeed agrees with the previous
definition for discrete random variables, i.e. that the Definition 4.1 of E(X) and the definition
of E(X) by Proposition 4.8 agree for any discrete random variable X. This is on the example
sheet.

Further, one can also check that all the properties that hold for the expectation of the
discrete random variable, also hold for the expectation in general:

Proposition 4.11. Let X, Y be two integrable random variables defined on the same prob-
ability space. Then the expected value satisfies the following properties:

• It is linear: we have that E(λX) = λE(X) for all λ ∈ R. Further, X+Y is integrable
and E(X + Y ) = E(X) + E(Y ).
• If X ≥ 0 i.e. P(X ≥ 0) = 1 , then E(X) ≥ 0,
• If X ≥ Y i.e. P(X ≥ Y ) = 1 , then E(X) ≥ E(Y ). Deduce that if P(c ≤ X ≤ C) = 1,
then c ≤ E(X) ≤ C.
• We have that E(|X|) ≥ |E(X)|.

Further also the Markov inequality holds.

Proof. All these points follow from Proposition 4.4 via discretizations and Exercise 4.3. This
is a somewhat tedious verification that I leave for you.
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For example, as for all n , we have that Xn+2−n ≥ X, then X ≥ 0 means that Xn ≥ −2−n.
It follows from Proposition 4.11 that E(Xn) ≥ −2−n, implying that for every ε > 0, for all n
large enough E(Xn) ≥ −ε and hence E(X) ≥ 0.

Markov’s inequality can be proved either by discretization or in fact by exactly the same
proof we gave above. �

Let us now see that in the case of random variables with density, we can use Riemann
integration and the density to calculate expectation.

Proposition 4.12 (Expected value for r.v. with density). Let X be a random variable with
density fX . Then X is integrable iff

∫
R |x|fX(x)dx <∞ and we have

E(X) =

∫
R
xfX(x)dx.

Proof. Consider the discretizations Xn = 2−nb2nXc. Notice that

P(Xn ∈ [k2−n, (k + 1)2−n)) =

∫ (k+1)2−n

k2−n
fX(x)dx

and hence

E(|X1|) =
∑
k≥0

k2−1

∫ (k+1)2−1

k2−1

fX(x)dx+
∑
k≥1

k2−1

∫ (−k+1)2−1

−k2−1

fX(x)dx.

Now, if |x| ∈ [k2−1, (k + 1)2−1) then k2−1 ≤ |x| ≤ k2−1 + 2−1. Using the fact that∫
R fX(x)dx = 1 and that fX is non-negative, we conclude that

−1 +

∫
R
|x|fX(x)dx ≤ E(|X1|) ≤ 1 +

∫
R
|x|fX(x)dx.

Thus X is integrable iff
∫
R |x|fX(x)dx <∞.

Next, as

E(Xn) =
∑
k∈Z

k2−n
∫ (k+1)2−n

k2−n
fX(x)dx,

we see similarly to above that also

E(Xn) ≤
∫
R
xfX(x)dx ≤ E(Xn) + 2−n.

But E(Xn)→ E(X) as n→∞, and hence the proposition now follows by taking n→∞. �

Let us calculate densities for some known random variables:

Uniform random variable on [a, b]
Consider a uniform random variable U on [a, b]. Recall its density is given by fU(x) =
(b− a)−11x∈[a,b]. First notice that U is bounded and hence integrable. Thus we calculate:

E(U) = (b− a)−1

∫
R
x1x∈[a,b]dx = (b− a)−1

∫ b

a

xdx =
b2 − a2

2(b− a)
=
a+ b

2
.
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Gaussian random variable
Consider a standard normal random variable N ∼ N (0, 1). We first note that

1√
2π

∫
R
|x| exp(−x

2

2
)dx =

2√
2π

∫ ∞
0

x exp(−x
2

2
)dx =

2√
2π

<∞.

Thus N is integrable. We further notice that

E(N) =
1√
2π

∫
R
x exp(−x

2

2
)dx = E(−N),

as the density of −N is the same as that of N . Hence Proposition 4.11 implies that E(N) = 0.
Now, consider a general Gaussian random variable Nµ,σ2 ∼ N (µ, σ2). Recall that we can

write Nµ,σ2 ∼ σN + µ and hence Nµ,σ2 is integrable. Further, we can use Proposition 4.11
one more time to deduce that ENµ,σ2 = σE(N) + µ = µ. This is the reason why µ is called
the mean of the Gaussian random variable.

Again, further examples are on the exercise sheet.

4.3 Expected value of a function of a random variable
It comes out that the expected value, even if just a number, is very useful tool to describe

a random variable. Often we might not be interested in the expectation of some given
random variables, but of certain functions of these random variables. For example, we have
already seen that given a r.v. X we might be interested in E ((X − EX)2), or given X, Y ,
we might be interested in EXY . In fact, as we will see, if we know Eg(X) for sufficiently
many functions g, then this determines the random variable itself!

