BASIC PROBABILITY THEORY 2022

JUHAN ARU

1

¹Version of 2022. All kinds of feedback, including smaller or bigger typos, is appreciated -juhan.aru@epfl.ch. In writing these notes I have consulted notes of I. Manolescu (Fribourg), Y. Velenik (Geneva), A. Eberle (Bonn) (all on their websites) and the book by R. Dalang & D. Conus published by EPFL press.

SECTION 0

Introduction

Probability theory provides a mathematical framework for studying random phenomena, i.e. everything that one cannot predict. We might not be able to predict because we don't have full information, or maybe because it's just not possible to predict. Maybe it is even a bit surprising to begin with that something precise and mathematical can be said about things we cannot predict

A bit of history

Currently probability theory is a rapidly developing branch of mathematics, with many connections with other domains of pure mathematics and numerous applications in other sciences and informatics. Here are some questions people have asked in different periods, leaving aside very related questions that belong more to statistics:

Until 20th century, the main topic of probability were games of chance, lotteries, betting, but also questions about measurement errors started coming in:

- Should I accept the even chances for the bet that at least one six appears in 4 consecutive dice throws?
- How many lottery tickets should I buy to have even chance of winning the lottery?
- How can we describe measurement errors? What if we can assume them to be the totality of small independent errors?

In fact the last question was properly answered only in the beginning of 20th century and is one of the most celebrated results of probability theory - the Central Limit Theorem. It says that under quite general conditions the sum of independent errors, when properly normalized converges to the Gaussian, also called the normal distribution. We will see this result in the course.

Over the 20th century, however topics in probability got much more diverse and rich. Here are some types of questions and models:

- Consider a rat in Manhattan that on each corner randomly chooses to go to left, right, back or forth. Will it ever return to the place he started?
- Relatedly, how to describe the diffusion of heat or a gas in terms of molecules? How does one single molecule behave, how does its trajectory look like?
- How to model flow of a gas or liquid through a porous medium, for example a gas mask or the earth?
- How to describe the fluctuations of a stock price over time?
- How quickly do diseases spread in a population? What parameters are important?

As you noticed, these questions can still be posed from a very non-mathematical perspective, but the mathematical models behind them are much richer than just a coin toss (which, I think, is already pretty interesting). We want to look into some of them.

Moreover, in 20th century probability theory also started playing a role in other parts of mathematics, through for example the so-called probabilistic method, often used to prove existence of certain objects:

- Dvoretzky's theorem: all high-dimensional convex bodies have low-dimensional ellipsoid sections.
- Existence of normal numbers for simultaneous basis: a number is said to be normal to base b, if the proportion of each digit in its expansion to base b is 1/b, i.e in decimal expansion each digit $i = 0, 1, \ldots, 9$ appears with the same proportion. There is no concrete known number x for which this holds for b = 2, 3 simultaneously.

In the 21st century more new directions have entered due to interactions with computer science, for example ending in the Page-Rank search algorithm that Google uses.

At the same time also interactions with other domains of mathematics became stronger and probability started even sometimes influencing the development of some domains like complex analysis and dynamics. Here are some questions, where we still lack mathematical understanding:

- How to explain that certain structures like fractals, certain distributions like Gaussians, certain statistical symmetries like scale or rotation invariance appear in so many different contexts in nature?
- Why does deep learning work so well e.g. why is it better than humans in GO? How far can one go?
- Are useful quantum computers theoretically possible?

The first questions is called universality. In fact the Central Limit Theorem can be seen as the basic example of universality – it explains why the Gaussian distribution appears in many unrelated different contexts. You can find talks on universality by non-probabilists like T. Tao, by mathematical physicists like T. Spencer, and probabilists like W. Werner. I find it already inspiring that we can say anything mathematically meaningful about such a vague question. I also find it's a question in the spirit of today's mathematics - we try to mathematically understand not only structures like pure symmetries, not only pure randomness like coin tosses, but a mixture of the two.

This course

Unfortunately, in this course we will not be able to address most of these exciting developments. We will be mainly dealing with setting up the basic mathematical framework, so that you have the basis for studying statistics, for applications in other fields and future courses in probability. We will also just try to get a glimpse of the probabilistic mathematical thinking, and there will be some intrinsically beautiful mathematical results.

The course will be roughly in three chapters:

- (1) The basic framework of probability theory here, we will properly set up the modern framework of probability theory, in other words see how one constructs a probabilistic model.
- (2) Study of random variables and mathematical expectation random variables are the central objects of probability theory, they are the random numbers, or other random objects that come up in our probabilistic model. We will see how to describe and study random variables, and meet several random variable that come up more

- frequently. Expectation is just the mathematical term for average, we will see that it is a simple but useful tool.
- (3) Limit theorems a special case of the Law of Large Numbers says that if you keep on tossing a fair coin, then the proportion of tails will get closer and closer to a half. We will be prove this result, but we will also prove a version of the Central Limit Theorem, discussed above.

We start, however, with an overview of some more elementary models for probability theory and discuss their limitations.

0.1 Some historical probability models and their limitations

In this section we shortly discuss some preliminary probability models.

Laplace model

For a few hundred years the following simple model (which we call Laplace or classical model) was used to study unpredictable situations, and to model the likelihood that a certain event happens in this situation.

- Gather together all possible outcomes $\Omega = \{\omega_1, \dots, \omega_n\}$ and count the total number of possible outcomes $n_A := |\Omega|$ of the situation.
- Collect all the outcomes ω_i for which the desired event E happens, and count their number n_E .
- Set the probability of the event p(E) to be the ratio $\frac{n_E}{n_A}$.

In other words, we can set up the following definition:

Definition 0.1 (Laplace/Classical model of probability). Laplace model of probability consists of a set of outcomes Ω and possible events, given by all subsets $E \subseteq \Omega$. The probability of each event is defined as $p(E) = \frac{|E|}{|\Omega|}$.

In some sense, we are not defining any new mathematical structures here - we are just giving a name to certain proportions.

For example if you want to model the event that two heads come up in two consecutive coin tosses you would do it as follows:

- We take $\Omega = \{HH, TT, HT, TH\},\$
- set $E = \{HH\}$
- and see that p(E) = 1/4 as $|\Omega| = 4$.

Many everyday or gambling situations can be described with this simple model.

Exercise 0.1. Write down the Laplace model for calculating the probability of having two sixes in three throws of dice. What is this probability?

This classical model has already some very nice properties, which we certainly want to keep for more general models.

Lemma 0.2 (Nice properties of the classical model). Consider the Laplace model on a set Ω . Let E, F be two events, i.e. two subsets of Ω .

• If the two events E, F cannot happen at the same time, i.e. then the probability of one of them happening $p(E \cup F) = p(E) + p(F)$.

• The complementary event of E, i.e. the event that E does not happen, has probability 1 - p(E).

Both of these results follow directly from a definition. There are many other properties one could prove, e.g:

Exercise 0.2. Consider the Laplace model on the set Ω and let E, F be any two events. Prove that $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

Using this, one can already also do basically all the calculations for lottery, betting, cards...as you see on the example sheet. But there is still one basic question - how come this ratio is of any use in telling you anything about the world?

The reason comes basically from the fact that if the same situation comes up many times in a row, then under certain assumptions the proportion of a specific outcome among all possible outcomes will converge to its probability. Let us prove a weak version of this here:

Proposition 0.3 (Proportion of heads goes to 1/2). Consider the Laplace model for n coin consecutive fair coin tosses. Let $0 < \epsilon < 1/2$ be arbitrary and define the event E_{ϵ}^n to denote all sequences of n tosses where the proportion of heads is less than $1/2 - \epsilon$ or more than $1/2 + \epsilon$. Then for any $\epsilon > 0$, we have that $p(E_{\epsilon}^n) \to 0$ as $n \to \infty$.

Let us remark that the Laplace model for n coin tosses has a very specific assumption: any sequence of n fair coin tosses has probability exactly 2^{-n} . And in particular, the probability of the k-th toss to be heads or tails is 1/2 independently of other outcomes - so we assume any toss is not influenced by the other ones.

This proposition can be proved by just counting, though the counting itself is not entirely trivial. For example, we need an asymptotic of n!, i.e. a better expression about how it behaves as $n \to \infty$. This is called Stirling's formula and you have probably met it already.

Exercise 0.3 (Weak Stirling's formula). Prove that for some constants c, C > 0, we have that

$$cn^n e^{-n} \le n! \le Cn^{n+1} e^{-n}.$$

(*) Deduce that there are C, c > 0, such that for all $\epsilon > 0$ small enough and all $n \in \mathbb{N}$ we have that

$$\binom{n}{\lceil n(1/2 - \epsilon) \rceil} \le Cn^C 2^n \exp(-c\epsilon^2 n).$$

Armed with this, we are ready to prove the proposition.

Proof of proposition. Let $E_{\epsilon,<}^n$ and $E_{\epsilon,>}^n$ denote respectively the events that the proportion is less than $1/2 - \epsilon$, and that it is more than $1/2 + \epsilon$. As these events cannot happen at the same time, we have that $p(E) = p(E_{\epsilon,<}^n) + p(E_{\epsilon,>}^n)$ and by symmetry it suffices to only show that $p(E_{\epsilon,<}^n) \to 0$ as $n \to \infty$. Moreover, as these events are increasing with ϵ , it suffices to prove the proposition for $\epsilon > 0$ small enough.

Now, the number of all possible sequences of n tosses is exactly 2^n as each toss has two options. On the other hand, the number of outcomes with k heads out of n tosses is given

²Here and below an asterix means that a part of the course or exercise is not examinable.

by exactly $\binom{n}{k}$. So using Lemma 0.2 several times for disjoint events of exactly k tosses, we can write

$$p(E_{\epsilon,<}^n) \le 2^{-n} \left(\sum_{k=0}^{\lceil n(1/2-\epsilon) \rceil} {n \choose k} \right).$$

A direct calculation convinces you that as long as k < n/2, we have that $\binom{n}{k-1} \le \binom{n}{k}$. Thus we can further bound

$$p(E_{\epsilon,<}^n) \le 2^{-n} n \binom{n}{\lceil n(1/2 - \epsilon) \rceil}.$$

By Exercise 0.3, for all $\epsilon > 0$ small enough

$$\frac{\binom{n}{\lceil n(1/2-\epsilon)\rceil}}{2^n} \le C' n^{C+1} \exp(-cn\epsilon^2)$$

and thus $p(E_{\epsilon,<}^n) \leq C' n \exp(-cn\epsilon^2)$, which goes to 0 as $n \to \infty$.

Remark 0.4. With the some strategy one could actually prove a somewhat stronger statement: for example that the probability of the event \tilde{E}_n that the proportion of heads is outside of the interval $(1/2 - n^{-1/3}, 1/2 + n^{-1/3})$ goes to zero. This basically amounts to just setting $\epsilon = n^{-1/3}$ in the proof above.

This is a special case of the Law of Large Numbers (LLN). We will prove LLN in much greater generality and with much less calculations, but only once we have developed some theory.

So we see that not only does Laplace model allow calculations, but it does tell you something about random phenomena - at least about reoccuring random phenomena. However, this model also has some drawbacks:

- In the Laplace model it is implicitly assumed that all outcomes of the situation are equally likely. What if this is not the case? For example, what if the coin is not fair, but after long number of tosses seems to give $1/\pi$ heads?
- Also, it is hard to work with more complicated situations, where you may have to look at an arbitrary large number of events like in the following exercise.

Exercise 0.4. Suppose your event is: I will need no more than 100 tosses before getting three consecutive heads. Can you use the Laplace model? Can you use the Laplace model if your event is - I obtain three consecutive heads before three consecutive tails? But if you ask three consecutive heads before five consecutive tails? Can you use Laplace model for this?

This is related to a more general worry: as soon as there are infinitely many possible outcomes, what should you do? Assuming that all of infinitely many outcomes are equally likely gives a contradiction, as their probabilities would still need to add up to one! What to do?

A (intermediate) discrete probability model

The next probability model does not presuppose that all outcomes are equally likely and will allow also to handle an infinite number of outcomes:

Definition 0.5 (A (intermediate) discrete probability probability model). We say that (Ω, p) is a (intermediate) discrete probability model if Ω is a set (of outcomes) and $p:\Omega\to[0,1]$ is a function such that

- The total probability is 1: ∑_{ω∈Ω} p(ω) = 1 ³.
 The probabilities of disjoint subsets of Ω add up: p(E ∪ F) = p(E) + p(F) for all $E \cap F = \emptyset$.

An event E is an arbitrary subset of Ω and we set the probability $p(E) := \sum_{\omega \in E} p(\omega)$.

This discrete probability model is set up so that we still keep the nice properties of the classical model that we saw above. Moreover, one can check that when $|\Omega| < \infty$ and we set all $p(\omega) = |\Omega|^{-1}$, we are back to the Laplace model. So it is really a generalization.

Before thinking about further mathematical properties of this model, let us think about using it for applications. One difficulty of applying this model to real situations is now the following question – how do we choose the numbers $p(\omega)$? In the Laplace model, we used a certain symmetry or exchangeability hypothesis on the set of outcomes, but if we don't have this, what could we do?

For example, here is a reasonable-sounding idea, based on the proportion above: in the case of the coin toss, i.e. two possibilities, we could just toss the coin it many times and set the proportion of heads to be the probability of heads in our model. That sounds meaningful. However, how many times should we toss it? If we toss it just once, we set the probability to be either 0 or 1? We will be able to give some sort of an idea of how many tosses would suffice in the last chapter of the course...but what should you do if you don't have a lot of data? Or if the model is much more complicated? Luckily for us, these complicated questions belong already more to the discipline of statistics...

So let us rather ask what is still mathematically missing in the intermediate model? Having a countable set is now not a problem. In fact, we will see that as long as Ω is a countable set, the intermediate model is equivalent to the modern framework of probability, introduced in the next section.

However, uncountable sample spaces enter naturally. For example, when you need to model for example a quantity that can be assumed to behave like 'a uniform random point' on [0,1] then the space of outcomes - in this case [0,1] is uncountable. Or, similarly the space of infinite sequences of coin tosses is uncountable (why?) - such a space is needed when you consider for example the event that three consecutive heads occur before five consecutive tails, as it is not determined by any fixed number of coin tosses. Finally, many complicated discrete situations are easier to describe and study if one models them via continuous probabilities, like the Gaussian distribution where all values of \mathbb{R} are possible.

And as soon as we have an uncountable Ω , say $\Omega = \mathbb{R}$ or $\Omega = [0,1]$, things get more involved. Indeed, if you think about it, already sums over uncountable sets are pretty complicated (and not so well defined)! For example, there is just no function p satisfying the hypothesis of the definition and putting a positive mass on uncountable set of points of Ω :

 $^{^3}$ Here, and elsewhere you might wonder what does this sum even mean if Ω is infinite. You can rigorously define it as the supremum of $\sum_{\omega \in \Omega'} f(\omega')$ over all finite subsets $\Omega' \subseteq \Omega$, if you wish, but in this Section nr 0 we don't yet worry about these things so much...

Exercise 0.5. Let Ω be any uncountable set. Consider a positive function $f: \Omega \to [0,1]$. Then necessarily $\sum_{\omega \in \Omega} f(\omega) = \infty$.

So how should we then model the uniform number on [0,1]? It intuitively feels that this notion exists, but we already discussed that putting equal probabilities on infinite sets doesn't work...Is there any way out?

Probability vs area: an intermediate continuous probability model

There is one nice way out from the issues described above. Namely, the following hack was used up to 20th century: if we think of a raindrop falling on the segment [0, 1], then the probability that it falls into some set A should be exactly the area of this set! Thus to define continuous probability, at least on $[0, 1]^n$ we could equate probability of a set with its area.

Now, this is very nice because we know that area is related to integrals - areas can be calculated! Thus we get an idea for defining a variety of probability distributions on \mathbb{R}^n - for any Riemann-integrable function f with $\int_{\mathbb{R}^n} f(x)d^nx = 1$ we define the probability of being in A as $\int_A f(x)d^nx$, in case such a thing is defined. So in conclusion, we could also define an intermediate continuous probability model

Definition 0.6 (An intermediate continuous probability model). We say that (\mathbb{R}^n, f) is an intermediate continuous probability model if f is a non-negative Riemann-integrable function with total mass 1. We identify events with subsets A such that $\int_A f(x)d^nx$ is defined, and set their probability to be $p(A) := \int_A f(x)d^nx$.

Such a model shares several nice properties both with the Laplace model or the intermediate model. So why do we call this again just an intermediate model, why is it not a satisfactory resolution? For all practical purposes, it is in fact already pretty good!

However, from a purely mathematical point of view there are some drawbacks:

- Firstly, it's just quite unsatisfactory to have two different notions of probability one for discrete, one for the continuous setting! It would be much nicer to have one framework pretty much like topology offers a framework to talk about continuity for functions between real numbers or between curves etc...
- Second, we would certainly also like to talk of random objects that are more complicated than \mathbb{R}^n for example random continuous functions that could describe say the shore line of Britain or mountainous landscapes or clouds. But what is the notion of area for such complicated spaces?

As we will see, both of those issues are resolved in the modern framework of probability theory.

SECTION 1

Framework of mathematical probability

In this section we will build up the modern framework of probability, and see how it nicely unifies the attempts from the previous section.

1.1 Measure spaces

We will start with a more general notion of a measure space. Probability spaces will then be introduced as certain special measure spaces.

As in topology, a measure space is a set together with a certain structure. For a measure space the structure comes in two bits:

- first, a set of subsets closed under some operations, called this time a σ -algebra;
- and second, a function defined on these subsets, called a measure.

You can think of measure as of some generalization of area, and of the σ -algebra as of all subsets whose area can be measured.

Definition 1.1 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a triple $(\Omega, \mathcal{F}, \mu)$, where

- Ω is a set, called the sample space or the universe.
- \mathcal{F} is a set of subsets of Ω , satisfying:
 - $-\emptyset \in \mathcal{F}$:
 - $if A \in \mathcal{F}, then also A^c \in \mathcal{F};$
 - $-If A_1, A_2, \dots \in \mathcal{F}, then also \bigcup_{n\geq 1} A_n \in \mathcal{F}.$

 \mathcal{F} is called a σ -algebra and any $A \in \mathcal{F}$ is called a measurable set.

• And finally, we have a function $\mu : \mathcal{F} \to [0, \infty]$ satisfying $\mu(\emptyset) = 0$ and countable additivity for disjoint sets: if $A_1, A_2, \dots \in \mathcal{F}$ are pairwise disjoint,

$$\mu(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} \mu(A_n).$$

This function μ is called a measure. If $\mu(\Omega) < \infty$, we call μ a finite measure.

Geometrically we interpret:

- Ω as our space of points
- \bullet \mathcal{F} as the collection of subsets for which our notion of volume can be defined
- μ our notion of volume: it gives each measurable set its volume.

To already spoil the game, a probability space will be a measure space with total mass equal to 1, i.e. $\mu(\Omega) = 1$. In that case we interpret Ω as the space of all outcomes, \mathcal{F} as the set of events that we can observe and $\mathbb{P} = \mu$ will assign a number, called probability, to each observable event.

But let us continue a bit in the realm of general measure spaces. For example, here is an example of measure that can be defined on an arbitrary set Ω :

Definition 1.2 (Counting measure). On any set Ω one can define the counting measure μ_c : we set $\mathcal{F} := \mathcal{P}(\Omega)$, and $\mu_c(\{\omega\}) := 1$ for any $\omega \in \Omega$. Notice that if Ω is an infinite set, then $\mu_c(\Omega) = \infty$, so this is a measure, but not a finite measure.

Here, we still used the power set $\mathcal{P}(\Omega)$ as the sigma-algebra, however the ability to restrict the measure only on a subcollection \mathcal{F} is actually necessary.

1.1.1 σ -algebras

The really new bit in the measure-theoretic framework (of probability) is the second bullet point - the notion of sigma-algebra that determines the observable sets. A way to think about it as follows:

• We think of measure as of a generalization of the notion of area or volume. However, this notion is not defined for all possible sets, only for nice enough ones and so \mathcal{F} is the set of all subsets for which this notion of area or volume exits.

In terms of probability would think like this:

 \bullet Not all sets can be observed and thus assigned probabilities to - \mathcal{F} gives us the collection of sets that we can observe, and that we call events.

A related analogy is the following: the Riemann integral is not defined for all functions, even not all functions which are the indicator functions of a set. For example, the function 1_E is not integrable for $E = \mathbb{Q} \cap [0, 1]!$

How should we choose our σ -algebras? In the case of a discrete state space, a natural choice that always works is the power-set. This means that each set, and in particular each singleton in our space can be observed and assigned a probability to.

It comes out that when Ω is uncountable, the power set is often too large to be useful - we already saw that it is impossible to assign positive probabilities to more than countably many singletons, but we will see other worrying examples below. One hint that complexity is already on the level of σ -algebras is the following:

Exercise 1.1. Show that on a discrete set the smallest σ -algebra containing all singletons $\{x\}$ is the power set, but that on [0,1] the smallest σ -algebra containing all singletons $\{x\}$ is strictly smaller than the power set.

So what should we do? As long as there is a topological structure on the set, there is another very natural way to induce σ -algebras:

Definition 1.3 (Borel σ -algebra). Let (X, τ) be a topological space. The Borel σ -algebra \mathcal{F}_{τ} on X is defined to be the smallest σ -algebra that contains τ .

The Borel σ -algebra is well-defined because of the following lemma, which says that the intersection of σ -algebras is still a σ -algebra. Indeed, using this one can define the Borel sigma algebra \mathcal{F}_{τ} as the intersection of all σ -algebras \mathcal{F} containing all open sets, i.e. such that $\tau \subseteq \mathcal{F}$.

Lemma 1.4 (Exo 1.3 in Dalang-Conus). Let Ω and I be two non-empty sets. Suppose that for each $i \in I$, \mathcal{F}_i is a σ -algebra on Ω .

- Prove that $\mathcal{F} := \bigcap_{i \in I} \mathcal{F}_i$ is also a σ -algebra on Ω .
- Now, let \mathcal{G} be any subset of $\mathcal{P}(\Omega)$. Then there exists a σ -algebra that contains \mathcal{G} and that is contained in any other σ -algebra containing \mathcal{G} . This is called the σ -algebra generated by \mathcal{G} .

Proof. On the exercise sheet.

The Boel σ -algebra is the standard σ -algebra that we will always use on the state space \mathbb{R} and more generally on \mathbb{R}^n . Observe that

Exercise 1.2. Show that the Borel σ -algebra on any topological space contains both all the open and all the closed sets. Deduce that on \mathbb{R}^n it contains all open balls, all closed balls and all singletons $\{x\}$.

Now, in the case of a discrete set, the natural topology to put on the set is the discrete topology. In that case the Borel σ -algebra again agrees with the power-set. However, one can play with different σ -algebras even in the case of discrete spaces as it often helps to distinguish the level of information that one can observe.

For example, suppose we model the situation with two fair coins. To do this, we set $\Omega = \{(H, T), (H, H), (T, H), (T, T)\}$. Now, let us look at the role of different sigma-algebras:

- If we can observe the outcome of both tosses, then our sigma-algebra would be $\mathcal{P}(\Omega)$.
- However, suppose the only thing you can observe is the outcome of the first toss. Then we cannot differentiate whether the full outcome was (H,T) or (H,H), or similarly whether it was (T,H) or (T,T). We have thus no information about the second toss, and maybe also no way to assign to it some probabilities. To take this into account, we can without changing the sample space, change the sigma-algebra and set it to be $\mathcal{F} = \{\emptyset, \{(H,T), (H,H)\}, \{(T,H), (T,T)\}, \Omega\}$, where naturally the first of the sets corresponds to the first toss coming up heads, and the second to the first toss coming up tails.
- Similarly, maybe our friend only tells you whether the two tosses were the same or different. Then we cannot differentiate between (H, H) and (T, T), or between (H, T) or (T, H). We could model this situation by setting

$$\mathcal{F} = \{\emptyset, \{(H, H), (T, T)\}, \{(T, H), (H, T)\}, \Omega\}.$$

Often in fact such a situation happens in real life: we only obtain information about the world step by step, and thus if we want to keep on working on the same probability space, we can consider different filtrations $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{F}_3 \dots$ such that each next one contains more information. All possible information is contained in the power set $\mathcal{P}(\Omega)$.

1.1.2 Some basic properties of measurable sets and measures

Let us look at some very basic properties of the collection of measurable sets \mathcal{F} and the measure μ itself.

First, already the defining properties of the sigma-algebra \mathcal{F} gave us plenty of measurable sets. However, there are many more:

Lemma 1.5 (Constructing more measurable sets). Consider a set Ω with a σ -algebra \mathcal{F} .

- (1) If $A_1, A_2, \ldots, \in \mathcal{F}$, then also $\bigcap_{n>1} A_1 \in \mathcal{F}$.
- (2) Then also $\Omega \in \mathcal{F}$ and if $A, B \in \overline{\mathcal{F}}$, then also $A \setminus B \in \mathcal{F}$.
- (3) For any $n \geq 1$, if $A_1, \ldots, A_n \in \mathcal{F}$, then also $A_1 \cup \cdots \cup A_n \in \mathcal{F}$ and $A_1 \cap \cdots \cap A_n \in \mathcal{F}$.

Proof of Lemma 1.5. By de Morgan's laws for any sets $(A_i)_{i\in I}$, we have that

$$\bigcap_{i \in I} A_i = (\bigcup_{i \in I} A_i^c)^c.$$

Property (1) follows from this, as if $A_1, A_2, \dots \in \mathcal{F}$, then by the definition of a σ -algebra also $A_1^c, A_2^c, \dots \in \mathcal{F}$ and hence

$$(\bigcup_{i>1} A_i^c)^c \in \mathcal{F}.$$

For (3), again by de Morgan laws, it suffices to show that $A_1 \cup \cdots \cup A_n \in \mathcal{F}$. But this follows from the definition of a σ -algebra, as $A_1 \cup \cdots \cup A_n = \bigcup_{i \geq 1} A_i$ with $A_k = \emptyset$ for $k \geq n + 1$. Finally, for (2) we can just write $\Omega = \emptyset^c$. Moreover, writing $A \setminus B = A \cap B^c$, we conclude by using (3).

In a similar vein, the basic conditions on the measure, give rise to several natural properties:

Proposition 1.6 (Basic properties of a measure and a probability measure). Consider a measure space $(\Omega, \mathcal{F}, \mu)$. Let $A_1, A_2, \dots \in \mathcal{F}$. Then

(1) For any $n \geq 1$, and A_1, \ldots, A_n disjoint, we have finite additivity

$$\mu(A_1) + \dots + \mu(A_n) = \mu(A_1 \cup \dots \cup A_n).$$

In particular if $A_1 \subseteq A_2$ then $\mu(A_1) \leq \mu(A_2)$.

- (2) If for all $n \geq 1$, we have $A_n \subseteq A_{n+1}$, then as $n \to \infty$, it holds that $\mu(A_n) \to \mu(\bigcup_{k\geq 1} A_k)$.
- (3) We have countable subadditivity (also called the union bound): $\mu(\bigcup_{n\geq 1} A_n) \leq \sum_{n\geq 1} \mu(A_n)$.

If in fact $\mu(\Omega) = 1$, and thus we have a probability space (and we set $\mathbb{P} := \mu$), we also have the following properties:

- (4) For any $A \in \mathcal{F}$, we have that $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- (5) If for all $n \geq 1$, we have $A_n \supseteq A_{n+1}$, then as $n \to \infty$, it holds that $\mathbb{P}(A_n) \to \mathbb{P}(\bigcap_{k\geq 1} A_k)$.

Notice that for two events A, B properties 1 and 4 correspond to properties we already saw for the Laplace model of probability. Property 2,3,5 are very important in probability! Let us put them in words in the setting of probability spaces:

- (2) Increasing approximation: If a sequence of events E_n is increasing and grows to E, then the probability of E is given by the limit of probabilities $\mathbb{P}(E_n)$.
- (3) Union bound: the probability that at least one of the events A_1, A_2, \ldots happens is smaller than the sum of probabilities of individual events.
- (5) Decreasing approximation: If a sequence of events E_n decreases to to E, then the probability of E is again given by the limit of probabilities $\mathbb{P}(E_n)$.

Proof of Proposition 1.6. Finite additivity follows from countable additivity by taking $A_k = \emptyset$ for $k \ge n + 1$.

For (2), write $B_1 = A_1$ and for $n \ge 2$, $B_n = A_n/A_{n-1}$. Then B_n are disjoint, $\bigcup_{n=1}^N B_n = A_N$ and $\bigcup_{n>1} B_n = \bigcup_{n>1} A_n$.

Thus by countable additivity

$$\mu(\bigcup_{i\geq 1} A_i) = \mu(\bigcup_{i\geq 1} B_i) = \sum_{i\geq 1} \mu(B_i)$$

But μ is non-negative, so

$$\sum_{i>1} \mu(B_i) = \lim_{n\to\infty} \sum_{i=1}^n \mu(B_i)$$

By countable additivity again

$$\sum_{i=1}^{n} \mu(B_i) = \mu(\bigcup_{i=1}^{n} B_n) = \mu(A_n)$$

and (2) follows.

The rest is left as an exercise

Exercise 1.3 (Counterexample for general measure spaces). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Find measurable sets $(A_n)_{n\geq 1} \in \mathcal{F}$ such that for $n\geq 1$ we have that $A_n \supseteq A_{n+1}$. Show that contrary to probability spaces, it does not necessarily hold that $\mu(A_n) \to \mu(\bigcap_{n\geq 1} A_n)$.

1.1.3 Measurable maps

In topological spaces continuous functions mix well with topology. In measure spaces functions that mix well with σ -algebra are called measurable maps. We will see that they come with a special name in the case of probability spaces.

Definition 1.7 (Measurable and measure-preserving maps). Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces.

- We call a function $f: \Omega_1 \to \Omega_2$ measurable if the preimages of measurable sets are measurable, i.e. if $\forall F \in \mathcal{F}_2 \implies f^{-1}(F) \in \mathcal{F}_1$.
- Further, a measurable function such that $\forall F \in \mathcal{F}_2$ we have that $\mu_2(F) = \mu_1(f^{-1}(F))$ is called measure-preserving.

Observe that the measure itself does not enter in the definition of a measurable map; the name measurable comes from the fact that the pair (Ω, \mathcal{F}) , where Ω is a set and \mathcal{F} is a σ -algebra is often called a measurable space. Intuitively, measurable maps preserve the entity of sets whose area can be measured and measure-preserving maps preserve in addition the area as well.