To start, let us look at the following proposition that generalizes the exercise showing that
for discrete random variables E ((X − s)2) =

∑
x∈SX (x − s)2P(X = x), i.e. that gives us a

nice way to calculate expectations of functions of a r.v.:

Proposition 4.13. Let X = (X1, . . . , Xn) be a random vector defined on (Ω,F ,P) and φ a
measurable function from (Rn,FE) to (R,FE), so that φ(X) is a random variable.

• If all X1, . . . , Xn are discrete and φ(X) is integrable, then

E(φ(X)) =
∑
x∈SX

φ(x)P(X = x),

where SX ⊆ Rn is the support of the random vector X, i.e. the set of s = (s1, . . . , sn) ∈
Rn such that P(X = s) > 0 for all x ∈ SX and P(X ∈ SX) = 1.
• If X is a random vector with density, φ(X) an integrable random variable and φ
sufficiently nice - meaning that φ−1([a, b)) is Riemann measurable for any interval
[a, b) - then

E(φ(X)) =

∫
Rn
φ(x)fX(x)dx̄.

The condition ’sufficiently nice’ is of course not quite natural. This is yet again due to
the fact that Riemann integration and measurability in the sense of Borel (or Lebesgue) do
not play together in full harmony. After Analysis IV next semester, you should be able to
revisit many of these results and restate them in more natural ways, if interested of course.
Still, notice that the condition holds for many natural functions like xn or exp(x).
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Proof. Let us start from the discrete case, which works exactly like Exercise 3 on Sheet 10
after checking that if φ is measurable then φ(X) is still a discrete random variable. Let us
still spell it out in the notes.

So let Sφ denote the support of φ(X). By definition, φ(X) is integrable iff∑
s∈Sφ

|s|P(φ(X) = s) <∞

and then
E(φ(X)) =

∑
s∈Sφ

sP(φ(X) = s).

By the law of total probability we can write P(φ(X) = s) =
∑

x∈SX
1φ(x)=s and thus the the

whole expression can be written as∑
s∈Sφ

x
∑
x∈SX

1φ(x)=sP(X = x) =
∑
x∈SX

P(X = x)
∑
s∈Sφ

s1φ(x)=s,

where we can change the order of summation as the series is absolutely summable. To
conclude, notice that for any fixed x ∈ Rn, we have that

∑
s∈Sφ s1φ(x)=s = φ(x).

The case of the random variables with density is admitted i.e. non-examinable, but I still
give the proof for those interested.

To prove the case for random variables with density, we use discretizations - we set φn(x) =
2−nbφ(x)2nc. Then - given integrability - we have that

E(φn(X)) =
∑
k∈Z

k2−nP(φn(X) = k2−n).

Now, given that φ−1([a, b)) are Riemann-measurable, we can write

k2−nP(φn(X) = k2−n) =

∫
Rn

1x∈φ−1([k2−n,(k+1)2−n))k2−nfX(x)dx̄.

Again by absolute summability 11 we can switch the order of sum and integration to get

E(φn(X)) =

∫
Rn
fX(x)

∑
k∈Z

1x∈φ−1([k2−n,(k+1)2−n))k2−ndx̄.

As above, for any fixed x, we have that 1x∈φ−1([k2−n,(k+1)2−n)) is equal to 1 for only one value
of k and thus from the definition of φn, we obtain∑

k∈Z

1x∈φ−1([k2−n,(k+1)2−n))k2−n = φn(x).

Hence
E(φn(X)) =

∫
Rn
φn(x)fX(x)dx̄.

We can now conclude similarly to Proposition 4.12. �

Looking at expectations of functions of a random variable turns out to be a powerful thing:

11More precisely, we are using there that if either
∑

n≥1

∫
R |fn(x)|dx < ∞ or

∫
R
∑

n≥1 |fn(x)|dx < ∞,
then

∫
R
∑

n≥1 fn(x)dx =
∑

n≥1

∫
R fn(x)dx. You have met the analogous result for swapping two sums∑

k≥1

∑
n≥1, and the proof is basically the same.
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Proposition 4.14. Let X, Y be two random variables. Then X and Y are equal in law if
and only if for all bounded continuous functions g : R→ R we have that Eg(X) = Eg(Y ).

Proof. If X and Y have the same law, then also do g(X) and g(Y ) for any continuous and
bounded g. Hence, as bounded functions are integrable and the expectation only depends
on the law of the r.v., we indeed have that Eg(X) = Eg(Y ).

In the other our aim is to show that ∀t ∈ R, FX(t) = FY (t). To do this recall that
FX(t) = P(X ≤ t) = E(1x≤t), so our aim will be to consider continuous approximations
gt,n of the indicator function 1x≤t, defined as follows. Fix some t ∈ R and set gt,n(x) = 1 if
x ≤ t, we set gt,n(x) = 0 if x ≥ t+ 2−n and we set gt,n(x) = 1− 2n(x− t) inside the interval
(t, t+ 2−n).

Then, one the one hand

FX(t) = P(X ≤ t) = E(1x≤t) ≤ E(gt,n(X))

and on the other hand

E(gt,n(X)) ≤ E(1x≤t+2−n) = P(X ≤ t+ 2−n) = FX(t+ 2−n).

Thus by right-continuity of FX(t) we see that E(gt,n(X)) converges to FX(t) as n→∞. But
similarly also E(gt,n(Y )) converges to FY (t) as n → ∞. As by assumption E(gt,n(X)) =
E(gt,n(Y )), we can conclude the proposition. �

We already saw that if X, Y are independent, then their product factorises. But in fact
there is a sort of converse too - X, Y are independent if the expectation factorizes for all
continuous functions!

Proposition 4.15. Let X, Y be two random variables. Then
• If for all g : R→ R, h : R→ R continuous and bounded we have that

(4.2) E (g(X)h(Y )) = Eg(X)Eh(Y ),

then X and Y are independent.
• On the other hand, if X and Y are independent, then for all measurable functions
g, h : R→ R such that g(X) and h(Y ) are integrable the Equation (4.2) holds.

Proof. The first part follows similarly to the last proposition:
From Lemma 3.29 we know that to prove X, Y are independent, it suffices to prove that

for all s, t ∈ R we have that F(X,Y )(s, t) = FX(s)FX(t). Further, recall that F(X,Y )(s, t) =
E1X≤s,Y≤t = E1X≤s1Y≤t. We follow the strategy of Proposition 4.14. Indeed, consider the
same continuous functions gt,n(x) satisfying 1x≤t ≤ gt,n(x) ≤ 1x≤t+2−n .

Using the expression of F(X,Y ) above, definition of gt,n and properties of expectation be
can bound

F(X,Y )(s, t) ≤ Egs,n(X)gt,n(Y ) ≤ F(X,Y )(s+ 2−n, t+ 2−n).

By assumption
Egs,n(X)gt,n(Y ) = Egs,n(X)Egt,n(Y )

. Now by right-continuity of F(X,Y ), we know that F(X,Y )(s + 2−n, t + 2−n) converges
to F(X,Y )(s, t) and hence also Egs,n(X)gt,n(Y ) does. Further we have seen that Egs,n(X)
converges to FX(s) and similarly Egt,n(Y ) converges to FX(t). Thus we conclude that
F(X,Y )(s, t) = FX(s)FX(t) as desired.
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For the other direction, we first observe the following (this will be on the exercise sheet):

Exercise 4.4. Prove that if X, Y are independent random variables, then so are g(X), h(Y ).

Given this, the second point follows when we show that for any integrable independent
random variables X, Y we have that E(XY ) = E(X)E(Y ). The discrete case was on the
exercise sheet 11.

The general case proceeds again via approximation and is left as an exercise.
�

4.4 Variance and covariance
Next to the mean value or expectation, a key parameter or characteristic of a random

variable is its variance (and its standard deviation, which is just the square-root of the
variance).

This measures the deviation from the mean, and in fact we already saw it when charac-
terising the expectation as a minimzer of deviation:

Definition 4.16 (Variance of a random variable). Let X be an integrable random variable.
Then if E(|X|2) <∞, we say that X has a finite second moment and define its variance

Var(X) := E((X − EX)2) ≥ 0.

Standard deviation is defined as σ(X) :=
√
VarX.

Notice that indeed (X − EX)2 is integrable when |X|2 is, as we can write (X − EX)2 ≤
2|X|2 +2(EX)2. A useful tool for calculating variance is to notice that by opening the square

Var(X) = E
(
(X − EX)2

)
= E(X2)− 2E(XEX) + (EX)2 = E(X2)− (EX)2.

So let us calculate some variances using this:
• The variance of a Bernoulli random variable X ∼ Ber(p) is E(X2)−(EX)2 = p−p2 =
p(1− p). Why is this reasonable?
• Similarly, using the same formula we can calculate the variance of an exponential
random variable X ∼ Exp(λ). Indeed, as x2 satisfies the conditions of Proposition
4.13, we can write

EX2 = λ

∫ ∞
0

x2 exp(−λx)dx.

We now calculate by doing twice integration by parts

λ

∫ ∞
0

x2 exp(−λx)dx = 2

∫ ∞
0

x exp(−λx)dx = 2λ−1EX = 2λ−2.

Hence Var(X) = λ−2.
Variance tells us how much the random variable fluctuates or deviates around its mean,

as is illustrated for example by the following lemma, whose proof was on the example sheet.

Lemma 4.17 (Chebyshev’s inequality). Let X be an integrable random variable with finite
variance. Then P(|X − EX| > t) ≤ Var(X)

t2
.
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4.4.1 Covariance and correlation
As discussed, one is often is interested how two random variables are related to each other.

We already saw the notion of independence - random variables are independent if they don’t
influence each other at all. In the other extreme there is the case where they are equal, i.e.
P(X = Y ) = 1 in which case we say X = Y almost surely. Both of those are very strong
notions. The precise relation of two random variables is encoded in their joint law, but that
can be quite complicated.

Here we introduce a simpler and weaker measure of how two random variables are related,
and a way to in some sense measure the level of dependence.