Similarly to topological spaces we will from now onwards try to always denote a measurable function as $f:(\Omega_1, \mathcal{F}_1) \to (\Omega_2, \mathcal{F}_2)$ to keep track of the σ -algebras involved. However, the function f itself is defined on the set Ω_1 and takes values in Ω_2 , i.e. it maps $\omega_1 \in \Omega_1$ to some $\omega_2 \in \Omega_2$.

As in topological spaces, measurability can be checked on a smaller subset of sets. This is an important fact that helps you verify measurability:

Lemma 1.8. Suppose $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ are two measurable spaces and \mathcal{G} generates \mathcal{F}_2 , in the sense that the smallest σ -algebra containing \mathcal{G} is equal to \mathcal{F}_2 . Prove that if $f^{-1}(G) \in \mathcal{F}_1$ for all $G \in \mathcal{G}$, then f is in fact a measurable function from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \mathcal{F}_2)$.

Proof. The proof is on the exercise sheet.

When we have a measurable map, we can transport an accompanying measure from one space to the other. This is formalized by the idea of a push-forward measure and should be compared to notions like push-forward metric or volume in geometry:

Lemma 1.9 (Push-forward measure). Consider a measurable map f from $(\Omega_1, \mathcal{F}_1, \mu_1)$ to $(\Omega_2, \mathcal{F}_2)$. Then f induces a measure μ_2 on $(\Omega_2, \mathcal{F}_2)$ by $\mu_2(F) := \mu_1(f^{-1}(F))$. Moreover, then the map f from $(\Omega_1, \mathcal{F}_1, \mu_1)$ to $(\Omega_2, \mathcal{F}_2, \mu_2)$ is measure-preserving.

Often this measure μ_2 is called the push-forward measure of μ_1 . Notice when μ_1 has total mass equal to 1, then so has μ_2 as then $\mu_2(\Omega_2) = \mu_1(\Omega_1) = 1$.

Proof. We need to just check that μ_2 is a measure. It clearly satisfies $\mu_2(\emptyset) = 0$. Further, notice that if F_1, F_2, \ldots are disjoint, then so are $f^{-1}(F_1), f^{-1}(F_2), \ldots$ Thus countable additivity for μ_2 also follows from that of μ_1 .

In fact, this will be a very important tool to induce new probability measures. For example, we will see that all natural probability measures on \mathbb{R} can be constructed via suitable functions from probability measures on [0,1]. Or as a concrete example:

Example 1.10. Consider the probability space of a fair dice:

$$(\Omega, \mathcal{F}, \mathbb{P}) = (\{1, 2, 3, 4, 5, 6\}, \mathcal{P}(\{1, 2, 3, 4, 5, 6\}), \mathbb{P})$$

where $\mathbb{P}(\{i\}) = 1/6$. When we now want to only know whether the dice was odd, we could take a map $S: \Omega \to \{0,1\}$ defined by S(1) = S(3) = S(5) := 1 and S(2) = S(4) = S(6) := 0. This is measurable from (Ω, \mathcal{F}) to $(\{0,1\}, \mathcal{P}(\{0,1\}))$. Thus by the previous lemma it introduces a probability measure $\hat{\mathbb{P}}$ on $(\{0,1\}, \mathcal{P}(\{0,1\}))$, with $\hat{\mathbb{P}}(\{0\}) = \hat{\mathbb{P}}(\{1\}) = 1/2$. Thus we have transformed our problem to a simpler probability space.

1.2 Probability spaces

As mentioned a probability space is just a measure space of total measure 1. Let us spell it out once again:

Definition 1.11 (Probability space, Kolmogorov 1933). A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ with total mass 1, i.e. with $\mathbb{P}(\Omega) = 1$.

Let us also recall that we call Ω the universe or the state space or the sample space, the \mathbb{P} the probability measure, the sets $E \in \mathcal{F}$ events and $\mathbb{P}(E)$ the probability of the event E.

Although nowadays it is natural to see the concepts of a measure space and probability space side by side, realizing that measure theory is the right context for all probability theory took nearly 30 years! It was only the Russian mathematician Kolmogorov who realized that it encapsulates all the previous models and notions of probability in a satisfactory manner. Of course, it wasn't that people were constantly thinking about this issue, but in the 1920s and 1930s there was a surge in probabilistic modelling and probably this led us to the right definitions.

It is important to have a good mental picture of how these objects correspond to our description of the world, let us also come back to the interpretation of each object in $(\Omega, \mathcal{F}, \mathbb{P})$ in the setting of probability spaces:

- Ω is the collection of all possible states of the situation, of all possible outcomes, very much like in the simple Laplace model.
- An event is an observable set, i.e. a set of outcomes (thus a subset of Ω) whose happening or non-happening we can observe. The set of all events is the σ -algebra

- \mathcal{F} . Not all subsets of Ω are necessarily observable, i.e \mathcal{F} is not necessarily equal to the space of all subsets of Ω .
- Finally, the function $\mathbb{P}: \mathcal{F} \to [0,1]$ assigns the probability of each event. This can be interpreted either as the frequency of the event over many independent trials as we saw in Section 0, or as a certain belief (we will come back to this later.) The numbers $\mathbb{P}(E)$ are something we put into the model based on our assumptions.

This new framework is more general than the intermediate model (and thus Laplace model). Indeed, if Ω is countable, we just set $\mathcal{F} := \mathcal{P}(\Omega)$. Now if our intermediate model has a probability function $p:\Omega\to [0,1]$ such that $\sum_{\omega\in\Omega}p(\omega)=1$, we can just define $P(E):=\sum_{\omega\in E}p(\omega)$ and verify that all axioms of the probability space are indeed satisfied. For a concrete example, in the fair dice model $\Omega=\{1,2,3,4,5,6\}$, $\mathcal{F}:=\mathcal{P}(\Omega)$ and for any event E, we set $\mathbb{P}(E):=\frac{|E|}{6}$.

It does, however, not strictly encompass the continuous probability that could be defined using the Riemann integral. Indeed, consider $\Omega = [0, 1]$ and let \mathcal{F} be the subset of all sets A such that $\mathbf{1}_{\{x \in A\}}$ is Riemann-integrable. Then surprisingly \mathcal{F} is not a sigma-algebra, as shown by the following exercise.

Exercise 1.4 (Riemann integral doesn't mix with measure). Show that for any finite set $A \subseteq [0,1]$ the function $\mathbf{1}_{\{x \in A\}}$ is Riemann-integrable. On the other hand show that $\mathbf{1}_{\{x \in \mathbb{Q}\}}$ is not Riemann-integrable (i.e. the lower and upper sums don't converge to the same number). Deduce that the set \mathcal{F} of all subsets such that $\mathbf{1}_{\{x \in A\}}$ is Riemann-integrable is not a σ -algebra.

Still, it is well possible to talk also of continuous probability spaces in this setting and to give sense to certain uniform measures on, say, [0,1] or even on the space of continuous functions. Most of this, however, requires already a deeper understanding of measure theory and is out of the scope of this course.

1.2.1 Discrete probability spaces

Usually probability spaces are classified into discrete probability spaces, for which the state space Ω is countable and continuous probability spaces, for which Ω is uncountable.

Definition 1.12 (Discrete probability space). Probability spaces $(\Omega, \mathcal{F}, \mathbb{P})$ with a countable sample space Ω are called discrete probability spaces.

If $|\Omega| < \infty$ and we set $\mathbb{P}(\{\omega\}) = |\Omega|^{-1}$, then our probability space has nothing new compared to the Laplace model. It is also easy to see that we are back to the intermediate model in case when σ -algebra contains all subsets:

Lemma 1.13. Let Ω be a countable set. Then the set of probability measures on $(\Omega, \mathcal{P}(\Omega))$ is in one to one correspondence with the set of functions $p: \Omega \to [0,1]$ with $\sum_{\omega \in \Omega} p(\omega) = 1$.

The proof is a rather boring affair:

Proof. First, given any probability measure \mathbb{P} on $(\Omega, \mathcal{P}(\Omega))$, consider the function $p_{\mathbb{P}}: \Omega \to \mathbb{R}$ given by just $p_{\mathbb{P}}(\omega) = \mathbb{P}(\{\omega\})$. As \mathbb{P} is a probability measure, in fact $p_{\mathbb{P}}$ takes values in [0, 1]. Further, by countable disjoint additivity

$$\sum_{\omega \in \Omega} p(\omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \mathbb{P}(\Omega) = 1.$$

In the other direction, given such a function p, define $\mathbb{P}_p : \mathcal{P}(\Omega) \to [0,1]$ for every $E \subseteq \Omega$ by

$$\mathbb{P}_p(E) = \sum_{\omega \in E} p(\omega).$$

We know that this sum is well defined as p is non-negative and this sum is bounded from above by 1. It is then immediate to check that \mathbb{P}_p satisfies all conditions for being a probability measure: from definition it is countable additive, and also $\mathbb{P}(\Omega) = 1$.

Finally, as the two maps $\mathbb{P} \to p_{\mathbb{P}}$ and $p \to \mathbb{P}_p$ are inverses of each other, we obtain the necessary bijection.

However, here we chose the σ -algebra to be the power-set. Is there possibly an extra level of generality induced by the freedom of choosing a σ -algebra in the discrete spaces? The next proposition says that this is not the case.

Proposition 1.14 (Discrete probability spaces = intermediate spaces). Let Ω be a countable set and consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. One can construct a probability space $(\Omega_2, \mathcal{P}(\Omega_2), \mathbb{P}_2)$ such that Ω_2 is countable and there is a surjective measurable and measure-preserving map $f: \Omega \to \Omega_2$, such that \mathcal{F} is in bijection with $\mathcal{P}(\Omega_2)$ via f.

In other words, we can encode any discrete probability space equally well by a probability space where the σ -algebra is a power-set, and thus equally well by what we called the intermediate model.

Proof. The proof is non-examinable and can be found in the appendix. \Box

Now, the parameters of a discrete probability model (i.e. $p(\omega)$ for $\omega \in \Omega$) have to be determined by us. Often they come via observations from the real world, or by assumptions of equal probabilities like in the case of the Laplace model for finite Ω . Thus in this respect, finite and countably infinite spaces behave very similarly.

One should, however, notice one difference - there are no probability measures on countably infinite sets that treat each element of the sample space as equally likely. Let us illustrate it in the case of $\Omega = \mathbb{Z}$, though a similar proof would work for any countably infinite Ω , when replacing shifts with general bijections.

Lemma 1.15. There is no probability measure \mathbb{P} on $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ that is invariant under shifts, i.e. such that for any $A \in \mathcal{P}(\mathbb{Z})$, $n \in \mathbb{Z}$, we have that $\mathbb{P}(A + n) = \mathbb{P}(A)^4$.

Proof. By shift-invariance $\mathbb{P}(\{k\}) = \mathbb{P}(\{0\})$ for any $k \in \mathbb{Z}$. By countable additivity

$$1 = \mathbb{P}(\mathbb{Z}) = \sum_{k \in \mathbb{Z}} \mathbb{P}(\{k\}) = \sum_{k \in \mathbb{Z}} \mathbb{P}(\{0\}),$$

which is either equal to 0 if $\mathbb{P}(\{0\}) = 0$, or equal to ∞ if $\mathbb{P}(\{0\}) > 0$, giving a contradiction.

In particular, this means that we cannot really conveniently talk about a random whole number, or about a random prime number if we want all of them to have the same probability! Still, thinking of prime numbers as random numbers has been a very successful recent idea. For example, we refer to a beautiful theorem about arithmetic progressions in prime

⁴Here, as customary, $A + n = \{a + n : a \in A\}$.

1.2.2 Continuous probability spaces

Probability spaces where Ω is uncountable are called continuous probability spaces. The most typical examples are the space of sequences of coin tosses $\Omega = \{0,1\}^{\mathbb{N}}$, the unit interval $\Omega = [0,1]$ or $\Omega = \mathbb{R}$. It could also be $\Omega = \mathbb{R}^n$ or why not even $\Omega = \mathcal{C}_0([0,1])$, i.e. the set of continuous functions on [0,1].

As already mentioned, in the uncountable case, things get a bit more involved. Now, given any uncountable set Ω , one can still always define some probability measure on $(\Omega, \mathcal{P}(\Omega))$: for example we could just pick a single $\omega \in \Omega$ and set $\mathbb{P}(E) = 1$ if $\omega \in E$ and $\mathbb{P}(E) = 0$ otherwise (check this is a probability measure!). But in some sense this is not really looking at the whole set Ω - only one point is picked out. As the following examples shows, probability measures that consider all points on an equal stance become problematic as long as we insist on keeping $\mathcal{F} = \mathcal{P}(\Omega)$.

More concretely, it seems very reasonable that there should exist a uniform probability measure \mathbb{P} on the circle $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. By uniform we mean that it would treat each point equally likely and in particular would be invariant under rotating the circle by any fixed angle. This seems like common sense! However, the following proposition says that this is impossible in the realm of measure theory when we want to make all subsets of S^1 measurable, i.e. when we take $\mathcal{F} = \mathcal{P}(S^1)^{-5}$:

Proposition 1.16. There is no probability measure \mathbb{P} on $(S^1, \mathcal{P}(S^1))$ that is invariant under shifts, i.e. such that for any $A \in \mathcal{P}(S^1)$, $\alpha \in [0, 2\pi)$, we have that $\mathbb{P}(A + \alpha) = \mathbb{P}(A)$, where here we denote $A + \alpha$ the set obtained by rotating the circle by α radians.

You should compare this to Lemma 1.15 and think why this is more interesting and more difficult.

Proof. The non-examinable proof is in the appendix.

As the circle can be seen as the interval [0,1] pinned together at its endpoints, the same proposition says that there is no shift-invariant probability distribution on $([0,1], \mathcal{P}([0,1]))$. This might seem like very bad news at first sight. However, it comes out that things can be mended by choosing a smaller σ -algebra \mathcal{F} , that is still big enough to carry lots of sets of interest.

In fact, the notion of Borel σ -algebra that we introduced before will help us out: in other words, one can define a shift-invariant probability measure on $([0,1], \mathcal{F}_E)$, where \mathcal{F}_E is the Borel σ -algebra on [0,1]. This is however already a rather technical result that will not be proved in this course. Thus the following theorem is out of the scope for this course, but will be proved in Analysis IV:

Theorem 1.17 (Existence and uniqueness of Lebesgue measure on the unit cube, Lebesgue 1901 (admitted)). There exists a unique probability measure \mathbb{P}_U on $([0,1]^n, \mathcal{F}_E)$ such that $\mathbb{P}_U([0,x_1]\times \ldots [0,x_n])=\prod_{i=1}^n x_i$. Moreover such a \mathbb{P}_U is shift-invariant: i.e. for any set

⁵To be more precise, it should read in the realm of measure theory and in the framework of Zermelo-Frankel (ZF) axioms together with *the axiom of choice*. Indeed, there are logical frameworks which include ZF, but not the axiom of choice and where every set of real numbers can be taken to be measurable!)

 $A \in \mathcal{F}_E$ and any $y \in [0,1]^n$ we have that $\mathbb{P}_U(A) = \mathbb{P}_U(A+y)^6$. This is called the uniform measure or the Lebesgue measure on $[0,1]^n$.

Remark 1.18. In fact, as you will see next semester the σ -algebra on which we can take the measure can be taken to be even larger - basically can also add all sets $S \subseteq [0,1]^n$ such that there is some $B \in \mathcal{F}_E$ with $\mu(B) = 0$ and $S \subseteq B$. The resulting σ -algebra is called the Lebesgue σ -algebra. For probability, however, one usually works with the Borel σ -algebra.

As a corollary, one can obtain the existence and uniqueness of the Lebesgue measure on \mathbb{R}^n :

Corollary 1.19 (Existence and uniqueness of the Lebesgue measure on \mathbb{R}^n). Consider (\mathbb{R}^n, τ_E) with its Borel σ -algebra \mathcal{F}_E . Then there exists a unique measure μ on $(\mathbb{R}^n, \mathcal{F}_E)$ such that $\mu([a_1, b_1] \times \cdots \times [a_n, b_n]) = \prod_{i=1}^n (b_i - a_i)$ for all vectors (a_1, \ldots, a_n) and (b_1, \ldots, b_n) with real numbers $a_i < b_i$ for all i < n.

Proof. This is on the Exercise sheet 4.

Defining natural probability measures on more complicated uncountable sample spaces, is in several cases still an (interesting) open question. On $\Omega = C_0([0,1])$, with its Borel σ -algebra, this has been done and the measure is called the Wiener measure (or Brownian motion).

1.2.3 Two interesting examples of discrete probability spaces

Finally, let us introduce two interesting examples of interesting discrete probability spaces. You have already seen spaces for coin tosses, for dice, for black jack or poker. But of course there are much more structured situations or objects that one might want to describe using probability. We consider here two examples:

- A model of a random walk this could be a trajectory of an ant, or a molecule or who knows, maybe a stock on a financial market?
- A toy model of a random graph this could be used possibly to describe social networks, or networks in the brain etc...

We will start from the very simplest models. Real models for the listed phenomena would be more complicated, but these simple models allow already to start playing with certain phenomena and give a background model to test ideas and hypothesis. Moreover, one can prove many beautiful theorems in combinatorics and probability theory about these objects!

The following is a description of an undecided person walking up and down - here we consider each trajectory as equally likely:

Example 1.20 (Simple symmetric random walk). Let $n \in \mathbb{N}$ and let Ω be the set of all simple walks of n steps, i.e. \mathbb{Z} -valued vectors $(S_0, S_1, S_2, \ldots, S_n)$ such that $S_0 = 0$ and $|S_i - S_{i-1}| = 1$.

Now set $\mathcal{F} = \mathcal{P}(\Omega)$ and define \mathbb{P} such that $\mathbb{P}(\{\omega\}) = |\Omega|^{-1} = 2^{-n}$ for each $\omega \in \Omega$ (what does each ω here correspond to?). The corresponding probability model is called that of a symmetric simple random walk.

⁶here A + y is considered modulo 1, i.e. in n = 1 for example $A + y = \{a + y \mod 1 : a \in A\}$.

One can easily generalize this to higher dimensions by for example taking vectors of such walks. Our main question for such models is the following: how does an instance of a random walk look like? Can we describe using probability theory how high it will be, how it fluctuates etc? How to do it?

For a starter, it's good to start with some simple calculations:

Exercise 1.5. Calculate the probability that the simple random walk of length n is equal to zero after 4 steps. What do you notice?

Similarly, maybe the easiest model of a random network or graph is the one where you consider each graph with the same vertex set as equally likely:

Example 1.21 (Uniform random graph). Let $n \in \mathbb{N}$. A simple graph is a set of vertices $V = \{v_1, \ldots, v_n\}$ together with an edge set E, that is some subset of $\{\{v_i, v_j\} : (v_i, v_j) \in V \times V, v_i \neq v_j\}$. You can imagine the graph as drawing all the n points v_1, \ldots, v_n on the plane and then drawing a line between v_i and v_j to say they are connected if and only if $\{v_i, v_j\} \in E$.

The probability model for a uniform random graph is defined as follows: we let Ω be the set of all simple graphs G with vertex set V, set $\mathcal{F} = \mathcal{P}(\Omega)$ and define \mathbb{P} such that $\mathbb{P}(\{G\}) = |\Omega|^{-1}$ for each graph $G \in \Omega$.

Here again we would basically want to see how the graph or network looks like: how many neighbours does a vertex typically have? What is the shortest distance between two vertices? Etc etc...All these questions have nice interpretations for example in social networks - the number of friends, or the shortest communication path between two people etc...

Naturally, we don't expect social networks to be well described by a model where every graph is equally likely! Still, good to start somewhere:

Exercise 1.6 (Uniform random graphs). Consider the probability model for uniform random graphs.

- What is the size of the sample space Ω , i.e. how many simple graphs are there on n vertices?
- What is the probability that there are exactly 3 edges in the graph?
- Show that the probability of the event that there is an isolated vertex, i.e. a vertex that is not connected to anyone else, goes to zero as $n \to \infty$.

In both models we see that in order to start describing them, we would like to introduce some random quantities: the maxima of the walk, or the number of zero of the walk...or the largest degree of a graph, the size of the biggest component etc...The mathematical concept for doing this is called a random variable.

1.3 Random variables

In the realm of probability spaces, measurable maps have a special name - they are called random variables.

One can think of them as follows: when you have a probability space, then events would correspond to yes-no questions. For example, if we model the weather and each $\omega \in \Omega$ is a state of the atmosphere, then events would answer questions like: is it going to rain? are there any clouds?

Random variables on the other hand help to observe and describe numerical information: e.g. how many mm will it rain and for how many hours? Or, even more complicated information: What type of clouds to we expect to see?

Definition 1.22 (Random variables). A random variable is just a measurable function X: $\Omega \to \mathbb{R}$ from some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to the measurable space $(\mathbb{R}, \mathcal{F}_E)$, where \mathcal{F}_E is the Borel σ -algebra on \mathbb{R} .

More generally, a $(\Omega_2, \mathcal{F}_2)$ -valued random variable is just a measurable function $X : \Omega \to \Omega_2$ from some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to a measurable space $(\Omega_2, \mathcal{F}_2)$.

Thus random variables X are just functions from a probability space Ω to \mathbb{R} . However, in the realm of probability theory we are interested not in the exact correspondence between individual ω -s and real numbers, but we rather ask which values in \mathbb{R} are taken with which proportion (according to \mathbb{P}). This information is called the law of a random variable:

Definition 1.23 (Law of a random variables). We call the probability measure \mathbb{P}_X on $(\mathbb{R}, \mathcal{F}_E)$ defined for all events $E \in \mathcal{F}_E$ by

$$\mathbb{P}_X(E) := \mathbb{P}(X^{-1}(E)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in E\})$$

the law or the distribution of the random variable X.

Notice that the fact that \mathbb{P}_X is a probability measure follows from Lemma 1.9. For $E \in \mathcal{F}_E$ we will often use the notations

$$\mathbb{P}(X \in E) := \mathbb{P}(X^{-1}(E))$$

insisting that we think of X as a random quantity taking some values. We also denote the event $\{\omega \in \Omega : X(\omega) = k\}$ simply by $\{X = k\}$ or even by just X = k. By custom, we keep the capital letters X, Y, Z often for random variables - not to confuse with the same notation also often used for topological spaces!

Notice that by definition, the law of a random variable is fully determined by a collection of events. This is formalized by:

Definition 1.24 (Equality in law). Two random variables X, Y are said to be equal in law or equal in distribution, denoted $X \sim Y$ if for every $E \in \mathcal{F}_E$ we have that $\mathbb{P}_X(E) = \mathbb{P}_Y(E)$.

In particular, two random variables that are equal in law could be defined on different underlying probability spaces $(\Omega, \mathcal{F}, \mathbb{P})$ - we are only interested that they give rise to the same law on $(\mathbb{R}, \mathcal{F}_E)$. So in that sense the underlying probability space plays only an auxiliary role here. This is also nice, as it paves way for comparing different probabilistic phenomena in different contexts.

Here are some concrete examples of probability spaces and random variables defined on them.

• Indicator functions of events. The simplest random variables arise when asking whether and event happened or not and are just the indicator functions of events. More precisely, if we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, then for any $E \subseteq \Omega$, the indicator function $1_E(\omega)$, which is equal to 1 if $\omega \in E$ and zero otherwise, is a random variable. Indeed, for any $F \in \mathcal{F}_E$, the preimage of F under 1_E is either equal to E, E^c, Ω or \emptyset and by definition they are all measurable sets of Ω . We will return to such random variables soon and call them Bernoulli random variables.

• The number of heads. For $n \in \mathbb{N}$ consider the probability space $(\{0,1\}^n, \mathcal{P}(\{0,1\}^n), \mathbb{P})$ where \mathbb{P} is the probability measure that treats each sequence of coin tosses as equal. Let us show that

$$X_1 = \text{total number of heads}$$

is a random variable: indeed, we just need to show that X_1 is a measurable function from $(\{0,1\}^n, \mathcal{P}(\{0,1\}^n), \mathbb{P})$ to $(\mathbb{R}, \mathcal{F}_E)$. But all subsets of the probability space are measurable, so the condition is automatically satisfied! This happens always when the σ -algebra on our initial probability space is the power-set – this should remind you of the fact that all functions from a topological space with the discrete topology are continuous.

• Properties of a random graph. Further, we could also consider the example of uniform random graphs on n vertices as in the Exercise sheet 1 or 3. Then again, we used the power-set as the σ -algebra on the set Ω of all possible graphs on n vertices. Thus both

 Y_1 = the number of edges that are present

and

 Y_2 = the number of connected components

are random variables. Notice that using these random variables we can much more freely talk about this random graph and about how it looks like.

• Properties of a random walk. As a final example, consider the model of random walks on n steps as defined earlier – again, we can describe this model well using random variables. E.g.

 $Z_1 = \text{maximal value of the walk}$

and

 Z_2 = the number of times the walk visits zero

are both random variables. This is again just because our probability space for random graphs was built using the power set as a σ -algebra and in that case all real valued functions $F:(\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{F}_E)$ are measurable and hence random variables.

• Standard normal random variable. You have probably already heard about Gaussian random variables, we will meet them soon!

Among random variables, one usually separates discrete and continuous random variables (but notice that there are also random variables that are neither, but rather a mixture!):

Definition 1.25 (Discrete and continuous random variable). A random variable X is called discrete if there is a countable set $S \subseteq \mathbb{R}$, called the support of X, such that for all $s \in S$ we have that $\mathbb{P}(X = s) > 0$ and $\mathbb{P}(X \in S) = 1$. We call X a continuous random variable if for every $s \in \mathbb{R}$, we have that $\mathbb{P}(X = s) = 0$.

As you might expect from the name, discrete random variables can be indeed modelled using a discrete probability space:

Exercise 1.7. Let X be a discrete random variable and S its support. Show that one can define a random variable \widetilde{X} with the same law as X on the probability space $(S, \mathcal{P}(S), \mathbb{P}_S)$, determined by $\mathbb{P}_S(s) = \mathbb{P}(X = s)$.

We will come back to random variables very shortly. Indeed, random variables are the language for studying and describing random situations, so a big chunk of the course will be the study of random variables and their properties.

But first, there is maybe an even more important notion - that of independence.

1.4 Some non-examinable proofs

Proof of Proposition 1.14. The idea is to partition Ω into indecomposable sets $F \in \mathcal{F}$, i.e. to write $\Omega = \bigcup_{i \in I} F_i$ such that F_i are disjoint and for any $F \in \mathcal{F}$ and any F_i , either $F \cap F_i = \emptyset$ or $F_i \subseteq F$. These F_i will correspond to elements or 'atoms' of Ω_2 .

To do this, define for each $\omega \in \Omega$ the set $F_{\omega} = \bigcap_{F \in \mathcal{F}, \omega \in F} F$. We claim that $F_{\omega} \in \mathcal{F}$. This is not obvious as the intersection might be uncountable. Now, for any $\widehat{\omega} \notin F_{\omega}$, pick some $G_{\widehat{\omega}} \in \mathcal{F}$ with $\omega \in G_{\widehat{\omega}}$ but $\widehat{\omega} \notin G_{\widehat{\omega}}$. Notice that such a set must exist, as otherwise $\widehat{\omega} \in F_{\omega}$. Moreover, notice that $\widehat{\Omega} := \{\widehat{\omega} \notin F_{\omega}\}$ is countable. Thus $\widehat{F}_{\omega} := \bigcap_{\widehat{\omega} \in \widehat{\Omega}} G_{\widehat{\omega}} \in \mathcal{F}$. We claim that in fact $\widehat{F}_{\omega} = F_{\omega}$. As $\omega \in \widehat{F}_{\omega}$, by definition $F_{\omega} \subseteq \widehat{F}_{\omega}$. On the other hand also by definition $F_{\omega}^c \subseteq \widehat{F}_{\omega}^c$ and thus $F_{\omega} = \widehat{F}_{\omega} \in \mathcal{F}$.

We now claim that the sets F_{ω} partition Ω as explained above: first let $\omega, \widehat{\omega} \in \Omega$. We claim that either $F_{\widehat{\omega}} = F_{\omega}$ or they are disjoint. Suppose they are not disjoint. Then both $F_{\omega} \cap F_{\widehat{\omega}} \in \mathcal{F}$ and $F_{\omega} \setminus F_{\widehat{\omega}} \in \mathcal{F}$. But if $F_{\omega} \neq F_{\widehat{\omega}}$ then one of these sets contains ω and is strictly smaller than F_{ω} , contradicting the definition of F_{ω} . Now, consider any other $F \in \mathcal{F}$. Then either $F_{\omega} \cap F = \emptyset$, or there is some $\widehat{\omega} \in F_{\omega}$. The by definition $F_{\widehat{\omega}} \subseteq F$. But also as $F_{\widehat{\omega}} \cap F_{\omega} \neq \emptyset$ we have that $F_{\widehat{\omega}} = F_{\omega}$ and thus $F_{\omega} \subseteq F$.

Now, as Ω is countable, there are countably many sets F_{ω} . Thus we can enumerate them using a countable index set I as $(F_i)_{i\in I}$. We now define $f:\Omega\to I$ by $f(\omega)=i_{\omega}$, where $i_{\omega}\in I$ corresponds to the index of i such that $\omega\in F_i$. It is now easy to verify that f is measurable from (Ω, \mathcal{F}) to $(I, \mathcal{P}(I))$. Thus we can induce a probability measure \mathbb{P}_I on $(I, \mathcal{P}(I))$ as a push-forward of \mathbb{P} , i.e. via Lemma +, and obtain that f is in fact measure-preserving as a map from $(\Omega, \mathcal{F}, \mathbb{P})$ to $(I, \mathcal{P}(I), \mathbb{P}_I)$. It remains to argue that every measurable set $F \in F$ map to a measurable set. But all subsets of I are measurable and thus this follows trivially.

Proof of Proposition 1.16. The idea is to decompose S^1 into a countable number of shifted copies of a set R and then to draw a contradiction like in Lemma 1.15.

Consider some irrational number $r \in [0,1]$ and the following operation $T: S^1 \to S^1$: we rotate the circle by $r2\pi$ radians. The inverse operation T^{-1} rotates it by $-r2\pi$ radians.

For any $x \in S^1$, consider set

$$S_x = \{\dots, T^{-2}(x), T^{-1}(x), x, T(x), T^2(x), \dots\}.$$

Notice that by the fact that r is irrational, we have that $T^k(x) \neq T^l(x)$ for all $k, l \in \mathbb{Z}$ and thus S_x is countably infinite: indeed, otherwise $T^{k-l}(x) = x$, but T^{k-l} is a rotation of $r(k-l)2\pi \notin 2\pi\mathbb{Z}$ radians and thus this is impossible.

We claim that the countably infinite sets S_x are either disjoint or coincide and that they partition S^1 . First, notice that each $x \in S_x$, thus $\bigcup_{x \in S^1} S_x = S^1$. Hence it remains to show that if $S_x \cap S_y \neq \emptyset$, then $S_x = S_y$. So suppose that there is some $z \in S_x \cap S_y$. Then by definition there is some $k_x, k_y \in \mathbb{Z}$ such that $T^{k_x}(x) = T^{k_y}(y) = z$. But then $x = T^{-k_x}(z) = T^{k_y - k_z}(y)$ and hence for any $l \in \mathbb{Z}$, $T^l(x) = T^{l+k_y - k_z}(y)$ and $S_x = S_y$.

By the Axiom of choice 7 we can pick one element s_x from each disjoint S_x and define R as the union of all such elements.

Now for $i \in \mathbb{Z}$, let $R_i = T^i(R)$. We claim that all R_i are disjoint. Indeed if $z \in R_i$ and $z \in R_j$, then there must exist $w, y \in R$ such that $T^i(w) = z = T^j(y)$ and in particular $T^{i-j}(w) = y$. Thus on the other hand w and y would need to belong to the same S_x , and on the other hand this is impossible as we saw that $T^k(x) \neq x$ for all $k \in \mathbb{Z}$. Moreover, $\bigcup_{i \in \mathbb{Z}} R_i = S^1$ as $\bigcup_{i \in \mathbb{Z}} R_i = \bigcup_{x \in S^1} S_x$.

U_{i∈ℤ} $R_i = S^1$ as $\bigcup_{i∈ℤ} R_i = \bigcup_{x∈S^1} S_x$. Hence by countable additivity $1 = \mathbb{P}(S^1) = \sum_{i∈ℤ} \mathbb{P}(R_i)$ and shift-invariance $\mathbb{P}(R_i) = \mathbb{P}(R)$ gives a contradiction as in the proof of Lemma 1.15.

⁷Recall that the Axiom of choice says the following: if you are giving any collection of non-empty sets $(X_i)_{i\in I}$, then their product is non-empty. In other words, you can define a function $f:I\to\bigcup_{i\in I}X_i$ such that for all $i\in I$, $f(i)\in X_i$. Using this axiom cannot be avoided here!

SECTION 2

Conditional probability and independence

We saw in the case of Laplace model that probability has one interpretation as modelling the frequency of something happening in a repeated experiment, when each experiment 'does not influence' the others. We will now develop a mathematical meaning to this 'does not influence'. This will be called independence.

More generally, we will set up the vocabulary to talk about how the knowledge about some random event influences the probabilities we should assign to other events. This leads us to talk about conditional probabilities.

2.1 Conditional probability

We have already considered (in the course and on the example sheets) many unpredictable situations where several events naturally occur either at the same time or consecutively: a sequence of coin tosses or successive steps in a random walk, or different links or edges in a random graph. In all these cases, the fact that one event has happened could easily influence the others. For example, if you want to model the financial markets tomorrow, it seems rather advisable to take into account what happened today. To talk about the change of probabilities when we have observed something, we introduce the notion of conditional probability:

Definition 2.1 (Conditional probability). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$. Then for any $F \in \mathcal{F}$, we define the conditional probability of the event F given E (i.e. given that the event E happens), by

$$\mathbb{P}(F|E) := \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}.$$

Recall that $E \cap F$ is the event that both E and F happen. Hence, as the denominator is always given by $\mathbb{P}(E)$, the conditional probability given E is proportional to $\mathbb{P}(E \cap F)$ for any event F. Here is the justification for dividing by $\mathbb{P}(E)$:

Lemma 2.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$. Then $P(\cdot|E)$ defines a probability measure on (Ω, \mathcal{F}) , called the conditional probability measure given E.

Proof. First, notice that \mathbb{P} is indeed defined for every $F \in \mathcal{F}$. Next, $\mathbb{P}(\emptyset|E) = \mathbb{P}(\emptyset)/\mathbb{P}(E) = 0$ and $\mathbb{P}(\Omega|E) = \mathbb{P}(E)/\mathbb{P}(E) = 1$. So it remains to check countable additivity.

So let $F_1, F_2, \ldots F_n$ be disjoint. Then also $E \cap F_1, E \cap F_2, \ldots$ are also disjoint. Hence

$$\mathbb{P}(\bigcup_{i\geq 1} F_i|E) = \frac{\mathbb{P}((\bigcup_{i\geq 1} F_i) \cap E)}{\mathbb{P}(E)} = \frac{\mathbb{P}(\bigcup_{i\geq 1} (F_i \cap E))}{\mathbb{P}(E)} = \sum_{i\geq 1} \frac{\mathbb{P}(F_i \cap E)}{\mathbb{P}(E)} = \sum_{i\geq 1} \mathbb{P}(F_1|E),$$

and countable additivity follows.

It should be remarked that conditional probability of an event might sometimes be similar to the initial probability (we will see more about this very soon), but it might also be drastically different. A somewhat silly but instructive example is the following: conditional

probability of the event E^c , conditioned on E is always zero, no matter what the original probability was; similarly the conditional probability of E, conditioned on E is always 1.

Exercise 2.1 (Random walk and conditional probabilities). Consider the simple random walk of length n.

- What is the probability that the walk ends up at the point n at time n? Now, suppose that the first step was -1. What is the probability that the walk ends up at the point n at time n now?
- Suppose that n is even. What is the probability that the walk ends up at the point 0 at time n? Now, suppose that the first step was -1. What is the probability that the walk ends up at the point 0 at time n now?

One also has to be very careful about the exact conditioning, as two similarly sounding conditionings can induce very different conditional probabilities.

Exercise 2.2 (Uniform random graphs and conditional probabilities). Consider the uniform random graph on $n \ge 3$ vertices as in Example 2.18.

- What is the probability that the graph is connected given each vertex is connected to exactly one edge?
- What is the probability that the graph is connected given that each vertex but one is connected to exactly one edge?

Still, although conditional probabilities are often tricky, they are very important and useful. For example, they help to decompose the probability space. Indeed, the following result is a generalization of the following intuitive result: if you know that exactly one of three events E_1, E_2, E_3 happens, then to understand the probability of any other event F, it suffices to understand the conditional probabilities of this event, conditioned on each of E_i , i.e. the probabilities $\mathbb{P}(F|E_i)$.

Proposition 2.3 (Law of total probability). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Further, let I be countable and $(E_i)_{i \in I}$ be disjoint events with positive probability and such that $\Omega \setminus (\bigcup_{i \in I} E_i)$ has zero probability. Then for any $F \in \mathcal{F}$, we can write

$$\mathbb{P}(F) = \sum_{i \in I} \mathbb{P}(F|E_i)\mathbb{P}(E_i).$$

Proof. We can write F as a disjoint union

$$F = \left(F \cap (\bigcup_{i \in I} E_i)\right) \cup \left(F \cap (\Omega \setminus (\bigcup_{i \in I} E_i))\right)$$

and as $\mathbb{P}\left(F \cap (\Omega \setminus (\bigcup_{i \in I} E_i))\right) = 0$ by assumption, we see by additivity of \mathbb{P} under disjoint unions that $\mathbb{P}(F) = \mathbb{P}\left(F \cap (\bigcup_{i \in I} E_i)\right)$.

Now rewrite $F \cap (\bigcup_{i \in I} E_i) = \bigcup_{i \in I} (F \cap E_i)$. Because $(E_i)_{i \in I}$ are disjoint, so are $(F \cap E_i)_{i \in I}$. Hence again by countable additivity for disjoint sets

$$\mathbb{P}(F) = \mathbb{P}\left(\bigcup_{i \in I} (F \cap E_i)\right) = \sum_{i \in I} \mathbb{P}(F \cap E_i).$$

Now, by definition $\mathbb{P}(F \cap E_i) = \mathbb{P}(F|E_i)\mathbb{P}(E_i)$ and the proposition follows.

2.2 Independence of events

Conditional probabilities are of course not at all difficult when the probability of an event does not change under conditioning - i.e. when $\mathbb{P}(E|F) = \mathbb{P}(E)$. Such pairs of events are called independent. In fact the rigorous definition is slightly different:

Definition 2.4 (Independence for two events). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say that two events E, F are independent if $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$.

Observe that when $\mathbb{P}(F) > 0$, then we get back to the intuitive statement of independence, i.e.that $\mathbb{P}(E|F) = \mathbb{P}(E)$. Indeed, if E and F are independent we can write

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} = \frac{\mathbb{P}(E)\mathbb{P}(F)}{\mathbb{P}(F)} = \mathbb{P}(E).$$

We have chosen the other definition, as then we automatically also include the case where possibly $\mathbb{P}(F) = 0$. Here are some basic properties of independence:

Lemma 2.5 (Basic properties). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- If E is an event with $\mathbb{P}(E) = 1$ then it is independent of all other events.
- If E, F are independent, then also E^c and F are independent. In particular every event with $\mathbb{P}(E) = 0$ is independent of all other events.
- Finally, if an event is independent of itself, then $\mathbb{P}(E) \in \{0,1\}$.

Proof. Let $E, F \in \mathcal{F}$. By inclusion-exclusion formula

$$\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cap F).$$

Now, if $\mathbb{P}(E) = 1$ then also $\mathbb{P}(E \cup F) \ge \mathbb{P}(E) = 1$ and hence this gives $\mathbb{P}(E \cap F) = \mathbb{P}(F) = \mathbb{P}(F)\mathbb{P}(E)$ and hence E and F are independent.

For the second property, we can write by law of total probability

$$\mathbb{P}(E^c \cap F) + \mathbb{P}(E \cap F) = \mathbb{P}(F).$$

By independence of E, F we have $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$ and thus it follows that

$$\mathbb{P}(E^c \cap F) = \mathbb{P}(F)(1 - \mathbb{P}(E)) = \mathbb{P}(F)\mathbb{P}(E^c)$$

as desired. The second part then follows from the points 1) and 2).

Finally, if E is independent of itself then $\mathbb{P}(E) = \mathbb{P}(E \cap E) = \mathbb{P}(E)^2$. Hence $\mathbb{P}(E)(1 - \mathbb{P}(E)) = 0$, implying that $\mathbb{P}(E) \in \{0, 1\}$.

There are two different ways to generalize independence to several events:

- mutual independence
- and pairwise independence

The stronger and more important notion is that of mutual independence.

Definition 2.6 (Mutual independence). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let I be an index set. Then the events $(E_i)_{i\in I}$ are called mutually independent if for any finite subsets $I_1 \subset I$ we have that

$$\mathbb{P}\left(\bigcap_{i\in I_1} E_i\right) = \prod_{i\in I_1} \mathbb{P}(E_i).$$

Similarly, one can generalize this to an arbitrary collection of sets of events.

Sometimes one does not have the full mutual independence or at least does not know it holds, and just pairwise independence can be asserted. There are similar notions of k-wise independence.

Definition 2.7 (Pairwise independence). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let I be an index set. Then the events $(E_i)_{i\in I}$ are called pairwise independent if for any $i \neq j \in I$ the events E_i and E_j are independent.

It is important to notice that, whereas mutual independence clearly implies pairwise independence, the opposite is not true in general:

Exercise 2.3 (Pairwise independent but not mutually independent). Consider the probability space for two independent coin tosses. Let E_1 denote the event that the first coin comes up heads, E_2 the event that the second coin comes up heads and E_3 the event that both coin come up on the same side. Show that E_1, E_2, E_3 are pairwise independent but not mutually independent.

Finally, one can also talk about independence of collections of events. This will be important when we try to generalize the notion of independence from events to random variables

Definition 2.8 (Mutual independence of collections of events). Consider two collections events $(E_i)_{i\in I}$ and $(F_j)_{j\in J}$ all defined on the same probability space. We say that they are independent if for all $i\in I$, $j\in J$:

$$\mathbb{P}(E_i \cap F_i) = \mathbb{P}(E_i)\mathbb{P}(F_i).$$

In case of a J different collections of events $(E_{j,i})_{i \in I_j}$, we say that they are mutually independent if for any finite subset $J_1 \subseteq J$ and any events E_{j,i_j} with $j \in J_1$

$$\mathbb{P}\left(\bigcap_{j\in J_1} E_{j,i_j}\right) = \Pi_{j\in J_1} \mathbb{P}(E_{j,i_j}).$$

2.2.1 Conditional independence of events

Finally, the notion of independence under a conditional measure has earned its own name:

Definition 2.9 (Conditional independence). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let I be an index set. Then the events $(F_i)_{i\in I}$ are called conditionally independent given E if for any finite subsets $I_1 \subseteq I$ we have that

$$\mathbb{P}\left(\bigcap_{i\in I_1} F_i|E\right) = \Pi_{i\in I_1} \mathbb{P}(F_i|E).$$

As with conditional probability, conditioning can also change the presence or absence of independence - as a silly extreme example again the event E on which you condition, becomes independent of everything. We will meet a more interesting example very soon.

Exercise 2.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and E_1, E_2, E_3 pairwise independent events with positive probability. Show that if E_1 and E_2 are conditionally independent, given E_3 , then E_1, E_2, E_3 are mutually independent.

2.3 Independence of random variables

Of course we want to not only talk about independence of events, but also about independence of random quantities, that we described using the notation of random variables. Recall that (the law of) a random variable X is characterized by all events $\{X \in E\}$ for Borel sets $E \subseteq \mathbb{R}$. The mutual independence of random variables is then defined as mutual independence of these sets of events. More precisely,

Definition 2.10 (Mutually independent random variables). Let I be an index set and $(X_i)_{i\in I}$ a family of random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that these random variables are mutually independent if for every finite set $J \subseteq I$ and all Borel measurable sets $(E_j)_{j\in J}$ we have that

$$\mathbb{P}(\bigcap_{j\in J} \{X_j \in E_j\}) = \prod_{j\in J} \mathbb{P}(X_j \in E_j).$$

Of course checking this condition over all possible sets of events seems like an impossible task! Luckily it actually suffices to check independence already for a smaller collection of events. The following lemma states that it suffices to only show that every collection of finitely many random variables are mutually independent, and moreover that we can restrict to only a small subset of events to check independence. The proof needs a bit more measure theory than we have, thus it is admitted:

Proposition 2.11 (Equivalent statement of independence (admitted)). Consider random variables X_1, X_2, \ldots defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then X_1, X_2, \ldots are mutually independent if and only if for every $m \geq 2$ and all pairs $(a_j, b_j)_{j=1...m}$ with $a_j < b_j$ we have that

$$\mathbb{P}(\bigcap_{1\leq j\leq m} \{X_j \in (a_j, b_j]\}) = \prod_{1\leq j\leq m} \mathbb{P}(X_j \in (a_j, b_j]).$$

Assuming this, we can, however, come up with more conditions:

Exercise 2.5. Consider random variables X_1, X_2, \ldots defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then X_1, X_2, \ldots are mutually independent if and only if for every $m \geq 2$ and all pairs $a_j \in \mathbb{R}$ we have that

$$\mathbb{P}(\bigcap_{1 \le j \le m} \{X_j \le a_j\}) = \prod_{1 \le j \le m} \mathbb{P}(X_j \le a_j).$$

We can easily prove a version of the Proposition 2.11 the case of a finite number of discrete random variables and it is instructive to do so:

Lemma 2.12 (Independence for discrete random variables). Let X_1, \ldots, X_n be discrete random variables with supports S_1, \ldots, S_n defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then X_1, \ldots, X_n are mutually independent if and only if for every $s_1 \in S_1, \ldots, s_n \in S_n$, we have that

$$\mathbb{P}(\bigcap_{i=1}^{n} \{X_i = s_i\}) = \prod_{i=1}^{n} \mathbb{P}(X_i = s_i).$$

Proof. This is left as an exercise.

Exercise 2.6 (Simple symmetric random walk). Prove that for a simple random walk of length n all the increments of the walk, i.e. $\Delta_i = S_i - S_{i-1}$ for $i = 1 \dots n$, are mutually independent random variables.

The notion of independent random variables is very important and widely used - often also just because otherwise it is very difficult to do any calculations! Often one talks about a sequence of i.i.d. random variables X_1, X_2, \ldots - this means that $(X_i)_{i\geq 1}$ are mutually independent (first 'i') and all have the same probability law, i.e. are identically distributed (the 'i.d.'). Let us bring it even out as a definition:

Definition 2.13 (Independent identically distributed random variables). Let $X_1, X_2, ...$ be random variables defined on a common probability space. We call $X_1, X_2, ...$ i.i.d., i.e. independent and identically distributed if they are mutually independent and all have the same probability distribution.

Intuitively, this corresponds to repeating the very same random situation or experiment over and over again.

A silly-sounding but very reasonable question to ask is the following: does there even exist a probability space with finite or with countably or unaccountably many independent random variables?

In general this is not an easy question! In fact, as soon as one has countably many nonconstant random variables, the underlying probability space would need to be uncountable to do that! We will partly deal with this question in the next subsection.

2.4 Independence and product probability spaces

Mutual independence of random variables is naturally linked to products of probability spaces. Indeed, consider probability spaces $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)$ for $i = 1 \dots n$. Then to construct the product probability space we need a product σ -algebra and a product measure.

- (1) The product σ -algebra \mathcal{F}_{Π} is defined as the smallest σ -algebra containing all $E_1 \times \cdots \times E_n$ with $E_i \in \mathcal{F}_i$.
- (2) The product probability measure \mathbb{P}_{Π} of $\mathbb{P}_1, \ldots, \mathbb{P}_n$ on $(\Pi_{i=1}^n \Omega_i, \mathcal{F}_{\Pi})$ is defined as the only probability measure such that

$$\mathbb{P}(E_1 \times \cdots \times E_n) = \prod_{i=1}^n \mathbb{P}_i(E_i)$$

for all $E_1 \times \cdot \times E_n$ with $E_i \in \mathcal{F}_i$.

There is no difficulty in defining the product σ -algebra, thanks to Lemma 1.4. Even in the case of countably infinite products, it would work out very well. The existence and uniqueness of the product measure are however technical already in the case of finite products. So we will state the following theorem without proof:

Theorem 2.14 (Product measure // admitted). For $i \in \mathbb{N}$, let $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)$ be probability spaces. Then there exists a unique probability measure \mathbb{P}_{Π} on $(\Pi_{i \in \mathbb{N}} \Omega_i, \mathcal{F}_{\Pi})$ such that for any finite subset $J \subset \mathbb{N}$ and any event E of the form $E = \Pi_{i \in \mathbb{N}} F_i$ with $F_i = \Omega_i$ for $i \notin J$ and $F_i = E_i \in \mathcal{F}_i$ for $i \in J$, we have that

(2.1)
$$\mathbb{P}_{\Pi}(E) = \Pi_{i \in J} \mathbb{P}_{i}(E_{i}).$$

We call such a measure the product measure of the collection $((\Omega_i, \mathcal{F}_i, \mathbb{P}_i))_{i \geq 1}$.

It is rather easy to see the existence and uniqueness in the case of a finite number of discrete probability spaces, so let us do that. Below, we state it in the case where the σ -algebras are equal to the power set, but as seen in Proposition 1.14 this is also encompasses the case of general σ -algebras on discrete spaces.

Lemma 2.15 (Discrete product spaces). Let $(\Omega_i, \mathcal{P}(\Omega_i), \mathbb{P}_i)$ for $i = 1 \dots n$ be discrete probability spaces. Then the product probability \mathbb{P}_{Π} measure on $(\Pi_{i=1}^n \Omega_i, \mathcal{F}_{\Pi})$ exists and is unique.

Proof. Observe that $\mathcal{F}_{\Pi} = \mathcal{P}(\Pi_{i=1}^n \Omega_i)$: indeed, as each $\{\omega_i\} \in \mathcal{F}_i$, it follows that $\{(\omega_1, \ldots, \omega_n)\} \in \mathcal{F}_{\Pi}$. But we saw that in case where Ω_i are discrete, the smallest σ -algebra containing all the singletons is the power-set.

Now, we have that

$$E_1 \times \cdots \times E_n = \bigcup_{\forall i: \omega_i \in E_i} \{(\omega_1, \dots, \omega_n)\}.$$

Moreover, for a finite product of discrete probability spaces this disjoint union is countable. It follows that

$$\mathbb{P}_{\Pi}(E_1 \times \cdots \times E_n) = \sum_{\forall i: \omega_i \in E_i} \mathbb{P}_{\Pi}(\{(\omega_1, \dots, \omega_n)\}).$$

As also

$$\sum_{\forall i:\omega_i \in E_i} \prod_{i=1}^n \mathbb{P}_i(\{\omega_i\}) = \prod_{i=1}^n \mathbb{P}_i(E_i),$$

the condition for being a product measure is equivalent to

$$\mathbb{P}_{\Pi}(\{(\omega_1,\ldots,\omega_n)\}) = \prod_{i=1}^n \mathbb{P}_i(\{\omega_i\})$$

for all $\omega_i \in \Omega_i$. But we can just use this condition to uniquely define $\mathbb{P}_{\Pi}!$

Indeed, the right-hand side is a well defined number in [0,1] and we know that to determine a probability measure on a discrete probability space with its power-set, it suffices to just to determine the probability on singletons.

The only question we might have, why does this define a probability measure, i.e. why are axioms satisfied by this definition? We leave this simple check of axioms to the reader. \Box

Notice that by the definition of product measure, on the product probability space with product measure the events F_1, \ldots, F_n of the form $F_i = \Omega_1 \times \Omega_2 \times \ldots E_i \times \cdots \times \Omega_n$ with $E_i \in \mathcal{F}_i$ are mutually independent. This inspires the following observation:

• if we are given some laws of random variables and we want to construct a common probability space on which all of these random variables are defined and are moreover mutually independent, then we should use product spaces.

For example to model a sequence of n independent fair coin tosses we take the product space of n copies of $(\{0,1\}, \mathcal{P}(\{0,1\}))$ with the probability measure that sets $\mathbb{P}(\{0\}) = \mathbb{P}(\{1\}) = 1/2$. You can check that the model you get is exactly the Laplace model on n indistinguishable fair coin tosses that we discussed in the beginning of the course.

We will again state this proposition in a larger generality than we prove it.

Theorem 2.16 (Existence of probability spaces with independent random variables // partly admitted). Consider random variables $(X_i)_{i\geq 1}$. Then we can find a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variables $(\widetilde{X}_i)_{i=1\geq 1}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$ such that

• For all $i \geq 1$, \widetilde{X}_i and has the law of X_i

• Moreover, the random variables $(\widetilde{X}_i)_{i\geq 1}$ are mutually independent.

We will again content ourselves with proving it in the case of discrete random variables and for finite products.

Case of finite products of discrete random variables. Using Exercise 1.7, we can find for $i = 1 \dots n$ discrete probability spaces $(\Omega_i, \mathcal{P}(\Omega_i), \mathbb{P}_i)$ and random variables $\widehat{X}_i : \Omega_i \to \mathbb{R}$ that have the same law as X_i .

By the Lemma 2.15 above, we can construct the product probability space corresponding to these probability spaces, denoted $(\Pi_{i=1}^n \Omega_i, \mathcal{F}_{\Pi}, \mathbb{P}_{\Pi})$.

Now, define $\widetilde{X}_i(\omega_1,\ldots,\omega_n) := \widehat{X}_i(\omega_i)$. One can check that \widetilde{X}_i thus defined are all random variables and they are defined to have the same law as X_i . Indeed, by the definition of \widetilde{X}_i and the product measure

$$\mathbb{P}_{\widetilde{X}_i}(E) = \mathbb{P}_{\Pi}(\mathbb{R} \times \dots \times \widehat{X}_i^{-1}(E) \times \mathbb{R} \times \dots \times \mathbb{R}) = \mathbb{P}_{\widehat{X}_i}(E).$$

Finally, we need to check that the random variables $(\widetilde{X}_i)_{i=1...n}$ are mutually independent on the space $(\prod_{i=1}^n \Omega_i, \mathcal{F}_{\Pi}, \mathbb{P}_{\Pi})$. From the identity

$$\{\widetilde{X}_j \in E_j\} = \{\mathbb{R} \times \dots \times \widehat{X}_i^{-1}(E) \times \mathbb{R} \times \dots \times \mathbb{R}\}$$

we have that:

$$\mathbb{P}_{\Pi}(\bigcap_{i=1...n} \{\widetilde{X}_i \in E_i\}) = \mathbb{P}_{\Pi}(\Pi_{i=1}^n \widehat{X}_i^{-1}(E_i)).$$

By the definition of product measure this equals $\Pi_{i=1}^n \mathbb{P}_{\widehat{X}_i}(E_i)$, which in turn equals $\Pi_{i=1}^n \mathbb{P}_{\widetilde{X}_j}(E_j)$ by equality in law. The last expression is equal to $\Pi_{i=1}^n \mathbb{P}_{\Pi}(\widetilde{X}_i \in E_i)$ by definition and we conclude.

2.4.1 Examples of product spaces

As explained above, as soon as we deal with independence, product spaces is a good choice for the underlying probability space. For example, product spaces come up naturally when modelling a sequence of independent coin tosses.

Example 2.17. Suppose you have a coin that is not fair, but comes up heads with probability $p \in (0,1)$. How would you model the sequence of independent n such tosses?

The assumption of all sequences being equally likely does not make sense any longer (e.g. think of the case when p is near 1, then certainly the sequence of all zeros and all ones cannot have the same probabilities). However, the assumption of mutual independence and its relation to product measures are useful!

Indeed, we can define the probability space as follows:

• we take the product space of n copies of $(\{0,1\}, \mathcal{P}(\{0,1\}), \mathbb{P}_p)$, where \mathbb{P}_p such that it gives 1 with probability p and 0 with probability 1-p.

Notice that in this probability space, the probability of a fixed sequence of n tosses with m heads and tails n-m is exactly $p^m(1-p)^{n-m}$. If we further want to calculate the probability that we have exactly m heads we have to sum over all sequences with m heads and we get $\binom{n}{m}p^m(1-p)^{n-m}$. Check that $\sum_{m=0}^n\binom{n}{m}p^m(1-p)^{n-m}=1$!

In fact, product spaces become very handy in many probabilistic models. For example, the random walk defined in Example 1.20 can be modeled on a product space and in the case of random graphs, it gives a nice a very natural way to generalize our model:

Example 2.18 (Erdös-Renyi random graph). For $n \in \mathbb{N}$ consider again a set of vertices V of size n The Erdös-Renyi random graph G_p of parameter $p \in [0,1]$ is then defined by including each possible edge independently with probability p

Exercise 2.7 (Erdös-Renyi random graph). Define the Erdös-Renyi random graph for parameter p on a product probability space and show that the probability of each possible graph G is given by $\mathbb{P}_p(\{G\}) = p^{|E|}(1-p)^{n(n-1)/2-|E|}$, where |E| is the number of edges in this graph G.

- Show that if we take $p = \frac{1}{\log n}$, then the probability that the graph is connected converges to 1 as $n \to \infty$.
- Show that if we take $p = \frac{1}{n^2}$, then the probability that the graph is connected converges to 0 as $n \to \infty$.

2.5 Bayes' rule

Often one hears about conditional probabilities not through independence, but through the Bayes' rule:

Proposition 2.19 (Bayes' rule). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and E, F two events of positive probability. Then

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(F|E)\mathbb{P}(E)}{\mathbb{P}(F)}$$

It's not only that the statement looks innocent, but also the proof is a one-liner - by definition of conditional probability, we can write

$$\mathbb{P}(E|F)\mathbb{P}(F) = \mathbb{P}(E\cap F) = \mathbb{P}(F|E)\mathbb{P}(E).$$

So why is this simple result so important and talked-about? Let us look at an example that comes from Thomas Bayes himself, who was looking at a slightly more advanced version of the same situation.

2.5.1 Example of Thomas Bayes

Suppose that every week the same lottery takes place with the same rules, there are 10000 tickets and a proportion p of them wins. To begin with, you don't know what is the proportion p of winning this lottery, you only know it is either 1/3 or 2/3.

But now, you have played n times and won m times - can you say whether anything about this parameter p? Clearly, the number of times you have won tells you something about this probability - if you win every single time, you would guess that this winning proportion is rather 2/3 than 1/3; if you never win in 100 rounds, you probably guess the opposite.

To analyse this situation more precisely, we want to construct a probability space. We want to both include the unknown proportion p, which will correspond to the probability of winning, and the outcomes of each weekly lottery.

How should we do it?

- First, suppose the winning probability is p. Then each week there is an independent event of winning with this probability. This is exactly the same as having n independent coin tosses with a biased coin of probability p and we can model it using a product space.
- But this probability p, the 'chance parameter' itself is unknown! To solve this, we actually make this probability p also a random quantity our model, as to begin with it could be either 1/3 or 2/3.

Thus we can build our probability space as follows

- We set $\Omega = \{1/3, 2/3\} \times \{0, 1\}^n$, where the first co-ordinate denotes the unknown 'chance parameter' p and the coordinates model the outcomes of n weekly lotteries by setting 1 if we win, and 0 if we lose.
- A priori all possible combinations could be observed, so we set $\mathcal{F} := \mathcal{P}(\Omega)$.
- Finally, how should we set the probabilities? As we know nothing about p to begin with, we consider both possibilities of p equally likely. Further, conditioned on the value of this 'chance parameter' p, all the weekly lotteries are conditionally independent and have winning probability p. Thus, conditioned on the value of p, a fixed sequence with m wins and n-m losses would have probability $p^m(1-p)^{n-m}$, as in the case of coin tosses with a biased coin before.

Exercise 2.8. Consider the probability model for the example of Thomas Bayes, i.e. $\Omega = \{1/3, 2/3\} \times \{0, 1\}^n$, $\mathcal{F} := \mathcal{P}(\Omega)$, $\mathbb{P}(\{(p, \omega_1, \dots, \omega_n\}) = \frac{1}{2}p^m(1-p)^{n-m}$. For i = 1, 2, denote by F_i the event that p = i/3 and by E_m the event that we got exactly m wins in n weeks. Calculate

- the probability $\mathbb{P}(F_i)$
- the probability $\mathbb{P}(E_m|F_i)$
- the probability $\mathbb{P}(E_m)$

Using Bayes formula obtain an expression for $\mathbb{P}(F_i|E_m)$, i.e. the conditional probability of the winning chance i/3 given m wins.