Definition 4.18 (Covariance and correlation). Suppose that X, Y are two integrable random
variables of finite variance defined on the same probability space. The covariance of X and
Y , denoted Cov(X, Y ) is then defined as

Cov(X, Y ) = Cov(Y,X) = E ((X − EX)(Y − EY )) = E(XY )− EXEY.

If neither of X, Y is almost surely a constant, then the correlation ρ(X, Y ) is defined as

ρ(X, Y ) =
Cov(X, Y )√
Var(X)Var(Y )

.

A first question might be why is even covariance well-defined? I.e. why is E(XY ) finite
when X, Y have finite variance? This follows from the Cauchy-Schwarz inequality, which I
believe you have already seen in some form. You will find an non-eximinable proof at the
end of the section.

Theorem 4.19 (Cauchy-Schwarz inequality). Let X, Y be two random variables on (Ω,F ,P)
such that X2, Y 2 are integrable. Then |XY | is also integrable, and moreover

E(|XY |) ≤
√
E(X2)E(Y 2).

Moreover, the equality holds if and only if |X| = λ|Y | almost surely for some λ > 0.

Notice that in particular it also follows that

E(XY ) ≤ |E(XY )| ≤ E|XY | ≤
√
E(X2)E(Y 2).

The relevant cases of equality can be also worked out.
Using this inequality, we see that not only are covariance and correlation well defined,

but also we can see that having full correlation means that the random variables are almost
surely equal.

Lemma 4.20 (Covariance and dependence). Let X, Y be two random variables of finite
positive variance defined on the same probability space.

• Then the correlation ρ(X, Y ) ∈ [−1, 1]. Further, it is equal to 1 if and only if there
exists some λ > 0 such that X = λY almost surely; it is equal to −1 if and only if
there exists some λ > 0 such that X = −λY almost surely;
• Further, if X, Y are independent, integrable with finite variance, then their covariance
is zero.
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Proof. The first part follows from the Cauchy-Schwarz inequality.
For the second part we calculate:

Cov(X, Y ) = E((X − EX)(Y − EY )) = E(XY )− E(X)E(Y ).

But by independence of X, Y we know that E(XY ) = EXEY and we conclude. �

Given a random vector, it is often useful to define the covariance between each pair of
components.

Definition 4.21 (Covariance matrix). Let X = (X1, . . . , Xn) be a random vector such that
all components have finite variance. Then the covariance matrix Σi,j is defined as

Σi,j = Cov(Xi, Xj).

In fact, we have already met a covariance matrix! indeed, for a Gaussian random vector
N (µ,C), the matrix positive-definite symmetric matrix C is the covariance matrix and µ =
(EX1, . . . ,EXn):

Exercise 4.5 (Independence and Gaussians). Prove that for a Gaussian random vector
X̄ ∼ N (µ,C), the matrix C is the covariance matrix and µ = (EX1, . . . ,EXn). Show that in
the case of a Gaussian random vector, if Cov(Xi, Xj) = 0, then Xi and Xj are independent.

Observe that this in particular means that a Gaussian vector is determined only by its
mean and covariance, which is very nice indeed!

4.5 Moments of a random variable
We have seen that E(X) and E((X−EX)2) contain valuable information about a random

variable X. Moreover, we saw that if we look at Eg(X) for all bounded continuous g, then
this determines the law of X completely. But this is already quite a lot of information! An
intermediate task would be to ask EXn for all n ≥ 1. Does knowing this determine the
random variable?

Definition 4.22 (Moments of a r.v.). Let X be a random variable and n ∈ N. If E|X|n <∞,
we say that X admits a n-th moment. We call EXn the n-th moment of X.

To understand the relation between different moments, let’s recall the Jensen’s inequality.
A function φ : R→ R is called convex if for all x, y and all λ ∈ [0, 1] we have that

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y).

We call λx+(1−λ)y a convex combination of x, y. Using this vocabulary, Jensen’s inequality
can be reworded as saying that the image under φ of a convex combination of two points is
always smaller than the convex combination of the images of the two points under φ. (What
does it mean geometrically?)

Jensen’s inequality in the probabilistic set-up is stated as follows:

Theorem 4.23 (Jensen’s inequality). Let X be an integrable random variable and φ a convex
function such that φ(X) is also integrable 12. Then

φ(EX) ≤ Eφ(X).

12Recall that a convex function is continuous and thus if X is a random variable, then so is φ(X)
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Notice the similarity with the defining property of convexity: EX can be thought of as
a convex combination of the possible values of X. Thus, for example, if X takes only two
values x, y with probabilities λ and 1− λ then Jensen’s inequality is just a reformulation of
the defining property of convexity.

I hope you have seen and will see many different proofs of this nice inequality. Still, there
is one in the appendix on this section for completeness.

As a corollary we have the following simple lemma, saying that the existence of higher
moments implies the existence of lower moments too:

Lemma 4.24. Let X be a random variable defined on some probability space (Ω,F ,P that
admits a n-th moment. Then it also admits a m-th moment for all m ≤ n and moreover
E|X|n ≥ (E(|X|m))n/m.