Show that in this calculation when m=n, we have that $\mathbb{P}(F_2|E_m) \to 1$ as $m \to \infty$. Conversely, show that if m=0, we have that $\mathbb{P}(F_1|E_m) \to 1$ as $m \to \infty$. Calculate the probabilities $\mathbb{P}(F_i|E_m)$ in the case m=n/3 as $n \to \infty$.

This example already explains the usefulness of Bayes' rule to large extent. Namely, very often we start modelling unknown situations from very little information, so to build up our probabilistic model we have to use some assumptions – like the assumptions of equal probability for each winning probability in this concrete case – and when we have more data, and more observations we can start updating our model to build a more accurate description of the situation.

2.5.2 A more recent example of Bayes

Most often, one hears about Bayes' rule though in the realm of medicine. Let us give an example of this from a spring of a year that will not be remembered happily.

In late spring 2020 one used several different tests to see whether your body has produced antibodies against SARS-CoV-2 and thus whether you carry the disease / could be immune to COVID at least that moment.

Their preciseness was a good-sounding 95%, meaning that both false-positives (the test tells that you have antibodies when you actually don't) and false-negatives (the test tells that you don't have antibodies, but you actually do) would only appear in 5% of the tests taken.

However, despite this good preciseness, caution was recommended in interpreting your result. Let's try to understand why:

Exercise 2.9 (Bayes' rule and positive test results). What are the different events of interest in a probability model describing the above situation?

- You hear someone claim that, when some tests positive they have 95% chance of actually having antibodies. Is this statement correct?
- Now, consider this additional information: in late spring 2020 it was estimated that 5% of the population have actually been in contact with SARS-CoV-2. Which probability space would you now build to estimate the probability that you have antibodies after a positive test? What is this probability? What if you take two independent tests on the same day and both come up positive?
- Suppose now that 50% of the population have been in contact with SARS-CoV-2. In our model, does this change the probability of actually having antibodies, given a positive test?

SECTION 3

Random variables

In this chapter, we will look more closely into random variables and n-tuples of random variables, called random vectors.

3.1 The cumulative distribution function of a random variable

Our first aim is to get some understanding about how to classify random variables. We already saw that the law of each random variable is described by the probability over all possible events, but this is a description that is very difficult to deal with.

It comes out that all the information about the law of a random variable can be uniquely encoded using what is called a cumulative distribution function.

Definition 3.1 (Cumulative distribution function). We call a function $F : \mathbb{R} \to [0,1]$ a (cumulative) distribution function (abbreviated c.d.f.) if it satisfies the following conditions:

- (1) F is non-decreasing;
- (2) $F(x) \to 0$ as $x \to -\infty$ and $F(x) \to 1$ as $x \to \infty$;
- (3) F is right-continuous, i.e. for any $x \in \mathbb{R}$ and any sequence $(x_n)_{n\geq 1} \in [x,\infty)$ such that $x_n \to x$, we have that $F(x_n) \to F(x)$.

Given a random variable X, we define its cumulative distribution function as follows:

Proposition 3.2 (Cum.dist. function of a random variable). For each random variable X (defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$), the function $F_X(x) := \mathbb{P}(X \in (-\infty, x])$ defines a cumulative distribution function (c.d.f).

Proof. Set $F_X(x) = \mathbb{P}(X \in (-\infty, x])$. Then as $(-\infty, x] \subseteq (-\infty, y]$ for $x \leq y$, we have by (1) of Proposition 1.6 that F is non-decreasing.

Let us next check right-continuity of F. So let $(x_n)_{n\geq 1}$ be any sequence in $[x,\infty)$ converging to x. Then setting $A_n := \bigcap_{1\leq k\leq n} (-\infty, x_k]$ we get that $\bigcap_{n\geq 1} A_n = (-\infty, x]$ and right-continuity follows from (5) of Proposition 1.6.

Now, if $(x_n)_{n\geq 1} \to -\infty$ we have that $\bigcap_{n\geq 1} (-\infty, x_n] = \emptyset$. Hence similarly to above (5) of Proposition 1.6 implies that $F(x_n) \to 0$. Finally, if $(x_n)_{n\geq 1} \to \infty$, we have $\bigcup_{n\geq 1} (-\infty, x_n] \to \mathbb{R}$ and thus by (2) of the same proposition again $F(x_n) \to 1$.

In fact, it comes out the conversely each cumulative distribution function gives rise to a unique law of a random variable.

Theorem 3.3 (Laws of random variable are uniquely determined by c.d.f. // uniqueness admitted). Each cumulative distribution function F gives rise to a unique law of a random variable X such that $F_X(x) = \mathbb{P}(X \in (-\infty, x])$.

First recall the following exercise:

Exercise 3.1 (Monotonicity and measurability). Let $B \subseteq \mathbb{R}$ be an interval. Consider a non-decreasing (or non-increasing) function $f: B \to \mathbb{R}$. Then f is measurable from (B, \mathcal{F}_E) to $(\mathbb{R}, \mathcal{F}_E)$.

We now prove the existence part of theorem using the existence of the uniform measure on $([0,1], \mathcal{F}_E)$. We will admit the uniqueness part, which again would follow from a general statement about uniqueness of measures (see Dynkin's lemma in the starred section of Exercise sheet if interested).

Proof of Theorem 3.3, existence. Suppose we are given a cumulative distribution function F. The idea is to construct the random variables using the probability space P_U on $((0, 1], \mathcal{F}_E, \mathbb{P}_U)$, i.e. the unit interval with the uniform measure.

To do this define $X_F:(0,1]\to\mathbb{R}$ by

$$X_F(x) := \inf_{y \in \mathbb{R}} \{ F(y) \ge x \}.$$

Then clearly X_F is non-decreasing and hence by Exercise 3.1 above measurable from $((0,1], \mathcal{F}_E)$ to $(\mathbb{R}, \mathcal{F}_E)$. Hence X_F is a random variable.

But now

$$\mathbb{P}_{U}(X_{F} \in (-\infty, x]) = \mathbb{P}_{U}((0, \sup_{z \in (0, 1]} \{z < F(x)\})) = \mathbb{P}_{U}((0, F(x)]) = F(x)$$

and hence indeed F is the cumulative distribution function of the random variable X_F .

Example 3.4. Let us calculate the c.d.f of the so called Bernoulli random variable X that takes value 1 with probability p and 0 with probability 1-p. Notice that all indicator functions of events correspond to such random variables with $\mathbb{P}(E) = p$.

We have $F_X(x) = (1-p)1_{x\geq 0} + p1_{x\geq 1}$. More generally for a random variable that takes only finite number of values x_1, \ldots, x_n with probabilities p_1, \ldots, p_n , we have $F_X(x) = \sum_{i=1\ldots n} p_1 1_{x\geq x_i}$. (Why?)

Thus we see that F_X encodes the behaviour of X rather naturally. Let us now look at this relation between the cumulative distribution function F_X and the random variable X more closely. By $F(x^-)$ we denote the limit of $F(x_n)$ with $(x_n)_{n\geq 1} \to x$ from below, i.e. by numbers $x_n < x$.

Lemma 3.5 (C.d.f vs r.v.). Let X be a random variable on some probability space $(\mathbb{P}, \Omega, \mathcal{F})$ and F_X its cumulative distribution function. Then for any $x < y \in \mathbb{R}$

- $(1) \ \mathbb{P}(X < x) = F(x-)$
- (2) $\mathbb{P}(X > x) = 1 F(x)$
- (3) $\mathbb{P}(X \in (x, y)) = F(y) F(x).$
- (4) $\mathbb{P}(X = x) = F(x) F(x-)$.

Proof. This is on exercise sheet.

Thus we see that all jumps of F_X correspond to points where $\mathbb{P}_X(X=x) > 0$. But how many jumps are there?

Lemma 3.6. A cumulative distribution function F_X of a random variable X has at most countably many jumps.

Proof. Let S_n be the set of jumps that are larger than 1/n and \widehat{S}_n any finite subset of S_n . Then \widehat{S}_n is measurable and $1 \geq \mathbb{P}(X \in S_n) \geq |\widehat{S}_n| n^{-1}$. Thus it follows that $|\widehat{S}_n| \leq n$. As this holds for any finite subset of S_n , we deduce that $|S_n| \leq n$ and in particular S_n is finite.

Now the set of all jumps can be written as a union $\bigcup_{n\geq 1} S_n$. Hence as each S_n is finite and a countable union of finite sets is countable, we conclude.

These jumps of a c.d.f. F_X are sometimes called atoms of the law of X. More precisely, we call $s \in \mathbb{R}$ an atom for the law of X if and only if $\mathbb{P}(X = s) > 0$.

In the extreme case F_X increases only via jumps, i.e. is piece-wise constant changing value at most countable times. Precisely:

Definition 3.7 (Piece-wise constant with at most countable jumps). We say that $f: \mathbb{R} \to [0,\infty)$ is piece-wise constant with countably many jumps iff there is some countable set S and some real numbers $c_s > 0$ for $s \in S$ such that $\sum_{s \in S} c_s < \infty$ and

$$f(x) = \sum_{s \in S} c_s 1_{x \ge s}.$$

In the other extreme F_X could also be everywhere continuous. Let's see that these two extreme correspond to discrete and continuous random variables defined before:

Exercise 3.2. Prove that a random variable X is discrete if and only if F_X is piece-wise constant changing value at most countable many times. Moreover, prove that X is a continuous random variable if and only if F_X is continuous.

As the following proposition says, the c.d.f. of any random variable can be written as a convex combination of c.d.f-s of a discrete and continuous random variable.

Proposition 3.8. Any cumulative distribution function F can be written uniquely as convex combination of a continuous c.d.f F_c and a piece-wise constant c.d.f. with countably many jumps F_j i.e. for some $a \in [0,1]$ we have that $F = aF_j + (1-a)F_c$.

In the exercise sheet you will see how to interpret as saying that each random variable can be written as a random sum of a continuous and discrete random variable.

Proof. If F is either continuous or piece-wise constant with countably many jumps, the existence of such writing is clear. So suppose that F is neither. Write S for the countable set of jumps of F. Define

$$\widehat{F}_j(x) = \sum_{s \in S} 1_{x \ge s} (F(s) - F(s-)),$$

which is piece-wise continuous with countably many jumps.

We claim that $\widehat{F}_c := F - \widehat{F}_j$ is continuous. Indeed, by definition both F and \widehat{F}_j both right-continuous, and thus is also their difference. Moreover, both are continuous at any continuity point x of F, i.e. when $x \notin S$ as by definition then $F(x) = F(x^-)$ and one can check the same for F_j . Finally, when $s \in S$, then again by definition of \widehat{F}_j , we have that

$$F(s) - F(s-) = 1_{s \ge s} (F(s) - F(s-)) = \widehat{F}_j(s) - \widehat{F}_j(s-)$$

and thus \widehat{F}_c is continuous at such s too.

Now, as F is neither continuous nor piece-wise constant increasing with jumps, we have that $0 < \widehat{F}_j(\infty) < 1$ and $0 < \widehat{F}_c(\infty) < 1$. Hence, we can define

$$F_j(x) := \frac{\widehat{F}_j(x)}{\widehat{F}_j(\infty)}$$

and

$$F_c(x) := \frac{\widehat{F}_c(x)}{\widehat{F}_c(\infty)}.$$

By definition both of those are non-decreasing, right-continuous satisfying the correct limits at $\pm \infty$ and hence are c.d.f-s for random variables. As F_j increases only via jumps and F_c is continuous, we have the desired writing with $a = \widehat{F}_j(\infty)$ and $1 - a = \widehat{F}_c(\infty)$.

Uniqueness is left as an exercise.

3.2 Discrete random variables

There are several families of laws of discrete random variables that come up again and again. As we will see, sometimes these laws also have very nice mathematical characterizations.

Recall that to characterise the law of a random variable, we can either give the value of $\mathbb{P}_X(F)$ for a sufficiently large set of F (e.g. all intervals) or give the c.d.f. For a discrete random variable it suffices to just determine the support S and determine $\mathbb{P}_X(X=s)$ for each $s \in S$ (why?).

Bernoulli random variable

As mentioned already, a random variable that takes only values $\{0,1\}$, taking value 1 with probability p is called a Bernoulli random variable of parameter p. It is named after the Swiss mathematician Bernoulli, who also thought that all sciences need mathematics, but mathematics doesn't need any. Leaving you to judge, let us see that these examples come up very often.

Namely, on every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every indicator function of an event, i.e. 1_E gives rise to a Bernoulli random variable and the parameter p is equal to the probability of the event. Indeed for any event E in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ the indicator function $1_E: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{F})$ is measurable and hence a random variable. Moreover, it is $\{0, 1\}$ valued by definition and $\mathbb{P}(\{1_E = 1\}) = \mathbb{P}(E) = p$.

Sometimes one talks about Bernoulli random variables more generally whenever there are two different outcomes, e.g. also when the values are $\{-1,1\}$. We then call it the Bernoulli random variable with values $\{-1,1\}$.

Uniform random variable

Any random variable that takes values in a finite set $S = \{x_1, \ldots, x_n\}$, each with equal probability 1/n is called the uniform random variable on S. We call the law of this random variable the uniform law. Its c.d.f is given by simply $F_X(x) = n^{-1} \sum_{i=1}^n 1_{x \geq x_i}$.

Examples are - a fair dye, the outcome of roulette, taking the card from the top of a well-mixed pack of cards etc...Concretely, for a trivial example is that if we model a fair dye on $\Omega = \{1, 2, 3, 4, 5, 6\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mathbb{P}(i) = 1/6$, then the random variable $X(\omega) := \omega \in \mathbb{R}$ gives rise to a uniform random variable.

We use this family of random variables every time we have no a priori reason to prefer one outcome over the other. A fancy mathematical way of saying this would be to say that the uniform law is the only probability law on a finite set that is invariant under permutations of this set. We will also see on the example sheet that this is the so called maximum entropy

probability distribution with values in a finite set S.

Binomial random variable

A random variable that takes values in the set $\{0, 1, ..., n\}$, and takes each value k with probability

$$p^k(1-p)^{n-k} \binom{n}{k}$$

is called a binomial random variable of parameters $n \in \mathbb{N}$ and $0 \le p \le 1$ (why do the probabilities sum to one?). We denote the law of such a binomial random variable by Bin(n,p).

Notice that for n = 1, we have the Bernoulli random variable. Bernoulli random variable comes up naturally in models of independent coin tosses, random graphs, or models of random walks. The reason why it comes up so often is that it always describes the following situation - we have a sequence of independent indistinguishable events and we count the number of those who occur. Or in other words, the Binomial random variable Bin(n, p) can be seen as a sum of n independent Ber(p) random variables.

Exercise 3.3 (Binomial r.v. is the number of occurring events). Suppose we have n mutually independent events E_1, \ldots, E_k of probability p on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the random number of events that occurs: $X = \sum_{i=1}^{n} 1_{E_i}$. Prove that X is a random variable and has the law Bin(n, p).

For a concrete lively example, let's go back to the Erdos-Renyi random graph on n vertices, where each edge is independently included with probability p. We can then fix some vertex v and consider the random variable M_v giving the number of vertices adjacent to v, i.e. linked to v by an edge. The exercise above shows that this random variable has law Bin(n-1,p).

Geometric random variable

A random variable that takes values in the set \mathbb{N} , each value k with probability $p(1-p)^{k-1}$ for some 0 is called a geometric random variable of parameter <math>p. We denote the law of a geometric random variable by Geo(p). One should again check that this even defines a random variable, by seeing that the probabilities do sum to one.

A geometric random variable describes the following situation: we have independent events E_1, E_2, \ldots each of success probability p and we are asking for the smallest index k such that the event E_k happens. For example, Geo(1/2) describes the number of tosses needed to get a first heads. This will be made precise on the exercise sheet.

There is also a nice property that characterizes the geometric r.v.:

Lemma 3.9 (Geometric r.v. is the only memoryless random variable). We say that a random variable X with values in \mathbb{N} is memoryless if for every $k, l \in \mathbb{N}$ we have that $\mathbb{P}_X(X > k + l | X > k) = \mathbb{P}_X(X > l)$. Every geometric random variable is memoryless, and in fact these are the only examples of memoryless random variables on \mathbb{N} .

Proof. Let us start by proving that the geometric random variable satisfies the memoryless property. First, notice that if $\mathbb{P}(X=1)=1$, then X is a degenerate geometric random variable with p=1. So we can suppose that we work in the case $\mathbb{P}(X>1)>0$.

Let us check that a geometric r.v. is memoryless. First, it is easy to check that for a geometric random variable X, we have that $\mathbb{P}(X > l) = (1 - p)^l$ for some $p \in (0, 1]$. As by the definition of conditional probability

$$\mathbb{P}(X > k + l | X > k) = \frac{\mathbb{P}(X > k + l)}{\mathbb{P}(X > k)},$$

it follows that $\mathbb{P}(X > k + l | X > k) = (1 - p)^{k + l - k} = (1 - p)^l = \mathbb{P}(X > l)$ as desired.

Now, let us show that each random variable satisfying the memoryless property has the law of a geometric random variable. Again if $\mathbb{P}(1) = 1$, we are done. Otherwise we can write

$$\mathbb{P}(X > 1 + l | X > 1) \mathbb{P}(X > 1) = \mathbb{P}(X > 1 + l).$$

As for a memoryless random variable $\mathbb{P}(X > l) = \mathbb{P}(X > 1 + l | X > 1)$, we obtain

$$\mathbb{P}(X > l)\mathbb{P}(X > 1) = \mathbb{P}(X > l + 1).$$

Thus inductively $\mathbb{P}(X > l) = \mathbb{P}(X > 1)^l$ and hence X is a geometric random variable of parameter $p = 1 - \mathbb{P}(X > 1)$.

Poisson random variable

Poisson was a French mathematician who has famously said that the life is good for only two things - mathematics and teaching mathematics. His random variables come up quite often.

The Poisson random variable is a discrete random variable with values in $\{0\} \cup \mathbb{N}$ and taking the value k with probability

$$e^{-\lambda} \frac{\lambda^k}{k!}$$

for some $\lambda > 0$. We denote this distribution by $Poi(\lambda)$. Poisson random variables describe occurrences of rare events over some time period, where events happening in any two consecutive time periods are independent. For example, it has been used to model

- The number of visitors at a small off-road museum.
- More widely, the number of stars in a unit of the space.
- Or more darkly, it was used to also model the number of soldiers killed by horse kicks in the Prussian army.

One way we see the Poisson r.v. appearing is via a limit of the Binomial distribution if the success probability p scales like 1/n:

Lemma 3.10 (Poisson random variable as the limit of Binomials). Consider the Binomial distribution $Bin(n, \lambda/n)$. Prove that as $n \to \infty$ it converges to $Poi(\lambda)$ in the sense that for every $k \in \{0\} \cup \mathbb{N}$, we have that

$$\mathbb{P}(Bin(n, \lambda/n) = k) \to e^{-\lambda} \frac{\lambda^k}{k!}.$$

Proof. By definition, for any fixed $n \in \mathbb{N}$ and $k \in \{0\} \cup \mathbb{N}$, we have

$$\mathbb{P}(Bin(n, \lambda/n) = k) = \binom{n}{k} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^{n-k}.$$

Using

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

we can write

$$\mathbb{P}(Bin(n,\lambda/n)=k) = \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \frac{n(n-1)\cdots(n-k+1)}{n^k} \left(1 - \frac{\lambda}{n}\right)^{-k}.$$

But now as $n \to \infty$

$$\left(1 - \frac{\lambda}{n}\right)^n \to e^{-\lambda}.$$

Moreover, for any fixed t > 0 also $\frac{n-t}{n} \to 1$ as $n \to \infty$ and hence

$$\frac{n(n-1)\cdots(n-k+1)}{n^k}\to 1$$

and

$$\left(1 - \frac{\lambda}{n}\right)^{-k} = \left(\frac{n - \lambda}{n}\right)^{-k} \to 1,$$

proving the lemma.

To connect this to the occurrences of rare events described before, one could think as follows. Suppose we try to model the number of arrivals over time window [0,1], say one year in a distant location. We then cut a time-window [0,1] into n equal time-segments of length 1/n with n large, say into 365 days, so that we can suppose that at each time-segment, say each day, there is at most one arrival. In this case we can describe the arrival or non-arrival using Ber(p) or 1_E for some event E. If we further suppose that all days are alike, we can take this parameter p to be the same for all time-segments of the same length, e.g. for all days. Moreover, if we suppose that an arrival in one time-segment does not influence arrivals in other time-intervals, we can assume that all events E corresponding to different time intervals are mutually independent. Hence the total number of arrivals is the number of independent events happening, when the event probability is p - we saw above that this gives a Bin(n,p) random variable. But now, if you check carefully the proof above, you see that if p is not of the form λ/n for some $\lambda > 0$, then in fact the number of events will either go to infinity or go to zero - i.e. to have a non-trivial random variable in the limit $n \to \infty$, we are forced to set $p = \lambda/n$.

Poisson random variables also behave very well under taking independent copies. In particular, the related Poisson point processes is a very interesting random process:

Exercise 3.4 (Poisson random variables). Let $X_1 \sim Poi(\lambda_1)$ and $X_2 \sim Poi(\lambda_2)$ be two independent random variables defined on the same probability space.

- Prove that then $X_1 + X_2$ is also a Poisson random variable with parameter $\lambda_1 + \lambda_2$.
- Let now Y_1, Y_2, \ldots be independent Ber(p) random variables defined on the same probability space. Prove that $X := \sum_{i=1}^{X_1} Y_i$ also has the law of $Poi(p\lambda)$ and $X_1 X$ has the law of $Poi((1-p)\lambda)$ and is independent of X.

Now, we consider what is called a Poisson point process on \mathbb{N} : This is a collection of i.i.d. random variables $(X_i)_{i\in\mathbb{N}}$ where each $X_i \sim Poi(\lambda)$. For example you can think that some Newtonian apples fall on each integer. What is the law of the total number of apples on a finite set $S \subseteq \mathbb{N}$? Now colour every apple independently red with probability p and green with

probability 1-p - i.e. every apple is ripe with probability p. Prove that restricting to only ripe / green apples also gives a Poisson point process on \mathbb{N} and that moreover these processes are independent.

Finally, let i_1 be the first index of \mathbb{N} , which contains at least one apples, let i_2 be the second index that contains at least one apple etc. What is the distribution of the vector $(i_1, i_2 - i_1, i_3 - i_2, \dots)$?

3.3 Continuous random variables

Recall that we called a random variable X continuous if F_X was continuous, i.e. without any jumps. From Lemma 3.5 it follows that $\mathbb{P}(X = x) = 0$ for all $x \in \mathbb{R}$. Most often continuous random variables arise via what is called a density function and this is also how we will usually construct them.

Definition 3.11 (Continuous r.v. with density). Let X be a random variable and $f_X : \mathbb{R} \to \mathbb{R}$ be a non-negative integrable function with $\int_{\mathbb{R}} f_X(x) dx = 1$. Then we say that a r.v. X has density f_X if for every $x \in \mathbb{R}$

$$F_X(t) = \int_{-\infty}^t f_X(x) dx.$$

Remark 3.12. We remark straight away that there are also continuous random variables without a density (see starred section of the exercises).

Let us now look at the definition more closely. First, it is important to check the definition even makes sense, i.e. that the F_X defined actually is a cumulative c.d.f.:

Exercise 3.5. Consider a non-negative Riemann integrable function f_X with $\int_{\mathbb{R}} f_X(x) dx = 1$. Define $F_X(x) := \int_{-\infty}^x f_X(x) dx$.

- Prove that F_X is a cumulative distribution function.
- Prove that if two random variables have the same density function, they have the same law
- Prove that given F_X , there is at most one continuous f_X such that $F_X(t) := \int_{-\infty}^t f_X(x) dx$.
- Give examples to show that f_X is however not uniquely defined by F_X .

Further, let us look at an interpretation. Using Lemma 3.5 and the remark above that $\mathbb{P}(X=x)=0$ for every a < b, we can also write

$$\mathbb{P}(X \in (a,b)) = \mathbb{P}(X \in [a,b]) = \int_a^b f_X(x)dx.$$

⁸You might have already heard - and if not you will hear from me, and more next semester - that there are several notion of an integral. In particular, next to the Riemann integral stands the Lebesgue integral. So what do we mean by integrable?

We have seen that Riemann integral does not go well with measure theory - for example the set $\mathbb Q$ is a Borel set in $\mathbb R$, however $1_{\mathbb Q}$ is not Riemann-integrable. So it would be much more convenient to use the notion called the Lebesgue integral that you meet fully in Analysis IV and partly later on in this course. However, for now, it is really no restriction for us if for the sake of precision we just consider Riemann integrals. In fact, all examples of densities we will see are Riemann integrable, so this is not a real restriction. Moreover, none of the results change become untrue when you come back and change Riemann integrals for Lebesgue integrals - in fact, as you will see next semester, for any function f that is Riemann integrable, its Lebesgue integral and Riemann integral agree.

it is important to notice that f_X does not give you the probability of $\{X = x\}$ at each point - we already saw that for continuous random variables this probability is 0 for all $x \in \mathbb{R}$. However, taking $b = a + \epsilon$, we can still obtain an interpretation of f_X , explaining why it is called the density function. Indeed, if for example f_X is continuous, we can write

$$\mathbb{P}(X \in (a, a + \epsilon)) = \int_{a}^{a + \epsilon} f_X(x) dx = \epsilon f_X(a) + o(\epsilon),$$

and thus one can think of $\epsilon f_X(a)$ as of the probability in being in the interval $(a, a + \epsilon)$. In particular, notice that $\epsilon^{-1}\mathbb{P}(X \in (a, a + \epsilon)) \to f_X(a)$ as $\epsilon \to 0$. This is of course related to the Fundamental theorem of calculus, which in the case of continuous f_X tells us that $F'_X(x) = f_X(x)$.

Let us now look at some examples. From the exercise above we see that to describe a continuous random variable with density it suffices to give the density function: an integrable non-negative function with total integral 1.

Uniform random variable on [a, b]

A random variable U with density $f_U(x) = \frac{1}{b-a} 1_{[a,b]}$ is called a uniform random variable on the interval [a,b] and is denoted sometimes $U = U_{[a,b]}$. We have already met the uniform random variable on [0,1] - as expected its law \mathbb{P}_U is equal to the uniform / Lebesgue measure on [0,1], considered as a probability measure on \mathbb{R} . It's c.d.f is given by $F_U(x) = 1_{0 \le x} \min\{x,1\}$. You can also think of it as the limit of discrete uniform random variables taking values in $\{i/n: i=1...n\}$ - we will make this precise on the example sheet in some form, and then come back to it again later in the course.

Exponential random variable

Let $\lambda > 0$. The random variable X with density $f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$ is called the exponential random variable of parameter λ , and its law is denoted sometimes $Exp(\lambda)$. (We will check on the exercise sheet that the total mass is 1). In this case you can think of the exponential random variable as a continuous friend of the geometric random variable, as it also satisfies the memoryless property:

Exercise 3.6 (Exponential r.v. is the only memoryless random variable). We say that continuous a random variable X satisfying $\mathbb{P}(X > 0) = 1$ is memoryless if for every x, y > 0 we have that $\mathbb{P}_X(X > x + y | X > y) = \mathbb{P}_X(X > x)$. Prove that the exponential random variable is memoryless. Moreover, prove that every continuous memoryless random variable has the law of the exponential random variable.

As geometric random variables, exponential random variables too are related to waiting times, just the underlying process is no longer in discrete time (like a sequence of tosses) but continuous time (like waiting for the next call from a friend). We will be able to make some more precise statements later in the course.

Gaussian random variable

Maybe the most important example of a random variable is that of a normal or Gaussian random variable. Given two parameters $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}$, we say that N has the law of a normal random variable of mean μ and variance σ^2 , denoted $N \sim \mathcal{N}(\mu, \sigma^2)$ if its density is

given by

$$f_N(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

We call the law $\mathcal{N}(0,1)$ the standard normal random variable, or the standard Gaussian. Normal laws come up everywhere because of the so called Central limit theorem. A weak version of it could be vaguely stated as follows:

• Let X_1, X_2, \ldots be a sequence of i.i.d. random variables such that X_i has the same law as $-X_i$ and moreover, each X_i is bounded in the sense that there is some C > 0 with $\mathbb{P}(X_i < C) = 1$. Let $S_n = \sum_{i=1}^n X_i$. Then in the limit $n \to \infty$ we have that $\frac{S_n}{\sqrt{n}}$ becomes a normal random variable: for every interval (a, b), we have that $\mathbb{P}(\frac{S_n}{\sqrt{n}} \in (a, b)) \to \mathbb{P}(N \in (a, b))$, where N is a Gaussian random variable.

For example in physics experiments often we rarely expect to get the 'exact' value, but rather it comes with an error. This error is assumed to be a sum of many independent smaller errors, and thus, unless there is some bias that has not been accounted for, the observed values will have a normal distribution around the actual value.

We will prove a version of this theorem towards the end of the course, after having developed more tools to work with random variables. There is a first version of this in the starred section of the exercises.

It is common to mention here that although the normal random variable is the most used one, its cumulative distribution function - that has earned its own notation Φ_{μ,σ^2} - given as always by

$$\Phi_{\mu,\sigma^2}(x) = \mathbb{P}(N \le t) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^t \exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx$$

does not admit a more explicit formula. So in the old days one had to really check a long table with values to see give a numerical answer for, say, $\mathbb{P}(N > 12)$ or $\mathbb{P}(|N| < 200)$. I suspect there might be more modern ways now...

3.3.1 More random variables

Like we have seen before in the course - when we want to create more objects, one way is to start applying some operations to already existing objects. Here, this means operations on random variables.

Here is one easy way to construct more random variables:

Lemma 3.13. Let X be a random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then for any continuous real function $\phi : \mathbb{R} \to \mathbb{R}$, we have that $\phi(X)$ is also a random variable that can be defined on the same probability space.

Proof. This follows from two observations:

- Each continuous function f from (X, τ_X) to (Y, τ_Y) is measurable w.r.t. the respective Borel σ -algebras: indeed, by Lemma 1.8 it suffices to check that each $U \in \tau_Y$, $f^{-1}(U)$ is measurable and we know $f^{-1}(U)$ is open by continuity and thus also Borel measurable as $\tau_X \subseteq \mathcal{F}_{\tau_X}$.
- The composition of measurable functions is measurable: this can be checked directly.