Proof. Let m ≤ n. Let us first notice that if |X|n is integrable, then also is |X|m with m ≤ n.
Indeed, we can bound

|X(ω)|m ≤ max(|X(ω)|n, 1) ≤ |X(ω)|n + 1

and thus integrability of |X|m follows from that of |X|n.
Now, for n ≥ m, consider φ(x) = |x|n/m. This is a convex function. Hence, as both |X|m

and |X|n = φ(|X|m) are integrable, we can apply Jensen’s inequality to φ and |X|m and
obtain

E|X|n = E(φ(|X|m)) ≥ φ(E|X|m) = (E(|X|m))n/m ,

concluding the proof. �

In particular, we conclude that if the second moment of X exists, then both X is integrable
and of finite variance. Many random variables you will see in statistics or numerics will have
finite variance, so it’s useful to have a good condition for that. You will see on the example
sheet that the converse is not true, there will be examples of integrable random variables
with infinite variance and so on.

The existence of moments has a direct influence on how the tails of the random variable
behave. Indeed, by Markov’s inequality if E|X|n <∞, we know that

P(X > t) ≤ P(|X|n > tn) ≤ E|X|n

tn
,

i.e. the tail behaves like O(t−n). In case of finite variance we only knew that the tail behaves
like O(t−2) for example. Or in simple words - having higher moments that very big values
are taking with smaller probability.

Let us now come to the interesting question - do the moments uniquely determine the
distribution? This is true in quite large generality, but not always. We will here prove a
partial result:

Proposition 4.25. Let X, Y be two almost surely bounded random variables, i.e. r.v. such
that almost surely X ∈ [−A,A] and Y ∈ [−A,A] for some A > 0. Suppose further that
EXn = EY n for every n ∈ N. Then X and Y have the same law.

Before embarking on the proof, observe that trivially for bounded random variables all
moments do exist - namely, if X is bounded then every |X|n is bounded too. The proof we
give relies on the following beautiful result, saying that one can approximate each continuous
function on a finite interval arbitrary well using polynomials:
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Theorem 4.26 (Stone-Weierstrass). Let f be a continuous function on some interval I =
[−A,A]. Then f can be uniformly approximated by polynomials: i.e. there is a sequence
of polynomials (Pn)n≥1 such that (Pn)n≥1 converges to f in (C(I,R), d∞), where as usual
d∞(f, g) = supx∈I |f(x)− g(x)|.

Most likely, you will see the proof of this theorem in several courses from several points of
view. There is a short probabilistic, but non-examinable proof at the end of the subsection.
Let us here see how it implies the proposition.

Proof of Proposition 4.25. The proposition follows rather easily from Stone-Weierstrass theo-
rem. Indeed, by the assumption and by linearity of expectation, we see that EP (X) = EP (Y )
for each polynomial P .

Our aim is to use Proposition 4.14, i.e. to prove that Eĝ(X) = Eĝ(Y ) for all continuous
bounded ĝ. Notice that any such ĝ gives rise to a continuous function g : [−A,A] → R, by
restriction. Moreover as X, Y ∈ [−A,A] almost surely, we see that Eĝ(X) = Eg(X) and
hence it suffices to argue that Eg(X) = Eg(Y ) for continuous functions on [−A,A].

Given such a function g, by the Stone-Weierstrass theorem for every ε > 0, there is some
polynomial Pε such that d∞(g, Pε) < ε. As EPε(X) = EPε(Y ), we can write

|Eg(X)− Eg(Y )| = |Eg(X)− EPε(X) + EPε(Y )− Eg(y)|,

and bound this from above using by triangle inequality by

|E (g(X)− Pε(X)) |+ |E (g(Y )− Pε(Y )) |.

Further, |E (g(X)− Pε(X)) | ≤ E|g(X) − Pε(X)|. But now as X ∈ [−A,A] almost surely,
and |g(x) − Pε(x)| < ε for x ∈ [−A,A], we see that |g(X) − Pε(X)| < ε almost surely, and
hence by Proposition 4.11 we deduce that E|g(X)− Pε(X)| < ε.

Hence we conclude that |Eg(X) − Eg(Y )| ≤ 2ε and as ε > 0 was arbitrary we conclude
that Eg(X) = Eg(Y ). As g was arbitrary, the proposition now follows from Proposition
4.14. �

For variables that do not have finite support, this characterisation can fail for several
reasons. First, of course all moments might not exist and then only the few existing moments
might not characterize the distribution. Second, even if all moments exist, they might grow
too quickly to characterize the distribution:

Exercise 4.6 (Moment problem). Let X be a standard normal random variable. Prove that
W = exp(X) admits all moments and calculate these moments. Let a > 0, and consider a
discrete random variable Ya with support

Sa = {aem : m ∈ Z}

and defined by

P(Ya = aem) =
1

Z
a−me−m

2/2

with Z =
∑

m∈Z a
−me−m

2/2 (why is it finite?). Show that Ya admits all moments and that
moreover for every n ∈ N, EW n = Eexp(Xn) = EY n

a .
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4.5.1 Moment generating function
We considered moments of random variables and saw that they might give a useful count-

able collection of numbers that fully characterizes the underlying random variable. But what
if instead of moments we look at some other family of functions g(X) and their expectations?
It comes out that a very useful family is directly related to moments: we consider EetX for
all t ∈ R such that etX is integrable.