It is natural to ask whether the two classes of random variables - discrete and continuous - are stable under this operation. It comes out that this is always the case for discrete random variables, but not for the continuous random variables.

Exercise 3.7 (Functions of a random variable). Let X be a discrete random variable and $\phi : \mathbb{R} \to \mathbb{R}$ be a continuous real function. Prove that $\phi(X)$ is also a discrete random variable. Is the image of a continuous random variable necessarily a continuous random variable?

Still, in case of continuous random variables X, when g is nice enough, we do know that g(X) is also continuous and we can even determine its density:

Proposition 3.14 (Density of the image). Let U, V be any open subsets of \mathbb{R} such that $1_U, 1_V$ are Riemann-integrable. Let X be a continuous random variable with a density f_X that is continuous in U and zero outside of cl(U). Let $\phi : \mathbb{R} \to \mathbb{R}$ be continuous and such that its restriction to U is bijective to V and continuously differentiable with ϕ' non-zero everywhere on U. Then $\phi(X)$ is also a continuous random variable with a density $f_{\phi(X)}$ that is zero outside of cl(V) and given inside of V by:

$$f_{\phi(X)}(x) = \frac{1}{|\phi'(\phi^{-1}(x))|} f_X(\phi^{-1}(x))$$

Proof. As ϕ is continuous, $\phi(X)$ is a random variable. As $\mathbb{P}(X \in U) = 1$, we have that $\mathbb{P}(\phi(X) \leq t) = \mathbb{P}(\phi(X) \in V \cap (-\infty, t])$. But $\{y \in U : \phi(y) \leq t\}$ is Riemann-integrable and thus for $t \in \mathbb{R}$

$$\mathbb{P}(\phi(X) \le t) = \mathbb{P}(\phi(X) \in V \cap (-\infty, t]) = \int_{\mathbb{R}} 1_{y \in U} 1_{\phi(y) \le t} f_X(y) dy.$$

Inside U, we can use the diffeomorphism $\phi: U \to V$ to change the coordinates $x = \phi(y)$ to obtain

$$\int_{\mathbb{R}} 1_{x \in V} 1_{x \le t} f_X(\phi^{-1}(x)) \frac{1}{|\phi'(\phi^{-1}(x))|} dx.$$

Setting $f_{\phi(X)}(x) = 0$ for $x \notin V$ we obtain the claim as the above integral can be written as

$$\int_{x \le t} f_X(\phi^{-1}(x)) \frac{1}{|\phi'(\phi^{-1}(x))|} dx$$

for any $t \in \mathbb{R}$.

Remark 3.15. It might be more illustrative for you to actually also do the previous proof more by hand: we already saw that in case of continuous density for every $x \in X$ it holds that $\mathbb{P}(X \in (x, x + \epsilon)) = \epsilon f_X(x) + o(\epsilon)$ and thus $\epsilon^{-1}\mathbb{P}(X \in (x, x + \epsilon)) \to f_X(x)$ as $\epsilon \to 0$. Now, by bijectivity of ϕ , we have $\mathbb{P}(\phi(X) \in (x, x + \epsilon)) = \mathbb{P}(X \in (\phi^{-1}(x), \phi^{-1}(x + \epsilon)))$. Use this to deduce the above formula.

SECTION 4

Random vectors

We already saw in the notes and on the example sheet that often several random variables come up in the same probabilistic situation and are naturally defined on the same probability space. So far we were looking mainly at their individual laws, or the situation when they were independent. But this is not always the case. When one starts being interested in the joint behaviour of several random variables, one often thinks in terms of random vectors:

Definition 4.1 (Random vectors and marginal laws). Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that (X_1, X_2, \ldots, X_n) is a random vector if and only if each of X_1, X_2, \ldots, X_n is a random variable. The law \mathbb{P}_{X_i} of each r.v. X_i is called its marginal law.

Marginal laws are just the individual laws of random variables X_i that appear as components of a random vector and that we have been discussing so far. We know how to describe those. Yet they don't encode the relation between the random variables.

For example consider on the one hand (X_1, X_2) , where both X_1 and X_2 encode independent fair coin tosses. On the other hand, consider (X_1, \widetilde{X}_2) , where X_1 is a fair coin toss, but \widetilde{X}_2 is heads when X_1 is tails and \widetilde{X}_2 is tails if X_1 is heads. Then the marginal laws of the vector (X_1, X_2) and (X_1, \widetilde{X}_2) are the same (why?), yet they clearly describe very different situations!

So how can we mathematically encode this relation between the random variables? In fact, to look at joint laws, it is actually natural to look at (X_1, \ldots, X_n) as a \mathbb{R}^n -valued random variable:

Lemma 4.2 (Joint law of random vectors). Let $\overline{X} = (X_1, \ldots, X_n)$ be a random vector defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Then (X_1, \ldots, X_n) as a vector is a $(\mathbb{R}^n, \mathcal{F}_E)$ -valued random variable. In particular it induces a probability measure $\mathbb{P}_{\overline{X}}$ on $(\mathbb{R}_n, \mathcal{F}_E)$ called the joint law of the vector \overline{X} .

In the other direction, any $(\mathbb{R}^n, \mathcal{F}_E)$ -valued random variable gives rise to a random vector by the definition above.

The question here is measurability: does measurability of each component as a function $(\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{F}_E)$ guarantee the measurability of the function $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{F}_E)$ and viceversa. Thus the lemma follows directly from a very general result in measure theory, which we will not prove here: ⁹:

Lemma 4.3. Let (Ω, \mathcal{F}) and $((\Omega_i, \mathcal{F}_i))_{1 \leq i \leq n}$ be measurable spaces. Then the map $f: (\Omega, \mathcal{F}) \to (\Pi_{1 \leq i \leq n} \Omega_i, \mathcal{F}_{\Pi})$ is measurable if and only if for every $i = 1 \dots n$ the map $f_i = p_i \circ f$ mapping $(\Omega, F) \to (\Omega_i, \mathcal{F}_i)$ is measurable (here p_i is the projection map to the i-th coordinate).

This is a very useful lemma, as we can start doing arithmetic operations using random variables:

This set-up allows us to quickly prove the following basic result:

⁹Notice the similarity to the following statement from topology: if $f_i:(X,\tau_X)\to (Y_i,\tau_{Y_i})$ are continuous, then so is $f:(X,\tau_X)\to (Y_1\times\cdots\times Y_n,\tau_\Pi)$ given by $f=(f_1,\ldots,f_n)$.

Lemma 4.4. Let \overline{X} be a random vector in \mathbb{R}^n and \overline{a} any fixed vector in \mathbb{R}^n . Then $\sum_{i=1}^n a_i X_i$ is a random variable. Also $\prod_{i=1}^n X_i$ is a random variable.

I encourage you to even prove by hand that the sum of two random variables X_1 and X_2 is a random variable - it gets very messy!

Proof. We saw that in fact \overline{X} is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}^n, \mathcal{F}_E)$. But now $\Phi: \mathbb{R}^n \to \mathbb{R}$ given by $\Phi(\overline{x}) = \sum_{i=1}^n a_i x_i$ is continuous from (\mathbb{R}^n, τ_E) to (\mathbb{R}, τ_E) . But as argued before, a concatenation $f_2 \circ f_1$ of measurable maps $f_1: (\Omega, \mathcal{F}) \to (\Omega_1, \mathcal{F}_1)$, $f_2: (\Omega_1, \mathcal{F}_1) \to (\Omega_2, \mathcal{F}_2)$ is $(\Omega, \mathcal{F}) \to (\Omega_2, \mathcal{F}_2)$ -measurable. Thus $\sum_{i=1}^n a_i X_i = \Phi(\overline{X})$ is measurable from (Ω, \mathcal{F}) to (\mathbb{R}, τ_E) and hence a random variable.

4.1 Joint cumulative distribution function

Similarly to the case of a single random variable, random vectors can be characterised by a certain family of functions.

Definition 4.5 (Joint cumulative distribution function). Any function $F : \mathbb{R}^n \to [0,1]$ is called a joint cumulative distribution function (c.d.f.), if it satisfies the following conditions:

- (1) F is non-decreasing in each coordinate.
- (2) $F(x_1,\ldots,x_n)\to 1$ when all of $x_i\to\infty$.
- (3) $F(x_1, \ldots, x_n) \to 0$, when at least one of $x_i \to -\infty$.
- (4) F is right-continuous, meaning that for any sequence $(x_1^m, \ldots, x_n^m)_{m \geq 1}$ such that for all $m \geq 1$ we have that $x_i^m \geq x_i$, it holds that $F(x_1^m, \ldots, x_n^m) \to F(x_1, \ldots, x_n)$.

Notice that for n = 1 we are back to the case of individual c.d.f. Moreover, if we send any n - 1 coordinates to infinity, then we also obtain the c.d.f. of the remaining coordinate:

$$F_{X_i}(x_i) = F(\infty, \dots, \infty, x_i, \infty, \dots, \infty).$$

As mentioned, each random vector uniquely identifies a joint c.d.f. and vice-versa. One part of the proposition is again easy:

Proposition 4.6 (Joint c.d.f.s of random vectors). Let $\overline{X} := (X_1, \dots, X_n)$ be a random vector defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then

$$F_{\overline{X}}(x_1,\ldots,x_n) := \mathbb{P}_{\overline{X}}(X_1 \le x_1,\ldots,X_n \le x_n)$$

gives rise to a joint cumulative distribution function.

Proof. This is left as an exercise.

However, the existence and uniqueness part given the joint c.d.f. is technical and thus admitted.

Theorem 4.7 (Existence and uniqueness of random vectors via joint c.d.f. (admitted)). Any joint c.d.f. gives rise to a unique joint law of a random vector.

Again, random vectors give us mainly a clearer way of looking at things. We can for example now rephrase the last point of Lemma 2.11 as follows:

Lemma 4.8 (Independence using joint c.d.f.). Consider a random vector $\overline{X} = (X_1, \ldots, X_n)$ defined on some probability space. Then X_1, \ldots, X_n are mutually independent if and only if $F_{\overline{X}}(x_1, \ldots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$ for all $\overline{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

As in the case of usual random variables, one can also talk about discrete and continuous random vectors - in both cases what we have in mind is that all components are either discrete or continuous. But there could well also mixed cases. Here is a concrete example of a discrete random vector:

Multinomial random vector. Recall that the Binomial random variable Bin(n, p) models the number of heads out of n independent tosses of a coin that comes up heads with probability p. As n is equal to the sum of heads and tails, it actually models both the number of heads and the number of tails. But suppose you want to model the random vector (n_1, n_2, \ldots, n_6) that gives you respectively the numbers of 1-s, 2-s etc of n independent dice throws? This is modelled by the so called multinomial random variable of parameters n, 6 and $p_1 = \cdots = p_6 = 1/6$.

The probability law of the multinomial random vector $\overline{M} \sim Mul(n, m, \overline{p})$ with parameters n, m, \overline{p} is defined by

$$\mathbb{P}_{\overline{M}}(\overline{M} = (k_1, \dots, k_m) = \frac{n!}{k_1! \cdots k_m!} p_1^{k_1} \cdots p_m^{k_m},$$

whenever $\sum_{i=1}^{m} k_i = n$ and by $\mathbb{P}_{\overline{M}}(\overline{M} = (k_1, \dots, k_m) = 0$ otherwise. Notice that the marginal law on any coordinate i is given by the Binomial law $Bin(n, p_i)$.

As explained above, the multinomial random vector appears in the following situation: we consider a discrete random variable X taking values x_1, \ldots, x_m with probabilities p_1, \ldots, p_m . And let X_1, X_2, \ldots, X_n be i.i.d. copies of X defined on some common probability space. Now define the random vector $\overline{M} = (M_1, \ldots, M_n)$ as $M_j = \sum_{i=1}^n 1_{X_i = x_j}$. Then it is simple to check that each M_j is a random variable (in fact you have already proved this!) and thus \overline{M} is a random vector. You can also verify that this random vector has the multinomial law.

4.2 Random vectors with density

Let us now consider the very special case of continuous vectors with density. This will be also a good source for more interesting examples.

Definition 4.9 (Random vectors with density). Let $\overline{X} = (X_1, \dots, X_n)$ be a random vector and let $f_{\overline{X}}$ be a non-negative Riemann-integrable function from $\mathbb{R}^n \to [0, \infty)$ with total integral equal to 1. Then we say that $f_{\overline{X}}$ is the joint density of \overline{X} if and only for any box $(a_1, b_1] \times \dots (a_n, b_n]$

$$(4.1) \mathbb{P}_{\bar{X}}(X_1 \in (a_1, b_1], \dots, X_n \in (a_n, b_n]) = \int_{(a_1, b_1] \times \dots \times (-a_n, b_n]} f_{\overline{X}}(\bar{x}) d\bar{x}.$$

Remark 4.10. Again, given the Lebesgue integral the natural statement would be that for every Borel measurable set E:

$$\mathbb{P}(\overline{X} \in E) = \int_E f_{\overline{X}}(\bar{x}) d\bar{x}.$$

In the case of Riemann integral the notion of integral might just not be defined on all such E.

Similarly to the 1d case, we also have the interpretation of this density as representing the probability of being in an infinitesimal neighbourhood around a point $\bar{t} = (t_1, \dots, t_n)$. Indeed, if $f_{\overline{X}}$ is continuous, then you can check that we have

$$(4.2) \qquad \mathbb{P}_{\overline{X}}((X_1,\ldots,X_n)\in(t_1,\ldots,t_n)+[-\epsilon/2,\epsilon/2]^n)=f_{\overline{X}}(t_1,\ldots,t_n)\epsilon^n+o(\epsilon^n).$$

Further, we can let $a_i \to -\infty$, for every $(t_1, \ldots, t_n) \in \mathbb{R}^n$ set

$$F_{\bar{X}}(t_1,\ldots,t_n) := \int_{(-\infty,t_1]\times\cdots\times(-\infty,t_n]} f_{\overline{X}}(\bar{x}) d\bar{x}$$

and verify that this indeed gives rise to a c.d.f. Hence as joint c.d.f. characterise the joint law of random variables, can define laws of random vectors via their density function.

Finally, from the results in your course in Analysis II it then follows that if E is a subset of \mathbb{R}^n such that 1_E is Riemann-measurable, then in fact:

$$\mathbb{P}(\overline{X} \in E) = \int_{\mathbb{R}^n} 1_E f_{\overline{X}}(\bar{x}) d\bar{x}.$$

Notice that by the Fubini theorem for multiple Riemann-integrable functions, if the random vector admits a density, then also do its components:

Lemma 4.11 (Marginal densities). Let $\overline{X} = (X_1, \ldots, X_n)$ be a random vector with density $f_{\overline{X}}$ such that for every $I_0 \subseteq \{1, \ldots, n\}$ the function $f_{I_0^c}(\overline{x}')$ obtained by fixing all the coordinates in I_0 is Riemmann-integrable. Then the marginal laws \mathbb{P}_{I_0} obtained by projecting on the co-ordinates contained in I_0 admits a density given by integrating out all the components in $\{1, \ldots, n\} \setminus I_0$.

Remark 4.12. Here we ask the condition that fixing any set of coordinate gives a Riemann-integrable function. This might be tiresome to check, but it is for example always true when f is continuous, or when f is piece-wise continuous with finite number of jumps along any co-ordinate – we call the latter just piece-wise continuous.

Here are some quick examples of random vectors:

Uniform random vector on $[a,b]^n$. Similarly to a uniform random point on an interval, we can talk of a uniform random point $\overline{U} = (U_1, \ldots, U_n)$ in a rectangular box. To do this, we just define the density:

$$f_{\overline{U}}(x_1,\ldots,x_n) = \frac{1}{|b-a|^n} 1_{\overline{x} \in [a,b]^n}.$$

Notice that in this case the marginal laws U_i are just uniform random variables on [a, b]. Can you see why the variables (U_1, \ldots, U_n) are mutually independent?

Gaussian random vector. Maybe the most important example here is that of the Gaussian (also called a normal) random vector $\mathcal{N}(\overline{\mu}, C)$, where $\overline{\mu}$ is a vector in \mathbb{R}^n and C positive definite symmetric $n \times n$ matrix. We will call $\overline{\mu}$ the mean of the Gaussian vector, and the matrix C the covariance matrix – we will get to the reasons for this vocabulary in a few lectures time. The density of the Gaussian random vector is given by:

$$f_{\overline{X}}(x_1,\ldots,x_n) = \frac{1}{(2\pi)^{n/2}\sqrt{\det(C)}} \exp(-\frac{1}{2}(\overline{x}-\overline{\mu})^T C^{-1}(\overline{x}-\overline{\mu})).$$

When $\overline{\mu} = 0$ and C is the $n \times n$ identity matrix I_n , we call the law $\mathcal{N}(0, I_n)$ the standard Gaussian in \mathbb{R}^n . As you will see on the exercise sheet, all other Gaussian vectors in \mathbb{R}^n are given by just linear transformations of the standard Gaussian. To prove that we need to however develop a bit more theory on how the density of random vectors changes under transformations.

We already saw that transformations of random vectors remain random vectors. As in the 1D case, in the case of random vectors with density, we can again also determine the density. In this respect recall that for a diffeomorphism $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ one defines the differential $D\Phi$ as the $n \times n$ matrix $(D\Phi)_{ij} = \frac{\partial \Phi_i}{\partial x_j}$. The Jacobian is defined as the determinant of this matrix.

Proposition 4.13 (Density of the image of a random vector). Consider two open Riemann-integrable sets $U, V \subseteq \mathbb{R}^n$. Let \overline{X} be a continuous random vector with density $f_{\overline{X}}$ that is zero outside of cl(U) and is continuous in U. Let $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ be continuous, and when restricted to U both bijective and continuously differentiable with a Jacobian $J_{\Phi}(\overline{x}) = \det D\Phi_{\overline{x}}$ that is non-zero on U, i.e. a C^1 -diffeomorphism between U and V. Then $\Phi(\overline{X})$ is also a continuous random vector with a density $f_{\Phi(X)}$ that is zero outside of V and inside of V is given by:

$$f_{\Phi(\overline{X})}(\overline{x}) = \frac{1}{|J_{\Phi}(\Phi^{-1}(\overline{x}))|} f_{\overline{X}}(\Phi^{-1}(\overline{x})).$$

The proof is basically the same as in the one-dimensional case.

Proof. Let E be a box. Then $1_{\Phi^{-1}(E\cap V)}1_U$ is Riemann-integrable by results from Analysis II. By using the fact that Φ is bijective on U and $\mathbb{P}(\overline{X} \in U) = 1$,

$$\mathbb{P}(\Phi(\overline{X}) \in E) = \mathbb{P}(\overline{X} \in U \cap \Phi^{-1}(E \cap V)).$$

As \overline{X} has density, we can thus write

$$\mathbb{P}(\overline{X} \in \Phi^{-1}(E \cap V) \cap U) = \int_{\mathbb{R}^n} 1_U 1_{\Phi^{-1}(E \cap V)} f_{\overline{X}}(\bar{x}) d\bar{x}.$$

Now, we can use the multidimensional change-of-coordinates theorem of Analysis II for the transformation Φ^{-1} to write

$$\int_{\mathbb{R}^n} 1_U 1_{\Phi^{-1}(E \cap V)} f_{\overline{X}}(\bar{x}) d\bar{x} = \int_{\mathbb{R}^n} 1_E 1_V f_{\overline{X}}(\Phi^{-1}(\bar{x})) |J_{\Phi^{-1}}(\bar{x})| d\bar{x}$$

As $|J_{\Phi^{-1}}(\bar{x})| = \frac{1}{|J_{\Phi}(\Phi^{-1}(\bar{x}))|}$, by setting $f_{\phi(X)} = 0$ outside of V we conclude.

Remark 4.14. This would be a bit nicer, more natural and more general if we had the notion of Lebsegue integral - we have already seen that the Riemann integral and Borel σ -algebra are not an ideal couple!

A nice application of this is determining the density of a sum of i.i.d. random variables:

Corollary 4.15. Let X_1, X_2 be two independent continuous random variables with continuous densities f_{X_1} and f_{X_2} . Then their sum is a continuous random variable with density given by $f_{X_1+X_2}(y) = \int_{\mathbb{R}} f_{X_1}(x) f_{X_2}(y-x) dx$, i.e. by the convolution of the two densities.

This definition of the density might look asymmetric, but you should check that it is not.

Proof. We use Proposition 4.13 with $\Phi(x,y) = (x,x+y)$. Indeed, this is an invertible linear map and thus a C^1 diffeomorphism from $\mathbb{R}^2 \to \mathbb{R}^2$. Moreover, its Jacobian J = 1. Thus by Proposition 4.13 the density of the vector $\Phi(X,Y)$ at s,t is given by:

$$f_{X_1,X_1+X_2}(x,y) = f_{X_1,X_2}(x,y-x).$$

But now X_1, X_2 are independent and hence we can further write this as $f_{X_1}(x)f_{X_2}(y-x)$. Finally, we notice that the law of $X_1 + X_2$ is the marginal law of $\Phi(X, Y)$ in the second coordinate. So we can use Lemma 4.11 to calculate this marginal density and obtain the desired formula.

Let us look at a cute example:

• Consider two independent standard Gaussian random variables X_1, X_2 . Then also $\frac{X_1+X_2}{\sqrt{2}}$ is a standard Gaussian random variable. Indeed, by the corollary above the density of X_1+X_2 is given by $\frac{1}{2\pi}\int_{\mathbb{R}}e^{-x^2/2}e^{-(y-x)^2/2}dx$, which we can rewrite as

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-(x-y/2)^2} e^{-y^2/4} dx = \frac{e^{-y^2/4}}{\sqrt{4\pi}} \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-(x-y/2)^2} dx.$$

But the last integral is just the total mass of a Gaussian $\mathcal{N}(y/2, 1/2)$ and thus equal to 1. Hence we recognize that $X_1 + X_2$ is a Gaussian $\mathcal{N}(0, 2)$. It is an easy check that then $\frac{X_1 + X_2}{\sqrt{2}}$ is a standard Gaussian.

The joint density gives us moreover a new condition for checking mutual independence:

Exercise 4.1 (Independence using densities). Consider a random vector $\overline{X} = (X_1, \dots, X_n)$ defined on some probability space. Suppose that $\overline{X} = (X_1, \dots, X_n)$ admits a continuous density and all X_i admit a continuous density. Prove that X_1, \dots, X_n are mutually independent if and only if $f_{\overline{X}}(x_1, \dots, x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \cdots f_{X_n}(x_n)$. What happens if the densities are piece-wise continuous with finitely many jumps?

Deduce that for the uniform random vector $\overline{U} = (U_1, \ldots, U_n)$ on $[a, b]^n$ the components U_1, \ldots, U_n are mutually independent. Moreover, deduce that if (X, Y) is a Gaussian random vector $\mathcal{N}(\overline{\mu}, C)$, then X and Y are independent Gaussians if and only if C(1, 2) = 0.

Remark 4.16. In fact, the statement holds in more generality, however one needs care. Indeed, we saw that density functions are not uniquely defined - for example changing the value at a point does not change the density function. So a natural statement is actually asking for the equality only on some very large set, but we don't really have tools to deal with this setting at the moment. So for now, you can just assume that whenever the density of $f_{\overline{X}}$ is given by the product of f_{x_i} for all but countable number of points, we have independence; and on the other hand, if there is independence the joint density functions is equal to the product of the densities in the sense that all integrals over boxes agree.

4.3 Conditional laws for random vectors

Given a random vector (X_1, \ldots, X_n) , we talked about the joint law that describes the probability measure induced on \mathbb{R}^n . We also discussed marginal laws, that give the individual laws of each component or a vector of components.

We now add to this list the conditional laws. Recall that given any probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and any event $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$, one could define the conditional probability measure on (Ω, \mathcal{F}) by setting $\mathbb{P}(F|E) := \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}$ for each $F \in \mathcal{F}$. Given two random variables X_1, X_2 we will be interested in knowing the conditional law

Given two random variables X_1, X_2 we will be interested in knowing the conditional law of X_1 , given the value of X_2 – so we are just calculating conditional probability measures, with events E of the type $X_2 = x$. I will state the definition in a larger context and then come back to a simpler example.

Definition 4.17 (Conditional law for discrete random variables). Let $X_1, X_2, ..., X_n$ be discrete random variables on a common probability space. Write $\{1, ..., n\}$ as a union of two disjoint subsets I_0 and I_1 . Now consider some fixed vector $(x_i)_{i \in I_1}$ with $\mathbb{P}((X_i = x_i)_{i \in I_1}) > 0$. Then the conditional law of $(X_i)_{i \in I_0}$ given $(X_i = x_i)_{i \in I_1}$ is given by

$$\mathbb{P}((X_i = y_i)_{i \in I_0} | (X_i = x_i)_{i \in I_1}) := \frac{\mathbb{P}((X_i = y_i)_{i \in I_0} \cap (X_i = x_i)_{i \in I_1})}{\mathbb{P}((X_i = x_i)_{i \in I_1})}.$$

Let us write this out in the case of n = 2: then, assuming that $\mathbb{P}(X_2 = x_2) > 0$ the conditional law of X_1 given $X_2 = x_2$, is - as expected - described by giving for each x in the support of X_1 , the conditional probability

$$\mathbb{P}(X_1 = x | X_2 = x_2) := \frac{\mathbb{P}(\{X_1 = x\} \cap \{X_2 = x_2\})}{\mathbb{P}(X_2 = x_2)}.$$

Now continuous random variables take any value with zero probability, so this wouldn't work directly. And as you will see on the exercise sheet, conditioning on events of zero probability is tricky. So we cannot just blindly reuse the definition of the conditional probabilities. Yet, for variables with a nice density one can give sense to conditional laws via densities.

As the general version might be a bit harder to parse, let us start from a simple version

Definition 4.18 (Conditional law for continuous random variables with density (simple)). Let $\overline{X} = (X_1, X_2)$ be random vector with a continuous joint density. Let y be such that the marginal density of X_2 is positive: $f_{X_2}(y) > 0$. Then the conditional law of X_1 , given $X_2 = y$ is defined to be the continuous r.v. with the following density:

$$f_{X_1|X_2=y}(x) := \frac{f_{X_1,X_2}(x,y)}{f_{X_2}(y)}.$$

It requires a check that the conditional density is indeed a density, but I leave this to you. As a philosophy - although densities are not like probabilities, one can sometimes use them in similar roles. Let me now state a general version of the definition, where one can condition on a part of the vector.

Definition 4.19 (Conditional law for continuous random variables with density (general)). Let $\overline{X} = (X_1, X_2, \ldots, X_n)$ be random vector with a continuous joint density. Write $\{1, \ldots, n\}$ as a union of two disjoint subsets I_0 and I_1 and write \overline{X}_{I_0} and \overline{X}_{I_1} for the corresponding random vectors. Now consider some fixed vector \overline{x} such that the marginal density at \overline{x}_{I_1} is positive, i.e. $f_{\overline{X}_{I_1}}(\overline{x}_{I_1}) > 0$. Then the conditional density of \overline{X}_{I_0} given $\overline{X}_{I_1} = \overline{x}_{I_1}$ is defined by

$$f_{\overline{X}_{I_0}|\overline{X}_{I_1}=\overline{x}_{I_1}}(\overline{x}_{I_0}) := \frac{f_{\overline{X}}(\overline{x})}{f_{\overline{X}_{I_1}}(\overline{x}_{I_1})}.$$

As above, it is an easy check that this does actually define a density. As with conditional probabilities in general, conditional laws are usually notoriously difficult to calculate and might be very different from the initial law.

However, there is one case, where things are nice again - this is Gaussian vectors. Although this holds in a large generality and could even be proved with the methods we already have, we restrict ourselves here to the 2-dimensional case. We will come back to the general case, once we have some more elegant and efficient tools at hand.

Lemma 4.20 (Conditional laws for Gaussians in 2D). Let (X, Y) be a Gaussian random vector $\mathcal{N}(\mu, C)$. Then the conditional law of Y, given X = x for any $x \in \mathbb{R}$ is also Gaussian, similarly if we switch the roles of X, Y.

Proof. This is on the exercise sheet

SECTION 5

Mathematical expectation

We will continue working with random variables and start looking at several different characteristics or properties of their law, based on the concept of mathematical expectation. Mathematical expectation, or just 'expectation', or 'expected value', or 'mean' is a fancy name for taking the average in context of probability measures. Its introduction in the early times of probability was roughly motivated by a very simple question:

• Suppose you are offered the following deal - a dice is thrown and you get as many francs as many dots come up on the top of the dice; but you have to pay n francs independently of the result in return. How many francs should you agree to pay?

Whereas what is really the 'right' answer still depends on some further conditions and assumptions. However, the following vaguely stated mathematical result gives some insight into the problem (and was used in these old times of gambling!):

• Let $X_1, X_2, ...$ be independent random dice throws. Let $S_n = \sum_{i=1}^n X_i$. Then in the limit $n \to \infty$ we have that $\frac{S_n}{n}$ converges to $\frac{1+2+3+4+5+6}{6} = 3.5$.

This result is a specific case of the so called law of large numbers, and it tells you that the average gain from one dice throw is 3.5. So would this mean that you should offer anything below 3.5 francs? While pondering on this worldly problem, let us dig into the mathematical theory.

Expected value of a discrete random variable 5.1

We start with the discrete case to lay clear foundations. The continuous case can be seen as an extension of this:

Definition 5.1 (Expected value of a discrete random variable). Let X be a discrete random variable defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and with support S. We say that X admits an expected value or that X is integrable if $\sum_{x \in S} |x| \mathbb{P}(X = x) < \infty$. For an integrable random variable X, the expected value of X, denoted $\mathbb{E}(X)$ is defined as

$$\mathbb{E}(X) = \sum_{x \in S} x \mathbb{P}(X = x).$$

Remark 5.2. Observe the following

- The condition for integrability is there of absolute summability otherwise the order in the sum would matter, and there would be no unique answer to the expectation. We have that X is integrable if |X| is.
- The expectation only depends on the law \mathbb{P}_X of the random variable and not the probability space on the background.
- Discrete random variables with finite support are always integrable.

Before proving some properties that make the expected value extremely useful, let us look at some examples:

Deterministic random variable

If a random variable X takes some value $x \in \mathbb{R}$ with probability 1, then its expectation is

also clearly equal to x

Bernoulli random variable

Let E be an event on a probability space, and consider the random variable 1_E . As its support is finite, it is integrable. From the definition of expectation, we directly have that $\mathbb{E}(1_E) = \mathbb{P}(E)$. Thus in particular if X is a Ber(p) random variable, then its expectation is just $\mathbb{E}(X) = p$.

Uniform random variable

Consider the uniform random variable U_n on $\{1, 2, ..., n\}$. Again as it takes only finitely many values, it is integrable. Its expected value is

$$\mathbb{E}(U_n) = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}.$$

Poisson random variable

Consider the Poisson random variable P of parameter $\lambda > 0$. The support of a Poisson random variable is not finite and thus one needs to verify that it is integrable. But in fact, the same computation also gives the expectation:

$$\mathbb{E}(P) = \sum_{n \ge 0} n \mathbb{P}(P = n) = \sum_{n \ge 1} n \frac{e^{-\lambda} \lambda^n}{n!} = \lambda e^{-\lambda} \sum_{m \ge 0} \frac{\lambda^m}{m!} = \lambda.$$

Hence, even if a random variable can take arbitrary large values, its expectation can be finite. This is, however, not always the case. For example

• Consider a random variable X such that it takes value 2^n with probability 2^{-n} . Then clearly $\mathbb{E}(X) = \infty$ and X is not integrable.

If a random variable is non-negative, then its expected value doesn't exist only if it is too large, i.e. is infinite. Sometimes one still defines expected value for any positive random variable, just saying that $\mathbb{E}(X) = \infty$, in case it is infinite.

You will see more examples on the exercise sheet:

Exercise 5.1 (Expectations of discrete random variables). Prove that the expected value of a Binomial random variable Bin(n, p) is equal to np. Prove also that the expected value of a geometric random variable of parameter p is equal to 1/p.

For now, let us verify some nice conditions of the expectation. We will use the following notation: if X, Y are random variables, we write $X \geq Y$ to say that the event $X \geq Y$ happens with probability 1.

Proposition 5.3. Let X, Y be two integrable discrete random variables defined on the same probability space. Then the expected value satisfies the following properties:

- It is linear: we have that $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$ for all $\lambda \in \mathbb{R}$. Further, X + Y is integrable and $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.
- If $X \ge 0$ i.e. $\mathbb{P}(X \ge 0) = 1$, then $\mathbb{E}(X) \ge 0$,
- If $X \ge Y$ i.e. $\mathbb{P}(X \ge Y) = 1$, then $\mathbb{E}(X) \ge \mathbb{E}(Y)$. Deduce that if $\mathbb{P}(c \le X \le C) = 1$, then $c \le \mathbb{E}(X) \le C$.
- We have that $\mathbb{E}(|X|) \ge |\mathbb{E}(X)|$.

Proof. The fact that $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$ follows directly from the definition. Let us next prove that X + Y is integrable and $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$. Denote by S_X, S_Y the supports of X and Y respectively. Denote by S_{X+Y} the support of X + Y. Notice that

$$\mathbb{P}(X + Y = s) = \sum_{x \in S_X} \sum_{y \in S_Y} \mathbb{P}(X = x, Y = y) 1_{x+y=s}$$

Thus we can write

$$\sum_{s \in S_{X+Y}} |s| \mathbb{P}(X+Y=s) = \sum_{s \in S_{X+Y}} \sum_{x \in S_X} \sum_{y \in S_Y} |x+y| \mathbb{P}(X=x,Y=y) \mathbb{1}_{x+y=s}.$$

By triangle inequality we can bound $|x+y| \le |x| + |y|$ and thus obtain

(5.1)
$$\sum_{s \in S_{X+Y}} |s| \mathbb{P}(X+Y=s) \le \sum_{s \in S_{X+Y}} \sum_{x \in S_X} \sum_{y \in S_Y} (|x|+|y|) \mathbb{P}(X=x,Y=y) \mathbb{1}_{x+y=s}.$$

Now, observe that for fixed x and y either $\mathbb{P}(X=x,Y=y)=0$ or $x+y\in S_{X+Y}$ and we have that

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x, Y = y) \sum_{s \in S_{X+Y}} 1_{x+y=s}.$$

Moreover, for fixed x by the law of total probability we have that

$$\sum_{y \in S_Y} \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x).$$

Thus as everything in Equation (5.1) is positive, we can now switch the order of summation, and to recognize the RHS as a sum of

$$\sum_{x \in S_{Y}} \sum_{y \in S_{Y}} \sum_{s \in S_{Y+Y}} |x| \mathbb{P}(X = x, Y = y) \mathbb{1}_{x+y=s} = \sum_{x \in S_{Y}} |x| \mathbb{P}(X = x)$$

and

$$\sum_{y \in S_Y} \sum_{x \in S_X} \sum_{s \in S_{X+Y}} |y| \mathbb{P}(X = x, Y = y) 1_{x+y=s} = \sum_{y \in S_Y} |y| \mathbb{P}(Y = y).$$

Hence we bound

$$\sum_{s \in S_{X+Y}} |s| \mathbb{P}(X+Y=s) \leq \sum_{x \in S_X} |x| \mathbb{P}(X=x) + \sum_{y \in S_Y} |y| \mathbb{P}(Y=y)$$

and deduce integrability. Thereafter, the same way of separating sums also gives that $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

For the second bullet point, we notice that if $X \geq 0$ with full probability, then for every $s \in S_X$, we have that $s \geq 0$. Thus it follows from definition of expectation that $\mathbb{E}(X) \geq 0$.

For the third bullet point, notice that by the condition $X - Y \ge 0$. Thus $X - Y \ge 0$ with full probability, and hence by the second bullet point $\mathbb{E}(X - Y) \ge 0$. The first bullet point then gives that $\mathbb{E}(X) \ge \mathbb{E}(Y)$. Plugging in Y = c in this inequality, and noticing that $\mathbb{E}c = c$, gives $\mathbb{E}(X) \ge c$. The other inequality follows similarly.

Finally, for the fourth bullet point notice that $-\mathbb{E}(X) = \mathbb{E}(-X)$ by the first point. Hence it suffices to show that $\mathbb{E}(X) \leq \mathbb{E}|X|$. But this just follows from the definition, as $\mathbb{P}(X=x)$

is always positive for $x \in S_X$ and hence

$$\mathbb{E}(X) = \sum_{x \in S_X} x \mathbb{P}(X = x) \le \sum_{x \in S_X} |x| \mathbb{P}(X = x) = \mathbb{E}(|X|),$$

where in the last equality we use that $\mathbb{P}(|X| = |x|) = \mathbb{P}(X = x) + \mathbb{P}(X = -x)$ and the fact that $|x| \in |S_X|$ if and only if either $x \in S_X$ or $-x \in S_X$.

Expected value of an arbitrary random variable

The idea for defining the expectation of a general random variable X is to approximate it by discrete random variables. More precisely, given X, we define the discretizations of X as:

$$X_n(w) = 2^{-n} \lfloor 2^n X(w) \rfloor = \sum_{k \in \mathbb{Z}} k 2^{-n} 1_{X(w) \in [k2^{-n}, (k+1)2^{-n})}.$$

Notice that X_n is indeed a discrete random variable - it is a non-decreasing function of X, so it is a random variable, and it takes only countably many values, thus it is discrete. The following exercise says that these discretizations really approximate the initial random variable very well.

Exercise 5.2 (Discretizations are nice). Let X be a random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$. and $(X_n)_{n\geq 1}$ be the discretizations $X_n=2^{-n}\lfloor 2^n X\rfloor=\sum_{k\in\mathbb{Z}}k2^{-n}1_{X\in[k2^{-n},(k+1)2^{-n})}.$ Prove that for every $\omega\in\Omega$, we have that $X_n(\omega)\leq X(\omega)\leq X_n(\omega)+2^{-n}$ and thus the

sequence $(X_n(\omega))_{n\geq 1}$ converges to $X(\omega)$.

We can now use the definition of the expectation $\mathbb{E}(X)$ for discrete random variables X to define expected value of an arbitrary random variable:

Proposition 5.4 (Expected value of a random variable). Let X be a random variable defined on some probability space. If $\mathbb{E}(|X_1|) < \infty$, then $\mathbb{E}(|X_n|) < C$ for some constant C and we call X integrable. The expected value of X is then defined as

$$\mathbb{E}(X) = \lim_{n \to \infty} \mathbb{E}(X_n).$$

Remark 5.5. Notice that X is integrable if and only if |X| is integrable. It is important to verify that a random variable is integrable before calculating the expectation. We will see below that for example bounded random variables are automatically integrable.

Remark 5.6. Also, observe again that the expectation only depends on the law of X and not on the underlying probability space: this is clear in the case of discrete random variables, but now notice that if X and Y have the same law, then so do the discretizations X_n and Y_n .

Remark 5.7. A peek into future: if you consider $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{F}_L, \mathbb{P}_U)$ where \mathcal{F}_L is the Lebesgue σ -algebra and \mathbb{P}_U the Lebesgue measure (we also called it uniform measure). Then for any integrable random variable X, which is just a measurable function from $([0,1], \mathcal{F}_L)$ to $([0,1],\mathcal{F}_E)$, $\mathbb{E}X$ is its Lebesgue integral. You will see a more general construction in your Analysis IV course using a larger family of approximations.

The idea for proving this proposition is just to show that the sequence $\mathbb{E}(X_n)$ is Cauchy.

Proof. Notice that from the Exercise 5.2 above we see that $X_1 - 1 \le X_n \le X_1 + 1$ and hence $|X_n| \le |X_1| + 1$. Thus if $\mathbb{E}(|X_1|) < C - 1$, then from Proposition 5.3 it follows that $\mathbb{E}(|X_n|) < C$ for all $n \ge 1$. It follows that X_n is integrable for every $n \ge 1$ and hence $\mathbb{E}(X_n)$ well-defined.

We now claim that $\mathbb{E}(X_n)$ is a Cauchy sequence. So consider $m \geq n$. Then from Proposition 5.3 it follows that

$$|\mathbb{E}(X_n) - \mathbb{E}(X_m)| = |\mathbb{E}(X_n - X_m)| \le \mathbb{E}(|X_n - X_m|).$$

But we can bound $|X_n - X_m| \le 2^{-n}$ using Exercise 5.2. Hence $|\mathbb{E}(X_n) - \mathbb{E}(X_m)| \le \mathbb{E}(2^{-n}) = 2^{-n}$. It follows that the sequence $(\mathbb{E}(X_n))_{n\ge 1}$ is Cauchy and thus converges to a unique limit as $n \to \infty$.

An easy but important sanity check is that this definition indeed agrees with the previous definition for discrete random variables, i.e. that the Definition 5.1 of $\mathbb{E}(X)$ and the definition of $\mathbb{E}(X)$ by Proposition 5.4 agree for any discrete random variable X.

Remark 5.8 (Jargon - 'almost surely'). We have tried to avoid too much probabilistic jargon so far, but it is now high time to introduce at least one expression: One says that an event E on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ happens almost surely, if $\mathbb{P}(E) = 1$.

For example, if for some $c \in \mathbb{R}$ we have that $\mathbb{P}(X = c) = 1$, we would say that X is almost surely a constant. Or if $\mathbb{P}(X = Y) = 1$ for some random variables X, Y on the same probability space, we would say X = Y almost surely, or if $\mathbb{P}(X > 0) = 1$, we would say that X is positive almost surely.

Remark 5.9 (Expectation for non-negative random variables). When $X \geq 0$ almost surely (i.e. $\mathbb{P}(X \geq 0) = 1$), there are exactly two options: either X is integrable and $\mathbb{E}X < \infty$, or it is not integrable. In the latter case each $\mathbb{E}X_n$ is a positive non-convergent sum and it makes sense still to set $\mathbb{E}X = \infty$.

Further, one can also check that all the properties that hold for the expectation of the discrete random variable, also hold for the expectation in general:

Proposition 5.10. Let X, Y be two integrable random variables defined on the same probability space. Then the expected value satisfies the following properties:

- It is linear: we have that $\mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$ for all $\lambda \in \mathbb{R}$. Further, X + Y is integrable and $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.
- If $X \ge 0$ i.e. $\mathbb{P}(X \ge 0) = 1$, then $\mathbb{E}(X) \ge 0$,
- If $X \ge Y$ i.e. $\mathbb{P}(X \ge Y) = 1$, then $\mathbb{E}(X) \ge \mathbb{E}(Y)$. Deduce that if $\mathbb{P}(c \le X \le C) = 1$, then $c \le \mathbb{E}(X) \le C$.
- We have that $\mathbb{E}(|X|) \ge |\mathbb{E}(X)|$.

Proof. All these points follow from Proposition 5.3 via discretizations and Exercise 5.2. This is a somewhat tedious verification that I leave for you.

For example, as for all n, we have that $X_n + 2^{-n} \ge X$, then $X \ge 0$ means that $X_n \ge -2^{-n}$. It follows from Proposition 5.10 that $\mathbb{E}(X_n) \ge -2^{-n}$, implying that for every $\epsilon > 0$, for all n large enough $\mathbb{E}(X_n) \ge -\epsilon$ and hence $\mathbb{E}(X) \ge 0$.

Let us now see that in the case of random variables with density, we can use Riemann integration and the density to calculate expectation.

Proposition 5.11 (Expected value for r.v. with density). Let X be a random variable with density f_X . Then X is integrable iff $\int_{\mathbb{R}} |x| f_X(x) dx < \infty$ and we have

$$\mathbb{E}(X) = \int_{\mathbb{R}} x f_X(x) dx.$$

Proof. Consider the discretizations $X_n = 2^{-n} \lfloor 2^n X \rfloor$. Notice that

$$\mathbb{P}(X_n \in [k2^{-n}, (k+1)2^{-n})) = \int_{k2^{-n}}^{(k+1)2^{-n}} f_X(x) dx$$

and hence

$$\mathbb{E}(|X_1|) = \sum_{k>0} k 2^{-1} \int_{k2^{-1}}^{(k+1)2^{-1}} f_X(x) dx + \sum_{k>1} k 2^{-1} \int_{-k2^{-1}}^{(-k+1)2^{-1}} f_X(x) dx.$$

Now, if $|x| \in [k2^{-1}, (k+1)2^{-1})$ then $k2^{-1} \le |x| \le k2^{-1} + 2^{-1}$. Using the fact that $\int_{\mathbb{R}} f_X(x) dx = 1$ and that f_X is non-negative, we conclude that

$$-1 + \int_{\mathbb{R}} |x| f_X(x) dx \le \mathbb{E}(|X_1|) \le 1 + \int_{\mathbb{R}} |x| f_X(x) dx.$$

Thus X is integrable iff $\int_{\mathbb{R}} |x| f_X(x) dx < \infty$.

Next, as

$$\mathbb{E}(X_n) = \sum_{k \in \mathbb{Z}} k 2^{-n} \int_{k2^{-n}}^{(k+1)2^{-n}} f_X(x) dx,$$

we see similarly to above that also

$$\mathbb{E}(X_n) \le \int_{\mathbb{R}} x f_X(x) dx \le \mathbb{E}(X_n) + 2^{-n}.$$

But $\mathbb{E}(X_n) \to \mathbb{E}(X)$ as $n \to \infty$, and hence the proposition now follows by taking $n \to \infty$. \square

Let us calculate densities for some known random variables:

Uniform random variable on [a, b]

Consider a uniform random variable U on [a,b]. Recall its density is given by $f_U(x) = (b-a)^{-1}1_{x\in[a,b]}$. First notice that U is bounded and hence integrable. Thus we calculate:

$$\mathbb{E}(U) = (b-a)^{-1} \int_{\mathbb{R}} x 1_{x \in [a,b]} dx = (b-a)^{-1} \int_{a}^{b} x dx = \frac{b^{2} - a^{2}}{2(b-a)} = \frac{a+b}{2}.$$

Gaussian random variable

Consider a standard normal random variable $N \sim \mathcal{N}(0,1)$. We first note that

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |x| \exp(-\frac{x^2}{2}) dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x \exp(-\frac{x^2}{2}) dx = \frac{2}{\sqrt{2\pi}} < \infty.$$

Thus N is integrable. We further notice that

$$\mathbb{E}(N) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x \exp(-\frac{x^2}{2}) dx = \mathbb{E}(-N),$$

as the density of -N is the same as that of N. Hence Proposition 5.10 implies that $\mathbb{E}(N) = 0$.

Now, consider a general Gaussian random variable $N_{\mu,\sigma^2} \sim \mathcal{N}(\mu,\sigma^2)$. Recall that we can write $N_{\mu,\sigma^2} \sim \sigma N + \mu$ and hence N_{μ,σ^2} is integrable. Further, we can use Proposition 5.10 one more time to deduce that $\mathbb{E}N_{\mu,\sigma^2} = \sigma \mathbb{E}(N) + \mu = \mu$. This is the reason why μ is called the mean of the Gaussian random variable.

Again, further examples are on the exercise sheet.

5.3 Expected value of a function of a random variable

It comes out that the expected value, even if just a number, is very useful tool to describe a random variable. Often we might not be interested in the expectation of some given random variables, but of certain functions of these random variables. For example, given a r.v. X we might be interested in $\mathbb{E}((X - \mathbb{E}X)^2)$, or given X, Y, we might be interested in $\mathbb{E}XY$. In fact, as we will see, if we know $\mathbb{E}g(X)$ for sufficiently many functions g, then this determines the random variable itself!

To start, let us look at the following proposition telling us that sometimes there is a nice way to calculate expectations of functions of a r.v.:

Proposition 5.12. Let $\overline{X} = (X_1, ..., X_n)$ be a random vector defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and ϕ a measurable function from $(\mathbb{R}^n, \mathcal{F}_E)$ to $(\mathbb{R}, \mathcal{F}_E)$, so that $\phi(\overline{X})$ is a random variable.

• If all X_1, \ldots, X_n are discrete and $\phi(\overline{X})$ is integrable, then

$$\mathbb{E}(\phi(\overline{X})) = \sum_{\overline{x} \in S_{\overline{X}}} \phi(\overline{x}) \mathbb{P}(\overline{X} = \overline{x}),$$

where $S_{\overline{X}} \subseteq \mathbb{R}^n$ is the support of the random vector \overline{X} , i.e. the set of $\overline{s} = (s_1, \ldots, s_n) \in \mathbb{R}^n$ such that $\mathbb{P}(\overline{X} = \overline{s}) > 0$ for all $\overline{x} \in S_{\overline{X}}$ and $\mathbb{P}(\overline{X} \in S_{\overline{X}}) = 1$.

• If \overline{X} is a random vector with density, $\phi(X)$ an integrable random variable and ϕ sufficiently nice - meaning that $\phi^{-1}([a,b))$ is Riemann measurable for any interval [a,b) - then

$$\mathbb{E}(\phi(\overline{X})) = \int_{\mathbb{R}^n} \phi(\overline{x}) f_{\overline{X}}(\overline{x}) d\overline{x}.$$

The condition 'sufficiently nice' is of course not quite natural. This is yet again due to the fact that Riemann integration and measurability in the sense of Borel (or Lebesgue) do not play together in full harmony. After Analysis IV next semester, you should be able to revisit many of these results and restate them in more natural ways, if interested of course. Still, notice that the condition holds for many natural functions like x^n or $\exp(x)$.

Proof. The discrete case is on the exercise sheet.

To prove the second case, we use discretizations - we set $\phi_n(\overline{x}) = 2^{-n} \lfloor \phi(\overline{x}) 2^n \rfloor$. Then - given integrability - we have that

$$\mathbb{E}(\phi_n(\overline{X})) = \sum_{k \in \mathbb{Z}} k 2^{-n} \mathbb{P}(\phi_n(\overline{X}) = k 2^{-n}).$$

Now, given that $\phi^{-1}([a,b])$ are Riemann-measurable, we can write

$$k2^{-n}\mathbb{P}(\phi_n(\overline{X}) = k2^{-n}) = \int_{\mathbb{R}^n} 1_{\overline{x} \in \phi^{-1}([k2^{-n},(k+1)2^{-n}))} k2^{-n} f_{\overline{X}}(\overline{x}) d\overline{x}.$$

Again by absolute summability ¹⁰ we can switch the order of sum and integration to get

$$\mathbb{E}(\phi_n(\overline{X})) = \int_{\mathbb{R}^n} f_{\overline{X}}(\overline{x}) \sum_{k \in \mathbb{Z}} 1_{\overline{x} \in \phi^{-1}([k2^{-n},(k+1)2^{-n}))} k2^{-n} d\overline{x}.$$

As above, for any fixed \overline{x} , we have that $1_{\overline{x} \in \phi^{-1}([k2^{-n},(k+1)2^{-n}))}$ is equal to 1 for only one value of k and thus from the definition of ϕ_n , we obtain

$$\sum_{k \in \mathbb{Z}} 1_{\overline{x} \in \phi^{-1}([k2^{-n},(k+1)2^{-n}))} k2^{-n} = \phi_n(\overline{x}).$$

Hence

$$\mathbb{E}(\phi_n(\overline{X})) = \int_{\mathbb{R}^n} \phi_n(\overline{x}) f_{\overline{X}}(\overline{x}) d\overline{x}.$$

We can now conclude similarly to Proposition 5.11.

Looking at expectations of functions of a random variable turns out to be a powerful thing:

Proposition 5.13. Let X, Y be two random variables. Then X and Y are equal in law if and only if for all bounded continuous functions $g : \mathbb{R} \to \mathbb{R}$ we have that $\mathbb{E}g(X) = \mathbb{E}g(Y)$.

Proof. If X and Y have the same law, then also do g(X) and g(Y) for any continuous and bounded g. Hence, as bounded functions are integrable and the expectation only depends on the law of the r.v., we indeed have that $\mathbb{E}g(X) = \mathbb{E}g(Y)$.

In the other our aim is to show that $\forall t \in \mathbb{R}$, $F_X(t) = F_Y(t)$. To do this recall that $F_X(t) = \mathbb{P}(X \leq t) = \mathbb{E}(1_{x \leq t})$, so our aim will be to consider continuous approximations $g_{t,n}$ of the indicator function $1_{x \leq t}$, defined as follows. Fix some $t \in \mathbb{R}$ and set $g_{t,n}(x) = 1$ if $x \leq t$, we set $g_{t,n}(x) = 0$ if $x \geq t + 2^{-n}$ and we set $g_{t,n}(x) = 1 - 2^n(x - t)$ inside the interval $(t, t + 2^{-n})$.

Then, one the one hand

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{E}(1_{x \le t}) \le \mathbb{E}(g_{t,n}(X))$$

and on the other hand

$$\mathbb{E}(g_{t,n}(X)) \le \mathbb{E}(1_{x \le t+2^{-n}}) = \mathbb{P}(X \le t+2^{-n}) = F_X(t+2^{-n}).$$

Thus by right-continuity of $F_X(t)$ we see that $\mathbb{E}(g_{t,n}(X))$ converges to $F_X(t)$ as $n \to \infty$. But similarly also $\mathbb{E}(g_{t,n}(Y))$ converges to $F_Y(t)$ as $n \to \infty$. As by assumption $\mathbb{E}(g_{t,n}(X)) = \mathbb{E}(g_{t,n}(Y))$, we can conclude the proposition.

Also independence can be restated in an elegant way using expectations - X, Y are independent if the expectation factorizes for all continuous functions!

Proposition 5.14. Let X, Y be two random variables. Then

• If for all $g: \mathbb{R} \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}$ continuous and bounded we have that

(5.2)
$$\mathbb{E}(g(X)h(Y)) = \mathbb{E}g(X)\mathbb{E}h(Y),$$

then X and Y are independent.

¹⁰More precisely, we are using there that if either $\sum_{n\geq 1} \int_{\mathbb{R}} |f_n(x)| dx < \infty$ or $\int_{\mathbb{R}} \sum_{n\geq 1} |f_n(x)| dx < \infty$, then $\int_{\mathbb{R}} \sum_{n\geq 1} f_n(x) dx = \sum_{n\geq 1} \int_{\mathbb{R}} f_n(x) dx$. You have met the analogous result for swapping two sums $\sum_{k\geq 1} \sum_{n\geq 1}$, and the proof is basically the same.

• On the other hand, if X and Y are independent, then for all measurable functions $g, h : \mathbb{R} \to \mathbb{R}$ such that g(X) and h(Y) are integrable the Equation (5.2) holds.

Proof. The first part follows similarly to the last proposition:

From Lemma 4.8 we know that to prove X, Y are independent, it suffices to prove that for all $s, t \in \mathbb{R}$ we have that $F_{(X,Y)}(s,t) = F_X(s)F_X(t)$. Further, recall that $F_{(X,Y)}(s,t) = \mathbb{E}1_{X \leq s, Y \leq t} = \mathbb{E}1_{X \leq s}1_{Y \leq t}$. We follow the strategy of Proposition 5.13. Indeed, consider the same continuous functions $g_{t,n}(x)$ satisfying $1_{x < t} \leq g_{t,n}(x) \leq 1_{x < t+2^{-n}}$.

Using the expression of $F_{(X,Y)}$ above, definition of $g_{t,n}$ and properties of expectation be can bound

$$\mathbb{E}g_{s-2^{-n},n}(X)g_{t-2^{-n},n}(Y) \le F_{(X,Y)}(s,t) \le \mathbb{E}g_{s,n}(X)g_{t,n}(Y).$$

By assumption

$$\mathbb{E}g_{s-2^{-n},n}(X)g_{t-2^{-n},n}(Y) = \mathbb{E}g_{s-2^{-n},n}(X)\mathbb{E}g_{t-2^{-n},n}(Y)$$

and similarly $\mathbb{E}g_{s,n}(X)g_{t,n}(Y) = \mathbb{E}g_{s,n}(X)\mathbb{E}g_{t,n}(Y)$. As $\mathbb{E}g_{s-2^{-n},n}(X)$ and $\mathbb{E}g_{s,n}(X)$ both converge to $F_X(s)$ and similarly $\mathbb{E}g_{t-2^{-n},n}(Y)$ and $\mathbb{E}g_{t,n}(Y)$ both converge to $F_X(t)$, we conclude.

For the other direction, we first observe the following (this will be on the exercise sheet):

Exercise 5.3. Prove that if X, Y are independent random variables, then so are q(X), h(Y).

Given this, the second point follows when we show that for any integrable random variables X, Y we have that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. We first deal with the case of discrete random variables, and then pass to the limit using approximations. We will discuss this next time.

The discrete case

Denote the supports by S_X, S_Y and write

$$\mathbb{E}(X)\mathbb{E}(Y) = \left(\sum_{x \in S_X} x \mathbb{P}(X = x)\right) \left(\sum_{y \in S_Y} y \mathbb{P}(Y = y)\right) = \sum_{x \in S_X} \sum_{y \in S_Y} xy \mathbb{P}(X = x) \mathbb{P}(Y = y).$$

Now, for any random variables X, Y and every fixed $x \in S_X$, $y \in S_Y$ we have the identity

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x, Y = y) \sum_{s \in S_{XY}} 1_{xy=s}.$$

Further, by independence of X, Y we have $\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$. Thus we can write

$$\sum_{x \in S_X} \sum_{y \in S_Y} xy \mathbb{P}(X = x, Y = y) = \sum_{x \in S_X} \sum_{y \in S_Y} xy \mathbb{P}(X = x, Y = y) \sum_{s \in S_{XY}} 1_{xy = s}.$$

By integrability of X, Y, this triple-series is absolutely summable, and thus we can change the order of sums and observe $xy1_{xy=s} = s1_{xy=s}$ to get

$$\sum_{s \in S_{XY}} \sum_{x \in S_X} \sum_{y \in S_Y} s \mathbb{1}_{xy=s} \mathbb{P}(X = x, Y = y).$$

Finally, we observe that

$$\sum_{x \in S_X} \sum_{y \in S_Y} 1_{xy=s} \mathbb{P}(X = x, Y = y) = \mathbb{P}(XY = s)$$

which implies the claim for discrete r.v. Observe that this very same change of summation also gives the integrability of XY.

The general case

The general case proceeds via approximation and is left as an exercise.

Corollary 5.15. Let us spell out a corollary of the proof: if X and Y are independent and integrable, then also XY is integrable.

5.4 Variance and covariance

Next to the mean value or expectation, a key parameter or characteristic of a random variable is its variance (and its standard deviation, which is just the square-root of the variance).

Definition 5.16 (Variance of a random variable). Let X be an integrable random variable. Then if $\mathbb{E}(|X|^2) < \infty$, we say that X has a finite second moment and define its variance

$$Var(X) := \mathbb{E}((X - \mathbb{E}X)^2) \ge 0.$$

Standard deviation is defined as $\sigma(X) := \sqrt{VarX}$.

Notice that indeed $(X - \mathbb{E}X)^2$ is integrable when $|X|^2$ is, as we can write $(X - \mathbb{E}X)^2 \le 2|X|^2 + 2(\mathbb{E}X)^2$. A useful tool for calculating variance is to notice that by opening the square

$$\operatorname{Var}(X) = \mathbb{E}\left((X - \mathbb{E}X)^2\right) = \mathbb{E}(X^2) - 2\mathbb{E}(X\mathbb{E}X) + (\mathbb{E}X)^2 = \mathbb{E}(X^2) - (\mathbb{E}X)^2.$$

So let us calculate some variances using this:

- The variance of a Bernoulli random variable $X \sim Ber(p)$ is $\mathbb{E}(X^2) (\mathbb{E}X)^2 = p p^2 = p(1-p)$. Why is this reasonable?
- Similarly, using the same formula we can calculate the variance of an exponential random variable $X \sim Exp(\lambda)$. Indeed, as x^2 satisfies the conditions of Proposition 5.12, we can write

$$\mathbb{E}X^2 = \lambda \int_0^\infty x^2 \exp(-\lambda x) dx.$$

We now calculate by doing twice integration by parts

$$\lambda \int_0^\infty x^2 \exp(-\lambda x) dx = 2 \int_0^\infty x \exp(-\lambda x) dx = 2\lambda^{-1} \mathbb{E} X = 2\lambda^{-2}.$$

Hence
$$Var(X) = \lambda^{-2}$$
.

Variance tells us how much the random variable fluctuates or deviates around its mean, as is illustrated for example by the following lemma:

Lemma 5.17 (Chebyshev's inequality). Let X be an integrable random variable with finite variance. Then $\mathbb{P}(|X - \mathbb{E}X| > t) \leq \frac{Var(X)}{t^2}$.