Definition 4.27 (Moment generating function). If X is a random variable such that exp(tX)
is integrable for some interval I = (−c, c) around 0. We say that X admits a moment-
generating function (MGF) in a neighbourhood around 0 and denote MX(t) = E exp(tX) for
t ∈ I.

The name comes from the fact that when MX(t) exists in a small interval, we can write

MX(t) = E(exp(tX)) = E(
∑
n≥1

tnXn

n!
).

Checking that you can exchange the summation and the expectation (On the Exercise sheet),
one obtains

MX(t) =
∑
n≥1

tn

n!
EXn.

In particular, from here it is not hard to deduce that if we look at MX(t) as a function of t,
then in fact moments dn

dtn
MX(t) evaluated at t = 0 just gives the n-th moment. We will skip

this calculation that is not examinable.
It comes out that MGF-s also characterize the distribution. We state this result and you

are free to use it, though the proof is out of the scope of this course:

Theorem 4.28 (MGF determines the distribution (admitted)). Let X, Y be random vari-
ables such that MX(t) and MY (t) exist in some open interval around 0, and moreover
MX(t) = MY (t) in this interval. Then X and Y have the same law.

In fact moment generating functions and this concrete theorem for MGFs also nicely
generalize to random vectors:

Theorem 4.29 (MGF for random vectors (admitted)). Let X be a random vector taking
values in Rn such that Ee〈t,x〉 < ∞ for t in some open neighbourhood of 0.13 We then call
MX(t) = Ee〈t,x〉 the moment generating function of X. Again, if MGFs of two random
vectors X and Y are equal in some neighbourhood around 0, then X and Y have the same
law.

These two results are extremely useful. First, as an application MGF-s can be used to
determine independence:

Lemma 4.30 (Independence and MGF). Let X, Y be random variables such that there exists
an open interval I ⊂ R containing zero such that MX(t) and MY (t) exist for all t ∈ I. Then
X, Y are independent iff for each t, s ∈ I, MX(t)MY (s) = M(X,Y )((t, s)).

I didn’t have time to do this proof in the course, so it is admitted. But I will still give the
proof here.

13Here 〈·, ·〉 denotes the inner product in Rn
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Proof. Firstly, if X, Y are independent then the condition follows directly from Proposition
4.15. Indeed, for each t, s ∈ I we can take g(x) = exp(tx) and h(y) = exp(sy). Then
MX(t) = Eg(X) and MY (s) = Eh(Y ) and by assumption both are integrable. Hence that
proposition implies that MX(t)MY (s) = E exp(tX + sY ) = M(X,Y )(t, s).

The other direction is a direct application of Theorem 4.29: indeed, let (X, Y ) be a pair
of random variables such that for each t, s ∈ I, MX(t)MY (s) = M(X,Y )((t, s)). Further, let
(X̃, Ỹ ) be a pair of independent random variables such that X̃ has the law of X and Ỹ has
the law of Y . In particular then MX(t) = MX̃(t) and MY (s) = MỸ (s)for all t, s ∈ I.

Now, by the first part MX̃(t)MX̃(s) = M(X̃,Ỹ )((t, s)). We conclude that M(X,Y )((t, s)) =

M(X̃,Ỹ )((t, s)) and deduce from Theorem 4.29 that (X, Y ) and (X̃, Ỹ ) have the same joint
law. In particular X and Y are independent. �

Second, it really makes some things much easier, in particular calculations with Gaussians:

Exercise 4.7. Prove X is a Gaussian vector with mean µ and covariance C if and only if
MX(t) = exp(〈t, µ〉+ 1

2
〈t, Ct〉). Deduce that

• If X is a standard Gaussian on Rn, then so is OX for every orthogonal n×n matrix.
• The Gaussian vector with mean µ and covariance C on Rn can be written as AY +µ,
where Y is the standard Gaussian on Rn and C =

√
AAT (You may assume such a

matrix A exists, but you have seen it in linear algebra!)

Thus having an MGF can really simplify and reduce calculations. The drawback of mo-
ment generating functions is that they do not always exist.

Exercise 4.8. Consider the log-normal random variable, i.e. Z = exp(X) where X is a
standard Gaussian. Prove that there is no open interval around 0 such that Mt(Z) exists in
this interval.

This can be mended by considering what is called the characteristic function:

Definition 4.31 (Characteristic function). Let X be a random variable. Then

cX(t) = EeitX = E cos(tX) + iE sin(tX)

is called the characteristic function of X.

The nice thing is that the characteristic function exists for all t ∈ R as both cos(tX) and
sin(tX) are trivially bounded. Moreover, it uniquely characterizes the law of the random
variable and in case of random variables with density, it corresponds to the Fourier transform
of the density. But this and much more will already topic of a future course...