Proof. This follows directly from the Markov's inequality $\mathbb{P}(Y > t) \leq \frac{\mathbb{E}Y}{t}$ that we proved for non-negative integrable random variables Y on the previous exercise sheet. Indeed, we just apply Markov's inequality to $Y = (X - \mathbb{E}X)^2$ to get that

$$\mathbb{P}(|X - \mathbb{E}X| > t) = \mathbb{P}((X - \mathbb{E}X)^2 > t^2) \le \frac{\operatorname{Var}(X)}{t^2}.$$

In fact, variance also gives us a new view on expectation itself as the minimizer of certain error: if X is an integrable random variable of finite variance, then the real number a that minimizes the so called mean squared error: $\mathbb{E}(X-a)^2$ is given by $a=\mathbb{E}X!$ Again, you will find this on the example sheet.

5.4.1 Covariance and correlation

As discussed, one is often is interested how two random variables are related to each other. We already saw the notion of independence - random variables are independent if they don't influence each other at all. In the other extreme there is the case where they are equal, i.e. $\mathbb{P}(X=Y)=1$ in which case we say X=Y almost surely. Both of those are very strong notions. A weaker measure of how two random variables are related, and a way to in some sense measure the level of dependence is described by notions of covariance and correlation.

Definition 5.18 (Covariance and correlation). Suppose that X, Y are two integrable random variables of finite variance defined on the same probability space. The covariance of X and Y, denoted Cov(X,Y) is then defined as

$$Cov(X,Y) = Cov(Y,X) = \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y)) = \mathbb{E}(XY) - \mathbb{E}X\mathbb{E}Y.$$

If neither of X, Y is almost surely a constant, then the correlation $\rho(X,Y)$ is defined as

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}.$$

A first question might be why is even covariance well-defined? I.e. why is $\mathbb{E}(XY)$ finite when X, Y have finite variance? This follows from the Cauchy-Schwarz inequality, which I believe you have already seen in some form. You will find an non-eximinable proof at the end of the section.

Theorem 5.19 (Cauchy-Schwarz inequality). Let X, Y be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that X^2, Y^2 are integrable. Then |XY| is also integrable, and moreover

$$\mathbb{E}(|XY|) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}.$$

Moreover, the equality holds if and only if $|X| = \lambda |Y|$ almost surely for some $\lambda > 0$.

Notice that in particular it also follows that

$$\mathbb{E}(XY) \le |\mathbb{E}(XY)| \le \mathbb{E}|XY| \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}.$$

The relevant cases of equality can be also worked out.

Using this inequality, we see that not only are covariance and correlation well defined, but also we can see that having full correlation means that the random variables are almost surely equal.

Exercise 5.4 (Covariance and dependence). Let X, Y be two random variables of finite positive variance defined on the same probability space.

- Show that the correlation $\rho(X,Y) \in [-1,1]$. When is it equal to 1, when is it equal to -1, how to interpret this?
- Show that if X, Y are independent, integrable with finite variance, then their covariance is zero.

• Show that if X, Y are integrable with finite variance, then

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

and deduce that if X, Y are also independent, then Var(X+Y) = Var(X) + Var(Y).

• Finally, find random variables X, Y with zero covariance that are not independent.

Given a random vector, it is often useful to define the covariance between each pair of components.

Definition 5.20 (Covariance matrix). Let $\overline{X} = (X_1, \dots, X_n)$ be a random vector such that all components have finite variance. Then the covariance matrix $\Sigma_{i,j}$ is defined as

$$\Sigma_{i,j} = Cov(X_i, X_j).$$

In fact, we have already met a covariance matrix! indeed, for a Gaussian random vector $\mathcal{N}(\overline{\mu}, C)$, the matrix positive-definite symmetric matrix C is the covariance matrix and $\overline{\mu} =$ $(\mathbb{E}X_1,\ldots,\mathbb{E}X_n)$:

Exercise 5.5 (Independence and Gaussians). Prove that for a Gaussian random vector $X \sim \mathcal{N}(\overline{\mu}, C)$, the matrix C is the covariance matrix and $\overline{\mu} = (\mathbb{E}X_1, \dots, \mathbb{E}X_n)$. Show that in the case of a Gaussian random vector, if $Cov(X_i, X_j) = 0$, then X_i and X_j are independent.

Observe that this in particular means that a Gaussian vector is determined only by its mean and covariance, which is a very nice indeed!

Moments of a random variable

We have seen that $\mathbb{E}(X)$ and $\mathbb{E}((X - \mathbb{E}X)^2)$ contain valuable information about a random variable X. Moreover, we saw that if we look at $\mathbb{E}q(X)$ for all bounded continuous q, then this determines the law of X completely. But this is already quite a lot of information! An intermediate task would be to ask $\mathbb{E}X^n$ for all $n \geq 1$. Does knowing this determine the random variable?

Definition 5.21 (Moments of a r.v.). Let X be a random variable and $n \in \mathbb{N}$. If $\mathbb{E}|X|^n < \infty$, we say that X admits a n-th moment. We call $\mathbb{E}X^n$ the n-th moment of X.

To understand the relation between different moments, let's recall the Jensen's inequality. A function $\phi: \mathbb{R} \to \mathbb{R}$ is called convex if for all x, y and all $\lambda \in [0, 1]$ we have that

$$\phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y).$$

We call $\lambda x + (1 - \lambda)y$ a convex combination of x, y. Using this vocabulary, Jensen's inequality can be reworded as saying that the image under ϕ of a convex combination of two points is always smaller than the convex combination of the images of the two points under ϕ . (What does it mean geometrically?)

Finally, recall that a convex function is continuous and thus if X is a random variable, then so is $\phi(X)$. We can now state Jensen's inequality:

Theorem 5.22 (Jensen's inequality). Let X be an integrable random variable and ϕ a convex function such that $\phi(X)$ is also integrable. Then

$$\phi(\mathbb{E}X) \le \mathbb{E}\phi(X).$$

Notice the similarity to the defining property of convexity: $\mathbb{E}X$ can be thought of as a convex combination of the possible values of X. Thus, for example if X takes only two values x, y with probabilities λ and $1 - \lambda$ then Jensen's inequality is just a reformulation of the defining property of convexity.

I expect you have seen and will see many different proofs of this nice inequality. Still there is one in the appendix on this section for completeness.

We now have the following simple lemma, saying that the existence of higher moments implies the existence of lower moments too:

Lemma 5.23. Let X be a random variable defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ that admits a n-th moment. Then it also admits a m-th moment for all $m \leq n$ and moreover $\mathbb{E}|X|^n \geq (\mathbb{E}(|X|^m))^{n/m}$.

Proof. Let $m \leq n$. Let us first notice that if $|X|^n$ is integrable, then also is $|X|^m$ with $m \leq n$. Indeed, we can bound

$$|X(\omega)|^m \le \max(|X(\omega)|^n, 1) \le |X(\omega)|^n + 1$$

and thus integrability of $|X|^m$ follows from that of $|X|^n$.

Now, for $n \ge m$, consider $\phi(x) = |x|^{n/m}$. This is a convex function. Hence, as both $|X|^m$ and $|X|^n = \phi(|X|^m)$ are integrable, we can apply Jensen's inequality to ϕ and $|X|^m$ and obtain

$$\mathbb{E}|X|^n = \mathbb{E}(\phi(|X|^m)) \ge \phi(\mathbb{E}|X|^m) = (\mathbb{E}(|X|^m))^{n/m},$$

concluding the proof.

In particular, the former Lemma says that if the second moment of X exists, then both X is integrable and of finite variance. Many random variables you will see in statistics or numerics will have finite variance, so it's useful to have a good condition for that. You will see on the example sheet that the converse is not true, there will be examples of integrable random variables with infinite variance and so on.

The existence of moments has a direct influence on how the tails of the random variable behave. Indeed, by Markov's inequality if $\mathbb{E}|X|^n < \infty$, we know that

$$\mathbb{P}(X > t) \le \mathbb{P}(|X|^n > t^n) \le \frac{\mathbb{E}|X|^n}{t^n},$$

i.e. the tail behaves like $O(t^{-n})$. In case of finite variance we only knew that the tail behaves like $O(t^{-2})$ for example. Or in simple words - having higher moments that very big values are taking with smaller probability.

Let us now come to the interesting question - do the moments uniquely determine the distribution? This is true in quite large generality, but not always. We will here prove a partial result:

Proposition 5.24. Let X, Y be two almost surely bounded random variables, i.e. r.v. such that almost surely $X \in [-A, A]$ and $Y \in [-A, A]$ for some A > 0. Suppose further that $\mathbb{E}X^n = \mathbb{E}Y^n$ for every $n \in \mathbb{N}$. Then X and Y have the same law.

Before embarking on the proof, observe that trivially for bounded random variables all moments do exist - namely, if X is bounded then every $|X|^n$ is bounded too. The proof we give relies on the following theorem of independent interest:

Theorem 5.25 (Stone-Weierstrass). Let f be a continuous function on some interval I =[-A,A]. Then f can be uniformly approximated by polynomials: i.e. there is a sequence of polynomials $(P_n)_{n\geq 1}$ such that $(P_n)_{n\geq 1}$ converges to f in $(C(I,\mathbb{R}),d_\infty)$, where as usual $d_{\infty}(f,g) = \sup_{x \in I} |f(x) - g(x)|.$

Most likely, you will see the proof of this theorem in several courses from several points of view. As it is a beautiful result, it is well worth mentioning it several times. In fact, we will also provide a short probabilistic, but non-examinable proof at the end of the subsection. Let us first see how it implies the proposition.

Proof of Proposition 5.24. The proposition follows rather easily from Stone-Weierstrass theorem. Indeed, by the assumption and by linearity of expectation, we see that $\mathbb{E}P(X) = \mathbb{E}P(Y)$ for each polynomial P.

Our aim is to use Proposition 5.13, i.e. to prove that $\mathbb{E}\widehat{g}(X) = \mathbb{E}\widehat{g}(Y)$ for all continuous bounded \widehat{q} . Notice that any such \widehat{q} gives rise to a continuous function $q:[-A,A]\to\mathbb{R}$, by restriction. Moreover as $X, Y \in [-A, A]$ almost surely, we see that $\mathbb{E}\widehat{g}(X) = \mathbb{E}g(X)$ and hence it suffices to argue that $\mathbb{E}q(X) = \mathbb{E}q(Y)$ for continuous functions on [-A, A].

Given such a function g, by the Stone-Weierstrass theorem for every $\epsilon > 0$, there is some polynomial P_{ϵ} such that $d_{\infty}(g, P_{\epsilon}) < \epsilon$. As $\mathbb{E}P_{\epsilon}(X) = \mathbb{E}P_{\epsilon}(Y)$, we can write

$$|\mathbb{E}g(X) - \mathbb{E}g(Y)| = |\mathbb{E}g(X) - \mathbb{E}P_{\epsilon}(X) + \mathbb{E}P_{\epsilon}(Y) - \mathbb{E}g(y)|,$$

and bound this from above using by triangle inequality by

$$|\mathbb{E}(g(X) - P_{\epsilon}(X))| + |\mathbb{E}(g(Y) - P_{\epsilon}(Y))|.$$

Further,

$$|\mathbb{E}(g(X) - P_{\epsilon}(X))| \le \mathbb{E}|g(X) - P_{\epsilon}(X)| < \epsilon.$$

But now as $X \in [-A, A]$ almost surely, and $|g(x) - P_{\epsilon}(x)| < \epsilon$ for $x \in [-A, A]$, we see that $|g(X) - P_{\epsilon}(X)| < \epsilon$ almost surely, and hence by Proposition 5.10 we deduce that $\mathbb{E}|g(X) - P_{\epsilon}(X)| < \epsilon.$

Hence we conclude that $|\mathbb{E}g(X) - \mathbb{E}g(Y)| \leq 2\epsilon$ and as $\epsilon > 0$ was arbitrary we conclude that $\mathbb{E}q(X) = \mathbb{E}q(Y)$. As q was arbitrary, the proposition now follows from Proposition 5.13.

So what could go wrong in general?

First, of course all moments might not exist and then only the few existing moments might not characterize the distribution. For example, if you define discrete random variables X_1 and X_2 with supports $\mathbb{Z} \setminus \{0\}$ and $2\mathbb{Z} \setminus \{0\}$ respectively by setting $\mathbb{P}(X_1 = k) = ck^{-3}$ and $\mathbb{P}(X_2 = 2k) = ck^{-3}$ with $c = \frac{1}{2\sum_{k\geq 1} k^{-3}}$, then X_1, X_2 are integrable with zero mean by symmetry. However neither admits a second moment (see Exercise sheet) and they are also not equal in law as their supports are different.

Second, even if all moments exist, they might grow too quickly to characterize the distribution:

Exercise 5.6 (Moment problem). Let X be a standard normal random variable. Prove that $W = \exp(X)$ admits all moments and calculate these moments. Let a > 0, and consider a discrete random variable Y_a with support

$$S_a = \{ae^m : m \in \mathbb{Z}\}$$

and defined by

$$\mathbb{P}(Y_a = ae^m) = \frac{1}{Z}a^{-m}e^{-m^2/2}$$

with $Z = \sum_{m \in \mathbb{Z}} a^{-m} e^{-m^2/2}$ (why is it finite?). Show that Y_a admits all moments and that moreover for every $n \in \mathbb{N}$, $\mathbb{E}W^n = \mathbb{E}exp(Xn) = \mathbb{E}Y_a^n$.

5.5.1 Moment generating function

We considered moments of random variables and saw that they might give a useful countable collection of numbers that fully characterizes the underlying random variable. But what if instead of moments we look at some other family of functions g(X) and their expectations? It comes out that a very useful family is directly related to moments: we consider $\mathbb{E}e^{tX}$ for all $t \in \mathbb{R}$ such that e^{tX} is integrable.

Definition 5.26 (Moment generating function). If X is a random variable such that $\exp(tX)$ is integrable for some interval I = (-c, c) around 0. We say that X admits a moment-generating function (MGF) in a neighbourhood around 0 and denote $M_X(t) = \mathbb{E} \exp(tX)$ for $t \in I$.

The name comes from the fact that when $M_X(t)$ exists in a small interval, we can write

$$M_X(t) = \mathbb{E}(\exp(tX)) = \mathbb{E}(\sum_{n\geq 1} \frac{t^n X^n}{n!}).$$

Checking that you can exchange the summation and the expectation (On the Exercise sheet), one obtains

$$M_X(t) = \sum_{n>1} \frac{t^n}{n!} \mathbb{E} X^n.$$

In particular, from here it is not hard to deduce that if we look at $M_X(t)$ as a function of t, then in fact moments $\frac{d^n}{dt^n}M_X(t)$ evaluated at t=0 just gives the n-th moment. We will skip this calculation that is not examinable.

It comes out that MGF-s also characterize the distribution. We state this result and you are free to use it, though the proof is out of the scope of this course:

Theorem 5.27 (MGF determines the distribution (admitted)). Let X, Y be random variables such that $M_X(t)$ and $M_Y(t)$ exist in some open interval around 0, and moreover $M_X(t) = M_Y(t)$ in this interval. Then X and Y have the same law.

In fact moment generating functions and this concrete theorem for MGFs also nicely generalize to random vectors:

Theorem 5.28 (MGF for random vectors (admitted)). Let \overline{X} be a random vector taking values in \mathbb{R}^n such that $\mathbb{E}e^{\langle \overline{t}, \overline{x} \rangle} < \infty$ for \overline{t} in some open neighbourhood of 0.11 We then call $M_{\overline{X}}(\overline{t}) = \mathbb{E}e^{\langle \overline{t}, \overline{x} \rangle}$ the moment generating function of \overline{X} . Again, if MGFs of two random vectors \overline{X} and \overline{Y} are equal in some neighbourhood around 0, then \overline{X} and \overline{Y} have the same law.

These two results are extremely useful. First, as an application MGF-s can be used to determine independence:

 $^{^{11}\}mathrm{Here}\ \langle\cdot,\cdot\rangle$ denotes the inner product in \mathbb{R}^n

Lemma 5.29 (Independence and MGF). Let X, Y be random variables such that there exists an open interval $I \subset \mathbb{R}$ containing zero such that $M_X(t)$ and $M_Y(t)$ exist for all $t \in I$. Then X, Y are independent iff for each $t, s \in I$, $M_X(t)M_Y(s) = M_{(X,Y)}((t,s))$.

Proof. Firstly, if X, Y are independent then the condition follows directly from Proposition 5.14. Indeed, for each $t, s \in I$ we can take $g(x) = \exp(tx)$ and $h(y) = \exp(sy)$. Then $M_X(t) = \mathbb{E}g(X)$ and $M_Y(s) = \mathbb{E}h(Y)$ and by assumption both are integrable. Hence that proposition implies that $M_X(t)M_Y(s) = \mathbb{E}\exp(tX + sY) = M_{(X,Y)}(t,s)$.

The other direction is a direct application of Theorem 5.28: indeed, let (X,Y) be a pair of random variables such that for each $t,s \in I$, $M_X(t)M_Y(s) = M_{(X,Y)}((t,s))$. Further, let (\tilde{X},\tilde{Y}) be a pair of independent random variables such that \tilde{X} has the law of X and \tilde{Y} has the law of Y. In particular then $M_X(t) = M_{\tilde{X}}(t)$ and $M_Y(s) = M_{\tilde{Y}}(s)$ for all $t,s \in I$.

Now, by the first part $M_{\tilde{X}}(t)M_{\tilde{X}}(s)=M_{(\tilde{X},\tilde{Y})}((t,s))$. We conclude that $M_{(X,Y)}((t,s))=M_{(\tilde{X},\tilde{Y})}((t,s))$ and deduce from Theorem 5.28 that (X,Y) and (\tilde{X},\tilde{Y}) have the same joint law. In particular X and Y are independent.

Second, it really makes some things much easier, in particular calculations with Gaussians:

Exercise 5.7. Prove \overline{X} is a Gaussian vector with mean $\overline{\mu}$ and covariance C if and only if $M_{\overline{X}}(\overline{t}) = \exp(\langle \overline{t}, \overline{\mu} \rangle + \frac{1}{2} \langle \overline{t}, C\overline{t} \rangle)$. Deduce that

- If X is a standard Gaussian on \mathbb{R}^n , then so is OX for every orthogonal $n \times n$ matrix.
- The Gaussian vector with mean $\overline{\mu}$ and covariance C on \mathbb{R}^n can be written as $A\overline{Y} + \overline{\mu}$, where \overline{Y} is the standard Gaussian on \mathbb{R}^n and $C = \sqrt{AA^T}$ (You may assume such a matrix A exists, but you have seen it in linear algebra!)

Thus having an MGF can really simplify and reduce calculations. The drawback of moment generating functions is that they do not always exist.

Exercise 5.8. Consider the log-normal random variable, i.e. $Z = \exp(X)$ where X is a standard Gaussian. Prove that there is no open interval around 0 such that $M_t(Z)$ exists in this interval.

This can be mended by considering what is called the characteristic function:

Definition 5.30 (Characteristic function). Let X be a random variable. Then

$$c_X(t) = \mathbb{E}e^{itX} = \mathbb{E}\cos(tX) + i\mathbb{E}\sin(tX)$$

is called the characteristic function of X.

The nice thing is that the characteristic function exists for all $t \in \mathbb{R}$ as both $\cos(tX)$ and $\sin(tX)$ are trivially bounded. Moreover, it uniquely characterizes the law of the random variable and in case of random variables with density, it corresponds to the Fourier transform of the density. But this and much more will already topic of a future course...

5.6 \star Proofs of some auxiliary results (non-examinable) \star

 $[\star \text{ non-examinable section begins } \star]$

In this non-examinable section we present proofs of some auxiliary results. I do recommend the probabilistic proof of the Stone-Weierstrass theorem, it is a gem!

First let us prove the Cauchy-Schwarz inequality:

Proof of Cauchy-Schwarz inequality. Define \widehat{Y}, \widehat{X} as $\widehat{Y} = \frac{Y}{\sqrt{\mathbb{E}(Y^2)}}$ and $\widehat{X} = \frac{X}{\sqrt{\mathbb{E}(X^2)}}$. This is possible as X^2, Y^2 are integrable. Notice that by definition then $\mathbb{E}(\widehat{Y}^2) = \mathbb{E}(\widehat{X}^2) = 1$. Moreover, the Cauchy-Schwarz inequality is then equivalent to

$$(5.3) \mathbb{E}(|\widehat{X}\widehat{Y}|) \le 1.$$

But now for every $\omega \in \Omega$, we have that $|\widehat{X}(\omega)\widehat{Y}(\omega)| \leq \frac{1}{2}(\widehat{X}^2(\omega) + \widehat{Y}^2(\omega))$. Thus we see that |XY| is integrable and by properties of expectation

$$\mathbb{E}(|\widehat{X}\widehat{Y}|) \le \frac{1}{2}\mathbb{E}(\widehat{X}^2 + \widehat{Y}^2) = 1,$$

and the inequality 5.3 follows.

The equality holds if and only if $|\widehat{X}\widehat{Y}| = \frac{1}{2}(\widehat{X}^2 + \widehat{Y}^2)$ almost surely, which in turn holds if and only if $|\widehat{X}| = |\widehat{Y}|$ almost surely. As \widehat{Y}, \widehat{X} are normalized versions of X, Y, this is turn holds if $|X| = \lambda |Y|$ almost surely for some $\lambda > 0$.

Next, it is time to prove Jensen's inequality. We will do it using the following chracterization of convex functions:

• $\phi : \mathbb{R} \to \mathbb{R}$ is convex if and only if for every $x \in \mathbb{R}$, there is some $c = c(x) \in \mathbb{R}$ so that for every $y \in \mathbb{R}$, we have that $\phi(x+y) \geq \phi(x) + c_x y$.

Proof of Jensen's inequality. Consider $x = \mathbb{E}X$ and $y = X - \mathbb{E}X$. Then injecting this in the formulation of convexity just above, we obtain

$$\phi(X) \ge \phi(\mathbb{E}X) + c(X - \mathbb{E}X)$$

almost surely. Taking now expectation, and using the fact that $\mathbb{E}(X - \mathbb{E}X) = 0$, we deduce

$$\mathbb{E}\phi(X) \ge \phi(\mathbb{E}X)$$

as claimed. \Box

And finally the cute probabilistic proof of the Stone-Weierstrass theorem:

Proof of Theorem 5.25. By translation and scaling, it is simple to see that it suffices to prove the theorem for the case I = [0, 1] and f continuous on [0, 1]. Now for every $x \in [0, 1], n \in \mathbb{N}$ let $X_{n,x}$ be a Binomial random variable of parameters (n, x) We define $P_n(x) = \mathbb{E}f(X_{n,x}/n)$. By Proposition 5.12 we then have

$$P_n(x) = \sum_{k=0}^{n} f(k/n) \binom{n}{k} x^k (1-x)^{n-k},$$

and hence $P_n(x)$ is a polynomial of order n in x.

We claim that $P_n(x)$ converges to f uniformly. First, notice that as f is continuous on [0,1] it is bounded by some M, and uniformly continuous - i.e. for every $\epsilon > 0$, there is some $\delta_{\epsilon} > 0$ so that if $|x - y| < \delta_{\epsilon}$, then $|f(x) - f(y)| < \epsilon$.

Now, write

$$|P_n(x) - f(x)| = |\mathbb{E}(f(X_{n,x}/n) - \mathbb{E}f(x))| \le \mathbb{E}|f(X_{n,x}/n) - f(x)|.$$

The crux is something we have already seen: in fact $X_{n,x}$ is very close to its expectation xn for n large. Indeed, we by Chebyshev's inequality and the fact that $Var(X_{n,x}) = nx(1-x)$

$$\mathbb{P}(|X_{n,x}/n - x| > t/n) = \mathbb{P}(|X_{n,x} - nx| > t) \le \frac{\text{Var}X_{n,x}}{t^2} = \frac{nx(1-x)}{t^2}.$$

In particular, if we choose $t = n^{2/3}$, then $\mathbb{P}(|X_{n,x}/n - x| > n^{-1/3}) < n^{-1/3}$.

To use this fact we write:

$$\mathbb{E}|f(X_{n,x}/n) - f(x)| = \mathbb{E}\left(|f(X_{n,x}/n) - f(x)|1_{|X_{n,x}/n - x| > n^{-1/3}}\right) + \mathbb{E}\left(|f(X_{n,x}/n) - f(x)|1_{|X_{n,x}/n - x| < n^{-1/3}}\right).$$

Then as |f(x)| < M for $x \in [-A, A]$, we can bound the first term by

$$M\mathbb{E}1_{|X_{n,x}/n-x|>n^{-1/3}} = M\mathbb{P}(|X_{n,x}/n-x|>n^{-1/3}) < Mn^{-1/3}.$$

Fix some $\epsilon > 0$ and choose n large enough so that $n^{-1/3} < \delta_{\epsilon}$. We can bound the second term by

$$\mathbb{E}\epsilon 1_{|X_{n,x}/n-x|< n^{-1/3}} \le \epsilon.$$

Hence if we also require that $n^{-1/3} < \epsilon$, we obtain altogether

$$\mathbb{E}|f(X_{n,x}/n) - f(x)| < Mn^{-1/3} + \epsilon \le (M+1)\epsilon.$$

As this is uniform in x and holds for arbitrary ϵ , the theorem follows.

 $[\star \text{ non-examinable section ends } \star]$

SECTION 6

Limit theorems

In this section, we will look at infinite sequences of events and infinite sequences of random variables. Some questions we will be interested in:

- When can we be sure that at least one of the events A_1, A_2, \ldots happens? For example, under what conditions can you guarantee that you will eventually win with a lottery or get a 6 in the exam? Or suppose, you start a random walk in Manhatten at every corner you choose uniformly one of four directions. Will you ever get back to your hotel?
- Under what criteria do only finitely many of the events A_1, A_2, \ldots fail? For example, under what criteria do we know that a infectious disease that is spreading will only last for a finite time?
- When can we say something about the limit of the sequence of random variables X_1, X_2, \ldots ? We have already seen some vague statements in the lines that $Bin(n, \lambda/n)$ converge to Poisson or Bin(n, 1/2) when normalized converges to the Gaussian. How to make such statements mathematically precise, especially and how to treat these situations in general?
- What about the limit of $\mathbb{E}X_1, \mathbb{E}X_2, \ldots$ if the underlying random variables converge? We will see how such questions come up naturally, find some cases where they become tractable and even easy. As often in mathematics, looking at limiting situations makes things more tractable. For example, somtimes to gain understanding of complex random systems, e.g. like complex networks, it is useful to see what happens if we let the size of the network go to infinite. Can we talk of some infinite network?

6.1 Probability space for infinite coin tosses

Let us start by revisiting the probability space for infinite fair coin tosses. In Theorem 2.16 we assumed the existence of a probability space that carries a countable sequences of fair coin tosses - i.e. one can define X_1, X_2, \ldots that are mutually independent and Ber(1/2) distributed.

In fact, there is actually a slick way of proving this. The key lemma is the following bi-measurable correspondence between $(\{0,1\}^{\mathbb{N}}, F_{\Pi})$ and $([0,1], \mathcal{F}_E)$:

Lemma 6.1 (Dyadic correspondence). For each $x \in [0,1]$ consider its dyadic expansion $x = \sum_{i \geq 1} 2^{-i}x_i$, where we make the expansion unique by choosing it such that it doesn't end in a infinite sequence of 1-s. Then the map $f : [0,1] \to \{0,1\}^{\mathbb{N}}$ defined by $f(x) = (x_1, x_2, \ldots)$ is injective and measurable from $([0,1], \mathcal{F}_E)$ to $(\{0,1\}^{\mathbb{N}}, \mathcal{F}_{\Pi})$.

Proof. Injectivity is clear. Measurability follows from the following points:

- (1) \mathcal{F}_{Π} is generated by the sets of the form $F_1 \times F_2 \times \cdots \times F_n \times \{0,1\} \times \{0,1\} \times \cdots$ (from definition);
- (2) \mathcal{F}_E is generated by intervals of the form $[j2^{-n}, (j+1)2^{-n})$ over $j=1\dots 2^n$ and $n\geq 1$ (this is a small check);
- (3) the sets of the form $F_1 \times F_2 \times \cdots \times F_n \times \{0,1\} \times \{0,1\} \times \ldots$ are correspondence with finite unions of intervals of the type above via f.

To see the third point, notice that every set of the form $E = \prod_{i \in I} F_i$ where $F_i = \{\omega_i\}$ for all $i \leq n$ and $F_i = \{0, 1\}$ otherwise is in correspondence with an interval of length 2^{-n} of the form above.

Using this, it is rather easy to construct the product space for infinitely many fair coin tosses:

Proposition 6.2 (Space of infinite fair coin tosses). For each $i \geq 1$ let $\Omega_i = \{0, 1\}$, $\mathcal{F}_i = \mathcal{P}(\Omega_i)$ and $\mathbb{P}_i(0) = \mathbb{P}_i(1) = 1/2$. Then there exists a product probability measure \mathbb{P}_{Π} on $(\Pi_{i>1}\Omega_i, \mathcal{F}_{\Pi})$.

Notice that in particular each sequence of n coin tosses has probability exactly 2^{-n} , i.e. like in the case of Laplace model for n equivalent coin tosses.

Proof. Consider the dyadic map $f:[0,1] \to \{0,1\}^{\mathbb{N}}$ from the lemma above. This lemma says that the map is measurable from $([0,1],\mathcal{F}_E)$ to $(\{0,1\}^{\mathbb{N}},\mathcal{F}_{\Pi})$. Thus, by Lemma 1.9, the uniform measure \mathbb{P}_U on $([0,1],\mathcal{F}_E)$ induces a probability measure \mathbb{P}_{Π} on $(\{0,1\}^{\mathbb{N}},\mathcal{F}_{\Pi})$.

It remains to see that this measure is indeed a product measure. Fix some $\omega \in \{0,1\}^{\mathbb{N}}$, i.e. $\omega_i \in \{0,1\}$ for each $i \geq 1$. Now, consider a finite subset $J = \{1,\ldots,n\} \subseteq \mathbb{N}$ and set $F_i = \{\omega_i\}$ for all $i \in J$ and $F_i = \{0,1\}$ otherwise, and let $E = \prod_{i \in I} F_i$. Now observe that $\mathbb{P}_U(f^{-1}(E)) = 2^{-n}$. But this is exactly equal to $\prod_{i \in J} \mathbb{P}_i(F_i)$ and thus we indeed have a product measure.