4.6 ? Proofs of some auxiliary results (non-examinable) ?
[? non-examinable section begins ?]
In this non-examinable section we present proofs of some auxiliary results. I do recommend

the probabilistic proof of the Stone-Weierstrass theorem, it is a gem!
First let us prove the Cauchy-Schwarz inequality:

Proof of Cauchy-Schwarz inequality. Define Ŷ , X̂ as Ŷ = Y√
E(Y 2)

and X̂ = X√
E(X2)

. This

is possible as X2, Y 2 are integrable. Notice that by definition then E(Ŷ 2) = E(X̂2) = 1.
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Moreover, the Cauchy-Schwarz inequality is then equivalent to

(4.3) E(|X̂Ŷ |) ≤ 1.

But now for every ω ∈ Ω, we have that |X̂(ω)Ŷ (ω)| ≤ 1
2
(X̂2(ω) + Ŷ 2(ω)). Thus we see that

|XY | is integrable and by properties of expectation

E(|X̂Ŷ |) ≤ 1

2
E(X̂2 + Ŷ 2) = 1,

and the inequality 4.3 follows.
The equality holds if and only if |X̂Ŷ | = 1

2
(X̂2 + Ŷ 2) almost surely, which in turn holds if

and only if |X̂| = |Ŷ | almost surely. As Ŷ , X̂ are normalized versions of X, Y , this is turn
holds if |X| = λ|Y | almost surely for some λ > 0. �

Next, it is time to prove Jensen’s inequality. We will do it using the following chracteri-
zation of convex functions:

• φ : R → R is convex if and only if for every x ∈ R, there is some c = c(x) ∈ R so
that for every y ∈ R, we have that φ(x+ y) ≥ φ(x) + cxy.

Proof of Jensen’s inequality. Consider x = EX and y = X −EX. Then injecting this in the
formulation of convexity just above, we obtain

φ(X) ≥ φ(EX) + c(X − EX)

almost surely. Taking now expectation, and using the fact that E(X −EX)) = 0, we deduce

Eφ(X) ≥ φ(EX)

as claimed. �

And finally the cute probabilistic proof of the Stone-Weierstrass theorem:

Proof of Theorem 4.26. By translation and scaling, it is simple to see that it suffices to prove
the theorem for the case I = [0, 1] and f continuous on [0, 1]. Now for every x ∈ [0, 1], n ∈ N
let Xn,x be a Binomial random variable of parameters (n, x) We define Pn(x) = Ef(Xn,x/n).
By Proposition 4.13 we then have

Pn(x) =
n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k,

and hence Pn(x) is a polynomial of order n in x.
We claim that Pn(x) converges to f uniformly. First, notice that as f is continuous on

[0, 1] it is bounded by some M , and uniformly continuous - i.e. for every ε > 0, there is some
δε > 0 so that if |x− y| < δε, then |f(x)− f(y)| < ε.

Now, write

|Pn(x)− f(x)| = |E(f(Xn,x/n)− Ef(x)| ≤ E|f(Xn,x/n)− f(x)|.
The crux is something we have already seen: in fact Xn,x is very close to its expectation xn
for n large. Indeed, we by Chebyshev’s inequality and the fact that Var(Xn,x) = nx(1− x)

P(|Xn,x/n− x| > t/n) = P(|Xn,x − nx| > t) ≤ VarXn,x

t2
=
nx(1− x)

t2
.

In particular, if we choose t = n2/3, then P(|Xn,x/n− x| > n−1/3) < n−1/3.
58



To use this fact we write:
E|f(Xn,x/n)−f(x)| = E

(
|f(Xn,x/n)− f(x)|1|Xn,x/n−x|>n−1/3

)
+E

(
|f(Xn,x/n)− f(x)|1|Xn,x/n−x|<n−1/3

)
.

Then as |f(x)| < M for x ∈ [−A,A], we can bound the first term by

ME1|Xn,x/n−x|>n−1/3 = MP(|Xn,x/n− x| > n−1/3) < Mn−1/3.

Fix some ε > 0 and choose n large enough so that n−1/3 < δε. We can bound the second
term by

Eε1|Xn,x/n−x|<n−1/3 ≤ ε.

Hence if we also require that n−1/3 < ε, we obtain altogether

E|f(Xn,x/n)− f(x)| < Mn−1/3 + ε ≤ (M + 1)ε.

As this is uniform in x and holds for arbitrary ε, the theorem follows. �

[? non-examinable section ends ?]
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Section 5

Limit theorems
In this section, we will look at infinite sequences of events and infinite sequences of random

variables. Some questions we will be interested in:
• When can we be sure that at least one of the events A1, A2, . . . happens? For example,
under what conditions can you guarantee that you will eventually win with a lottery
or get a 6 in the exam? Or suppose, you start a random walk in Manhatten - at
every corner you choose uniformly one of four directions. Will you ever get back to
your hotel?
• Under what criteria do only finitely many of the events A1, A2, . . . of a sequence
happen? This could for example be used to model whether an infectious disease will
only have a limited spread
• When can we say something about the limit of the sequence of random variables
X1, X2, . . . ? In what senses can we talk about convergence? We have already seen
some vague statements in the lines that Bin(n, λ/n) converge to Poisson or that the
empirical average of i.i.d. random variables converges to its expectation. What are
the right mathematical notions and statements?

5.1 Infinite collections of events and random variables
Before stating a few interesting limit theorems, let us start by formalizing some of the

limiting notions in the context of events. Fix a probability space (Ω,F ,P) and a sequence of
events E1, E2, . . . that could for example be repetitions of the same random situation, like
repetitive coin tosses. 14

Recall that if we say Ei is an event we mean that Ei ⊆ Ω and Ei ∈ F . Each ω gives a
random state of the universe, and ω ∈ Ei if the event Ei happens for this particular state.

Now, we say that
• First, we could ask whether at least one event of the sequence (En)n≥1 happens. By
definition, {ω ∈ Ω : ω ∈ Ei for some i} =

⋃
n≥1En. Sometimes one says that ’Ei

happens eventually’. An example would be the following example from an earlier
example sheet: when we toss independent coins, we eventually obtain heads with full
probability (this also follows from the lemma just below). Notice that there is some
sequence of tosses that gives no heads - the sequence TTTTT . . . , however as it has
0 probability, it does not matter.
• Second, we might ask whether infinitely many events Ei happen. Let us first formalise
it: one can check that

{ω ∈ Ω : ω ∈ Ei for infinitely many i} =
⋂
m≥1

⋃
n≥m

En.

The event described this way is also sometimes denoted by lim supn≥1En. In the case
of coin tossing, each Ei could mean that the i-th toss comes up heads, and we have

14As discussed, it is not trivial to construct a probability space on which we would have an infinite
sequence of independent coin tosses, but here we take this for granted.
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seen that in the case of independent coins, indeed Ei would happen infinitely often
with full probability.
• Finally, we might ask whether all but finitely many Ei happen. One can again see
(on the exercise sheet), that

{ω ∈ Ω : ω ∈ Ei for all but finitely many i} =
⋃
m≥1

⋂
n≥m

En.

This event is also denoted by lim infn≥1En. An example situation would be as follows:
you start with 10 CHF, and as long as you have some money left, you bet with the
European central bank (that can always print more money when needed!) on whether
independent coin tosses are head or tails. The winner gets 1 CHF, and the loser loses
1 CHF. It’s a mathematical fact that after almost surely, after finitely many bets you
are left with 0 CHF. So if we denote by Ei the event after i bets you are bankrupt,
this event fails only finitely many times.

Here are some useful criteria to study such events. First, a very naive criterion:

Lemma 5.1. Let E1, E2, . . . be independent events of probability pi. Then P(
⋃
i≥1Ei) = 1

if and only if Πn
i=1(1− pi)→ 0 as n→∞.

Proof. This is on the exercise sheet. �

For example, if each event happens with the same probability p, then Πn
i=1pi = pn, which

clearly goes to zero. So even if you toss a coin that comes up heads with probability 0.00001,
you will eventually see heads.

A verey useful criteria for verifying that some even cannot happen but finitely many times
is given by the first Borel-Cantelli lemma:

Lemma 5.2 (Borel-Cantelli I). Let E1, E2, . . . be any sequence of events on a common
probability space (Ω,F ,P). If

∑
n≥1 P(En) <∞, then almost surely only finitely many events

Ei happen, i.e. P(
⋂
m≥1

⋃
n≥mEn) = 0.

Notice that we are not assuming anything on the dependence or independence of the
events Ei! Also, this lemma does not say that there is some fixed number 1000 of events
that happen. Indeed, exactly how many events can happen and exactly which events happen
depends on ω ∈ Ω.

For example, consider a sequence of unfair coins with probability of heads for the n-
th coin given by n−2. If En denotes the event of obtaining heads on the n-th toss, then∑

n≥1 P(En) <∞. Thus, by the lemma, we see that almost surely one obtains only finitely
many heads in an infinite sequence of coin tosses. However, notice that whether you obtain
10 or even 100 heads depends on the exact sequence of tosses, i.e. on the ’randomness’
encoded by the state ω ∈ Ω.

Proof. Fix some ε > 0. As
∑

n≥1 P(En) < ∞, we can find some n0 ∈ N such that∑
n≥n0

P(En) < ε. But now as P(A ∩B) ≤ P(B),

P(
⋂
m≥1

⋃
n≥m

En) ≤ P(
⋃
n≥n0

En) ≤
∑
n≥n0

P(En) < ε,

where in the last inequality we use the union bound. As ε was arbitrary, the claim follows. �
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The short proof might make you suspicious if it is of any use, but we will see it is!
This is partly complemented by the second Borel-Cantelli lemma, which gives a condition

for infinitely many events to happen. Notice that here we again ask for independent events.

Lemma 5.3 (Borel-Cantelli II). Let E1, E2, . . . be a sequence of independent events on a
common probability space (Ω,F ,P). Suppose that

∑
n≥1 P(En) = ∞. Then almost surely

infinitely many events Ei happen, i.e. P(
⋂
m≥1

⋃
n≥mEn) = 1.

Proof. On the exercise sheet �
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