In fact it is not too hard to extend this method and define in the same way the probability space containing independent random variables with any law; we will leave it however to non-exmainable exercises.

6.2 Infinite collections of events and random variables

Before stating a few interesting limit theorems, let us start by formalizing some of the limiting notions in the context of events. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of events E_1, E_2, \ldots that could for example be repetitions of the same random situation, like repetitive coin tosses. Recall that E_i is an event means that $E_i \subseteq \Omega$ and $E_i \in \mathcal{F}$. Each ω gives a random state of the universe, and $\omega \in E_i$ if the event E_i happens for this particular state.

Now, we say that

- First, we could ask whether at least one event of the sequence E_n happens. By definition, $\{\omega \in \Omega : \omega \in E_i \text{ for some } i\} = \bigcup_{n \geq 1} E_n$. Sometimes one says that ' E_i happens eventually'. An example would be the following example from an earlier example sheet: tossing independent coins, we eventually obtain heads with full probability (this also follows from the lemma just below). Notice that there is some sequence of tosses that gives no heads the sequence TTTTT..., however as it has 0 probability, it does not matter.
- Second, we might ask whether the events E_i happen infinitely often. It requires a check to see that

$$\{\omega \in \Omega : \omega \in E_i \text{ for infinitely many } i\} = \bigcap_{m \geq 1} \bigcup_{n \geq m} E_n.$$

This event is also sometimes denoted by $\limsup_{n\geq 1} E_n$. In the case of coin tossing, each E_i could mean that the *i*-th toss comes up heads, and we have seen that in the case of independent coins, indeed E_i would happen infinitely often with full probability.

• Finally, we might ask whether all but finitely many E_i happen. One can again see (on the exercise sheet), that

$$\{\omega \in \Omega : \omega \in E_i \text{ for all but finitely many } i\} = \bigcup_{m>1} \bigcap_{n>m} E_n.$$

This event is also denoted by $\lim \inf_{n\geq 1} E_n$. An example situation would be as follows: you start with 10 CHF, and as long as you have some money left, you bet with the European central bank (that can always print more money when needed!) on whether independent coin tosses are head or tails. The winner gets 1 CHF, and the loser loses 1 CHF. It's a mathematical fact that after almost surely, after finitely many bets you are left with 0 CHF. So if we denote by E_i the event after i bets you are bankrupt, this event fails only finitely many times.

Here are some useful criteria to study such events. First, a very naive criterion:

Lemma 6.3. Let E_1, E_2, \ldots be independent events of probability p_i . Then $\mathbb{P}(\bigcup_{i\geq 1} E_i) = 1$ if and only if $\prod_{i=1}^n (1-p_i) \to 0$ as $n \to \infty$.

Proof. This is on the exercise sheet.

For example, if each event happens with the same probability p, then $\prod_{i=1}^{n} p_i = p^n$, which clearly goes to zero. So even if you toss a coin that comes up heads with probability 0.00001, you will eventually see heads.

A verey useful criteria for verifying that some even cannot happen but finitely many times is given by the first Borel-Cantelli lemma:

Lemma 6.4 (Borel-Cantelli I). Let E_1, E_2, \ldots be any sequence of events on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If $\sum_{n\geq 1} \mathbb{P}(E_n) < \infty$, then almost surely only finitely many events E_i happen, i.e. $\mathbb{P}(\bigcap_{m\geq 1} \bigcup_{n\geq m} E_n) = 0$.

Notice that we are not assuming anything on the dependence or independence of the events E_i ! Also, this lemma does not say that there is some fixed number 1000 of events that happen. Indeed, exactly how many events can happen and exactly which events happen depends on $\omega \in \Omega$.

For example, consider a sequence of unfair coins with probability of heads for the n-th coin given by n^{-2} . If E_n denotes the event of obtaining heads on the n-th toss, then $\sum_{n\geq 1} \mathbb{P}(E_n) < \infty$. Thus, by the lemma, we see that almost surely one obtains only finitely many heads in an infinite sequence of coin tosses. However, notice that whether you obtain 10 or even 100 heads depends on the exact sequence of tosses, i.e. on the 'randomness' encoded by the state $\omega \in \Omega$.

Proof. Fix some $\epsilon > 0$. As $\sum_{n \geq 1} \mathbb{P}(E_n) < \infty$, we can find some $n_0 \in \mathbb{N}$ such that $\sum_{n \geq n_0} \mathbb{P}(E_n) < \epsilon$. But now as $\mathbb{P}(A \cap B) \leq \mathbb{P}(B)$,

$$\mathbb{P}(\bigcap_{m\geq 1}\bigcup_{n\geq m}E_n)\leq \mathbb{P}(\bigcup_{n\geq n_0}E_n)\leq \sum_{n\geq n_0}\mathbb{P}(E_n)<\epsilon,$$

where in the last inequality we use the union bound. As ϵ was arbitrary, the claim follows.

The short proof might make you suspicious if it is of any use. But think for example of the following. Assume that we have X_1, X_2, \ldots be a sequence of random variables on the same probability space, each with law Geo(1/2) but such that we know nothing about the dependence structure. What can we say about the maximum of n first random variables?

Using Borel-Cantelli I, we can easily get some nice information:

Exercise 6.1. Assume that we have X_1, X_2, \ldots be a sequence of random variables on the same probability space, each with law Geo(1/2). Let $E_n = \{\max_{i=1}^n X_i > \sqrt{n}\}$. Show that almost surely only finitely many of E_1, E_2, \ldots happen, i.e. $\mathbb{P}(\bigcap_{n\geq 1} \bigcup_{i\geq n} E_i) = 0$. Deduce that there exists some random variable $C: \Omega \to \mathbb{R}$ that takes a.s. non-negative values and such that $\mathbb{P}(\max_{i=1}^n X_i(\omega) < C(\omega)\sqrt{n}) = 1$.

This is partly complemented by the second Borel-Cantelli lemma, which gives a condition for infinitely many events to happen. Notice that here we again ask for independent events.

Lemma 6.5 (Borel-Cantelli II). Let E_1, E_2, \ldots be a sequence of independent events on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\sum_{n\geq 1} \mathbb{P}(E_n) = \infty$. Then almost surely infinitely many events E_i happen, i.e. $\mathbb{P}(\bigcap_{m\geq 1} \bigcup_{n\geq m} E_n) = 1$.

Proof. We have that

$$\mathbb{P}(\bigcap_{m\geq 1}\bigcup_{n\geq m}E_n) = 1 - \mathbb{P}(\bigcup_{m\geq 1}\bigcap_{n\geq m}E_n^c)$$

and hence it suffices to show that $\mathbb{P}(\bigcup_{m\geq 1}\bigcap_{n\geq m}E_n^c)=0$. By the union bound

$$\mathbb{P}(\bigcup_{m\geq 1}\bigcap_{n\geq m}E_n^c)\leq \sum_{m\geq 1}\mathbb{P}(\bigcap_{n\geq m}E_n^c).$$

Further, as E_i are independent, so are E_i^c , and hence

$$\mathbb{P}(\bigcap_{n\geq m} E_n^c) = \prod_{n\geq m} \mathbb{P}(E_n^c) = \prod_{n\geq m} (1 - \mathbb{P}(E_n)).$$

Now using the inequality $1-x \leq e^{-x}$ for $x \in [0,1]$, we can bound the RHS further by $\exp(-\sum_{n\geq m} \mathbb{P}(E_n))$. But the sum in the exponential equals ∞ by the assumption. Thus $\mathbb{P}(\bigcap_{n\geq m} E_n^c) = 0$, hence $\mathbb{P}(\bigcup_{m\geq 1} \bigcap_{n\geq m} E_n^c) = 0$ and we conclude.

As already exemplified by the proof, the criteria of independence is indeed necessary:

Exercise 6.2. Find events E_1, E_2, \ldots on the same probability space such that $\sum_{n\geq 1} \mathbb{P}(E_n) = \infty$, but $\mathbb{P}(\bigcap_{m\geq 1} \bigcup_{n\geq m} E_n) = 0$. Also, find events E_1, E_2, \ldots such that $\mathbb{P}(\bigcap_{m\geq 1} \bigcup_{n\geq m} E_n)$ happens with probability $p \in (0,1)$.

These lemmas look very innocent, but actually have nice applications (we will see some later). First, a simple corollary says that independent events either happen infinitely often with probability 1 or 0 - this is quite remarkable, as a priori one might think that it could happen with any probability, like in the exercise above. So we see how the 'simple-looking' assumption of independence can really sway things:

Corollary 6.6. Let E_1, E_2, \ldots be mutually independent events on a common probability space. Then $\mathbb{P}(\bigcap_{m\geq 1}\bigcup_{n\geq m}E_n)\in\{0,1\}$, i.e. E_i happens infinitely often either with probability 0 or 1.

Proof. This follows directly from the Borel-Cantelli lemmas, as either $\sum_{n\geq 1} \mathbb{P}(E_n) < \infty$ or $\sum_{n\geq 1} \mathbb{P}(E_n) = \infty$.

In fact, this is a special case of a more general Kolmogorov 0-1 law, that we only meet in the non-examinable section this year.

Things are similar, but a bit more exciting when we switch from events to sequences of random variables X_1, X_2, \ldots Again, firstly the question is what we can even ask about an infinite sequence of random variables - not all functionals might be measurable!

For example some questions that we might be interested in are:

- Is same value k attained by the sequence of random variables?
- Are all but finitely many of X_i positive?
- Is the sequence of random variables bounded in absolute value?
- Does it converge?

For the first one measurability is clear, as we can write it as the union $\bigcup_{n\geq 1} \{X_i = k\}$, similarly for the second one. For the third one, already some thought might be required: the event that the sequence of random variables is bounded in absolute value by $M \in \mathbb{N}$ is given by $E_M := \bigcap_{n\geq 1} \{|X_i| \leq M\}$. But we want to allow different bounds for different sequences. So we have to take also a union over M to get $\bigcup_{M\in\mathbb{N}} E_M$, which again shows that the question makes fully sense.

6.3 Convergence of random variables

We now get to the heart of this section which is not only asking whether sums or sequences of random variables converge or not, but trying to understand what do they converge to. So our model situation will be something as follows: X_1, X_2, \ldots are some random variables and we ask if X_n converges in some sense and to what it might converge. In fact, there are several notions of convergence: almost sure convergence, convergence in probability and convergence in law. They apply in different situations and describe different things.

6.3.1 Almost sure convergence

Maybe the most natural notion is that of almost sure convergence. For this notion, the setting is as follows: we have some random variables X_1, X_2, \ldots defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and we just ask about the event $\{\omega \in \Omega : X_n(\omega) \text{ converges}\}$. For example, again with coin tossing you might toss coin a hundred times and take the average, and then a thousand times and take the average. Do these averages converge? The definition is as follows.

Definition 6.7 (Almost sure convergence). Let $X_1, X_2, ...$ be random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If for some random variable X defined on $(\Omega, \mathcal{F}, \mathbb{P})$ we have that $\mathbb{P}(\{\omega \in \Omega : (X_n(\omega)_{n\geq 1} \to X(\omega)\}) = 1$, then we say that the sequence $(X_n)_{n\geq 1}$ converges almost surely to X.

Your first question should be again, why is this event in the definition even measurable! The exercise sheet will help you out.

Remark 6.8 (* non-examinable *). In the spirit of the first half of the course, you might further ask - given the joint laws of any $(X_{i_1}, \ldots, X_{i_n})$ for any finite subset $\{i_1, \ldots, i_n\}$ of \mathbb{N} , can we even define a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that X_1, X_2, \ldots are random variables defined on this space and satisfy the given joint laws? We have argued that this is possible in case X_1, X_2, \ldots are mutually independent by the construction of a product measure. This can be generalized to hold for more general sequences, as long as certain consistency conditions hold for the finite-dimensional joint laws. The relevant theorem is called Kolmogorov Extension Theorem. However, we will restrict ourselves to sequences of independent random variables, and thus will not go any deeper into this.

6.3.2 Convergence in law

The most common notion and maybe the most important one is however 'convergence in law'. Convergence in law describes the convergence of distributions, if you wish - geometrically the convergence of histograms. For example, you could think of the following situation - your aim of life is to learn to toss a perfect random coin. In the beginning, you don't throw strong enough and there is a bias for the coin to do only one revolution and come on top with the side that was downwards. So you model your throw with Ber(p) random variable with $p \neq 1/2$. As you practice more and more, you get better and finally your coin tosses are really nearly perfect Ber(1/2) random variables. At different stages of your development you have different distributions, that you can model on different probability spaces. Over time these probability distributions start looking more and more like Ber(1/2) in sense that their probability laws converge.

Definition 6.9 (Convergence in law). We say that a sequence of random variables X_1, X_2, \ldots converges in law (also: converges in distribution) to a random variable X if $F_{X_n}(t) \to F_X(t)$ for every t that is a continuity point of F_X , i.e. that is such that $\mathbb{P}(X = t) = 0$.

Notice that we don't ask $X_1, X_2, ...$ to be defined on the same probability space! This is not necessary, as we are in any case only looking at their laws \mathbb{P}_{X_i} , that are uniquely characterized by F_{X_i} .

It might be strange that we don't ask for convergence at all points $t \in \mathbb{R}$. The reason is the following: consider deterministic random variables X_n taking value 1/n. Then we would intuitively want to say that X_n converge to the deterministic random variable X that takes value 0 almost surely. However, notice that $F_{X_i}(0) = 0$ for all $n \in \mathbb{N}$, but $F_X(0) = 1$. Thus if we asked for convergence for all t, the random variables X_n would not converge to 0...however, with the definition given above, they nicely do!

Still, notice that if the limiting random variable is continuous, we really do ask the pointwise convergence of c.d.f. at all points.

To better understand the notion of convergence in law, it might be useful to think of an equivalent criteria. In fact there are many equivalent criteria!

Proposition 6.10. Let $X_1, X_2, ...$ be a sequence of random variables. They converge to a random variable X in law if and only if for every a < b with $\mathbb{P}(X = a) = \mathbb{P}(X = b) = 0$ we have that $\mathbb{P}(X_n \in (a,b)) \to \mathbb{P}(X \in (a,b))$

Proof. If $(X_n)_{n\geq 1}$ converge in law to X then by definition $F_{X_n}(t) \to F_X(t)$ for any continuity point t of $F_X(t)$. In particular, if $\mathbb{P}(X=a) = \mathbb{P}(X=b) = 0$, then the points a, b are such continuity points. We can write

$$\mathbb{P}(X \in (a,b)) = F_X(b) - F_X(a) = \lim_{n \to \infty} (F_{X_n}(b) - F_{X_n}(a)).$$

But now $\mathbb{P}(X_n \in (a,b)) = (F_{X_n}(b^-) - F_{X_n}(a))$. It suffices to now see that $\lim_{n\to\infty} F_{X_n}(b^-) = \lim_{n\to\infty} F_{X_n}(b)$. But this follows from the fact that b is a continuity point as for every $\epsilon > 0$ we have that

$$F_{X_n}(b-\epsilon) \le F_{X_n}(b^-) \le F_{X_n}(b)$$

and if $b - \epsilon$ is also a continuity point, we deduce

$$F_X(b-\epsilon) \leq \liminf_{n \to \infty} F_{X_n}(b^-) \leq \limsup_{n \to \infty} F_{X_n}(b^-) \leq F_X(b),$$

which letting $\epsilon \to 0$ gives the desired equality.

In the other direction, we want to prove that for each t with $\mathbb{P}(X=b)=0$, we have that $\mathbb{P}(X_n < b) \to \mathbb{P}(X < b)$. Now, we know that for any a < b with $\mathbb{P}(a=0)$, we have $\mathbb{P}(X_n \in (a,b)) \to \mathbb{P}(X \in (a,b))$. As there are only countably many a with $\mathbb{P}(X=a) > 0$, we can choose $a \to -\infty$ and conclude that $\mathbb{P}(X_n < b) \ge \mathbb{P}(X_n \in (a,b)) \to_{n\to\infty} \mathbb{P}(X \in (a,b))$. As $\mathbb{P}(X \in (a,b)) \to \mathbb{P}(X < b)$ as $a \to -\infty$, we deduce that $\liminf_{n\to\infty} \mathbb{P}(X_n < b) \ge \mathbb{P}(X < b)$. Similarly one can see that $\liminf_{n\to\infty} \mathbb{P}(X_n > b) \ge \mathbb{P}(X > b)$. But now

$$1 \ge \liminf_{n \to \infty} (\mathbb{P}(X_n < b) + \mathbb{P}(X_n > b)) \ge \liminf_{n \to \infty} \mathbb{P}(X < b) + \liminf_{n \to \infty} \mathbb{P}(X > b) \ge \mathbb{P}(X < b) + \mathbb{P}(X > b).$$

As $\mathbb{P}(X < b) + \mathbb{P}(X > b) = 1$, we see that in fact the inequalities have to be equalities and thus we conclude.

Remark 6.11. In fact the same proof gives a seemingly weaker but actually equivalent condition: we ask that for all a < b, it holds that $\liminf_{n \ge 1} \mathbb{P}(X_n \in (a,b) \ge \mathbb{P}(X \in (a,b))$. I leave it to you to check.

6.3.3 Comparison of different modes of convergence

Almost sure convergence is a strictly stronger notion than convergence in law, even if the random variables are defined on the same probability space. First, that convergence in law does not imply almost sure convergence is illustrated by the following example

• Let X_1, X_2, \ldots be i.i.d Ber(1/2) random variables defined on the same probability space. Then clearly $(X_n)_{n\geq 1}$ converges in law to a Ber(1/2) random variable as for every $n\geq 1$, we have that $X_n\sim Ber(1/2)$. Yet we claim that X_n does not converge almost surely. This can be seen in many ways, for example we have that in the case of Ber(1/2) random variables

$$\{\omega: (X_n(\omega))_{n\geq 1} \text{ converges}\} = \{\omega: X_n(\omega) = X_m(\omega) \text{ for all } m, n \text{ large enough}\}.$$

I leave it to you to argue that these events are measurable (see also the exercise sheet). Now, define $E_n = \{\omega : X_k(\omega) \text{ is constant for } k \in [2^n, 2^{n+1}]\}$. If X_n converges, then at the very least it has to be constant on infinitely many of these intervals, thus

$$\mathbb{P}((X_n)_{n\geq 1} \text{ converges}) \leq \mathbb{P}(\text{infinitely many } E_n \text{ happen}).$$

However, $\mathbb{P}(E_n) = \frac{2}{2^{2^n}}$ and thus $\sum_{n\geq 1} \mathbb{P}(E_n) < \infty$. In particular by Borel-Cantelli I we see that almost surely only finitely many of the events E_n happen end hencet not only we don't have almost sure convergence, instead

$$\mathbb{P}(\{\omega \in \Omega : (X_n(\omega))_{n \geq 1} \text{ does not converge}) = 1.$$

We now prove the other direction:

Proposition 6.12 (Almost sure convergence implies convergence in law). Let X_1, X_2, \ldots be random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then if $(X_n)_{n\geq 1}$ converge almost surely, they also converge in law.

Proof. The proof is based on the following claim:

Claim 6.13. Suppose X_1, X_2, \ldots converge almost surely to X. Then for every $\epsilon > 0$, we have that $\mathbb{P}(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$.

Before proving the claim, let us see how it implies the proposition. Let x be a continuity point for F_X . Then both

$$F_X(x) = \lim_{m \to \infty} F_X(x - 1/m) = \lim_{m \to \infty} F_X(x + 1/m).$$

By the claim for every $m \in \mathbb{N}$, for n large enough it holds that $\mathbb{P}(|X_n - X| > 1/m) < 1/m$. Notice further that

$${X_n \le x} \cap (X > x + 1/m) \subseteq {|X - X_n| > 1/m}.$$

Thus writing

$$F_{X_n}(x) = P(X_n \le x) = \mathbb{P}((X_n \le x) \cap (X \le x + 1/m)) + \mathbb{P}((X_n \le x) \cap (X > x + 1/m))$$

we can bound

$$F_{X_n}(x) \le F_X(x+1/m) + \mathbb{P}(|X-X| > 1/m) < F_X(x+1/m) + 1/m.$$

Using a similar inequality for the other direction, we obtain that for every $m \in \mathbb{N}$, for all n large enough.

$$F_X(x-1/m) - 1/m < F_{X_n}(x) < F_X(x+1/m) + 1/m.$$

Taking first $n \to \infty$ and then $m \to \infty$, we obtain that $\lim_{n \ge 1} F_{X_n}(x) = F_X(x)$ and thus deduce the convergence in law of X_n to X.

It remains to prove the claim.

Proof of Claim. Fix some $\epsilon > 0$. Then

$$\{(X_n)_{n\geq 1}\to X\}\subseteq\{|X_n-X|<\epsilon \text{ for all large enough }n\}=\bigcup_{m\geq 1}E_m.$$

with $E_m = \{ \forall n \geq m : |X_n - X| < \epsilon \}$. Notice that these events are nested, i.e. $E_m \subseteq E_{m+1}$, as there are less conditions imposed by the latter. As $\mathbb{P}(\{(X_n)_{n\geq 1} \to X\}) = 1$ we get that

$$1 = \mathbb{P}(\bigcup_{m>1} E_m) = \lim_{m \to \infty} \mathbb{P}(E_m).$$

But now $\mathbb{P}(|X_n - X| > \epsilon) \le 1 - \mathbb{P}(E_n)$ and thus the claim follows.

¹²In case you have trouble seeing what's happening, I recommend writing out everything using ω , e.g. $\{\omega: (X_n(\omega))_{n\geq 1} \to X(\omega)\} \subseteq \{\omega: |X_n(\omega) - X(\omega)| < \epsilon \text{ for all } n \geq n(\omega)\} \text{ etc.}$

In fact, in the claim above we introduced another notion of convergence that is often used: convergence in probability.

Definition 6.14 (Convergence in probability). One says that a sequence of random variables X_1, X_2, \ldots defined on the same probability space converge to X in probability if and only if for every $\epsilon > 0$ we have that $\mathbb{P}(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$.

The proof above then gives us the following implications:

- Convergence in probability implies convergence in law.
- Almost sure convergence implies convergence in probability.

We already saw that convergence in law doesn't imply almost sure convergence, but in fact stronger converses are true:

Exercise 6.3. By considering the sequence of i.i.d. Ber(1/2) random variables, or otherwise, prove that convergence in law does not imply convergence in probability.

Now, let X_n be a random variable taking value 0 with probability 1 - 1/n and value 1 with probability 1/n defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that $(X_n)_{n\geq 1}$ converges to 0 in probability. Further, show that if X_n are mutually independent, then they do not converge to 0 almost surely. Does this remain true when X_n are not mutually independent?

There are in fact even further notions of convergence, but we will leave them to your further courses. You might already ask though, why should we care about so many different notions? The difference between almost sure convergence and convergence in law is maybe more intuitive and was already explained above. To recall, in the case of almost sure convergence we really look at the convergence of a sequence of numbers for each $\omega \in \Omega$; in the case of convergence in law, we look at the convergence of the respective probability laws, via e.g. their c.d.f-s. In the latter case the random variables don't need to defined on the same probability space. But why do we need this third notion of convergence in probability?

First, we saw it enter rather naturally when comparing almost sure convergence and convergence in law. Second, almost sure convergence is often a too strong notion, as illustrated in the exercise above. And third, convergence in probability is often much easier to work with than almost sure convergence, as one can work with events for fixed $n \in \mathbb{N}$. Finally, convergence in probability gives naturally rise to a very useful metric structure on random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$, where there is no topology on the space of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that convergence in this topology would correspond to almost sure convergence! (See the non-examinable section of the exercise sheet.) So maybe in fact convergence in probability is natural and not the a.s. convergence? We will come back to this shortly, but of course this is only a meta-mathematical question, so let us for now push forward with actual mathematics.

6.4 Weak and Strong law of large numbers

Let us start by stating both theorems. Roughly, they both say that if you repeat the same random experiment independently n times to obtain i.i.d random variables X_1, X_2, \ldots, X_n then as $n \to \infty$ the average of X_i converges to the expectation of X_1 . This is quite remarkable that the distribution of the variables does not play any larger role in this limit - only the

integrability and the expectation matter. Both of these theorems are related to so called ergodic theorems, which roughly link the temporal (here n) and spatial (here \mathbb{E}) averages.

Theorem 6.15 (Weak law of large numbers (WLLN)). Let $X_1, X_2, ...$ be i.i.d. integrable random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Then as $n \to \infty$, we have that

$$\mathbb{P}(|\frac{\sum_{i=1}^{n} X_i}{n} - \mathbb{E}X_1| > \epsilon) \to 0,$$

i.e. the sequence $S_n = \frac{\sum_{i=1}^n X_i}{n}$ converges in probability to $\mathbb{E}X_1$.

The stronger version is as follows:

Theorem 6.16 (Strong law of large numbers (SLLN)). Let X_1, X_2, \ldots be i.i.d. integrable random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Then we have that

$$\mathbb{P}(\frac{\sum_{i=1}^{n} X_i}{n} \text{ converges to } \mathbb{E}X_1) = 1,$$

i.e. the sequence $S_n = \frac{\sum_{i=1}^n X_i}{n}$ converges almost surely to $\mathbb{E}X_1$.

As almost sure convergence implies convergence in probability, we see that the second result is indeed stronger. What is the difference of these two theorems?

The weak law says that if you do independent experiments X_1, X_2, \ldots and look at the average outcome of the first n of them with n large, then the random variable you obtain is very close to the constant $\mathbb{E}X_1$. Indeed, for evert $\epsilon > 0$, if you do sufficiently many experiments then the probability that this random average differs from $\mathbb{E}X_1$ by more than ϵ is less than, say, 0.00001. WLLN doesn't however say how the consecutive averages behave for a fixed sequence of outcomes.

The strong law on the other hand says exactly that almost surely for any sequence of outcomes, if you look at the average of the first n outcomes and then increase n, these averages converge to $\mathbb{E}X_1$. SLLN doesn't look only at snaphots for fixed n, but describes for every sequence the evolution of averages.

In both cases, both the integrability and independence are important. You will think about the role of integrability on the example sheet; for necessity of some independence you can consider the case $X_1 = X_2 \dots$ Then the average of X_1, \dots, X_n is just equal to X_1 and has no reason to converge to a constant. In general, LLN also holds under some weak dependence, but this is out of scope here.

So why do we state the weak law at all? The reason is that it is considerably easier to prove! In fact, although we prove both theorems under weaker hypothesis then stated, the full case of the WLLN could be proved with not much more effort, whereas proving the sharp version of SLLN is already not that easy.

Proof of WLLN for i.i.d. random variables with bounded variance. Suppose that $\mathbb{E}X_1^2 < C$. In this case $\mathbb{E}(|S_n - \mathbb{E}X_1|^2)$ is well defined and we can write

$$\mathbb{E}(|S_n - \mathbb{E}X_1|^2) = \sum_{i,j \le n} n^{-2} \mathbb{E}\left[(X_i - \mathbb{E}X_1)(X_j - \mathbb{E}X_1). \right]$$

But $X_1, X_2, ...$ are mutually independent and $\mathbb{E}X_j = \mathbb{E}X_1$. Thus we see that if $i \neq j$, then $E[(X_i - \mathbb{E}X_1)(X_j - \mathbb{E}X_1)] = 0$. Hence

$$\mathbb{E}(|S_n - \mathbb{E}X_1|^2) = n^{-2} \sum_{i=1}^n \text{Var}(X_i) = n^{-1}C \to 0$$

as $n \to \infty$. By Chebyschev inequality we have that

$$\mathbb{P}(|S_n - \mathbb{E}X_1| > \epsilon) \le \epsilon^{-1} n^{-1} C \to 0$$

and and WLLN for random variables with bounded variance follows.

Notice that we didn't really use independence here - just the fact that $Cov(X_i, X_j) = 0$ for all i, j! Moreover, we also didn't use that the variables were i.i.d., we just used that for all $i \geq 1$, we have that $\mathbb{E}X_i^2 < C$ - i.e. the variances are uniformly bounded. We prove SLLN under even stronger hypothesis. Notice how the proofs start similarly, but that there is an extra step in the end.

Proof of SLLN for i.i.d. random variables with $\mathbb{E}X_i^4 < C$. Suppose that for some C > 0, we have $\mathbb{E}X_i^4 < C$. By increasing the value of C (but not the number of notations!) we can assume that for this C also $\mathbb{E}(X_i - \mathbb{E}X_i)^4 < C$ for some C > 0 (why?). In this case $\mathbb{E}(|S_n - \mathbb{E}X_1|^4)$ is well defined and we can write

$$\mathbb{E}(|S_n - \mathbb{E}X_1|^4) = \sum_{i,j,k,l \le n} n^{-4} \mathbb{E}\left[(X_i - \mathbb{E}X_1)(X_j - \mathbb{E}X_1)(X_k - \mathbb{E}X_1)(X_l - \mathbb{E}X_1) \right].$$

Notice that if one index appears only once (e.g. we have i = 1, j = k = l = 2), then as in the proof of WLLN

$$\mathbb{E}\left[(X_i - \mathbb{E}X_1)(X_i - \mathbb{E}X_1)(X_k - \mathbb{E}X_1)(X_l - \mathbb{E}X_1).\right] = 0$$

because of independence and the fact that $\mathbb{E}X_1 = \mathbb{E}X_i$. Hence

$$\mathbb{E}(|S_n - \mathbb{E}X_1|^4) = n^{-4} \sum_{i,j \le n} \mathbb{E}\left[(X_i - \mathbb{E}X_1)^2 (X_j - \mathbb{E}X_1)^2 \right].$$

By Cauchy-Schwarz,

$$\mathbb{E}\left[(X_i - \mathbb{E}X_1)^2 (X_j - \mathbb{E}X_1)^2\right] \le \mathbb{E}\left[(X_i - \mathbb{E}X_1)^4\right] \le C.$$

Thus

$$\mathbb{E}(|S_n - \mathbb{E}X_1|^4) \le Cn^{-2}$$

and by Markov's inequality

$$\mathbb{P}(|S_n - \mathbb{E}X_1| > n^{-1/8}) = \mathbb{P}(|S_n - \mathbb{E}X_1|^4 > n^{-1/2}) \le \frac{\mathbb{E}|S_n - \mathbb{E}X_1|^4}{n^{-1/2}} \le Cn^{-3/2}.$$

Thus when we define $E_n = \{|S_n - \mathbb{E}X_1| > n^{-1/8}\}$, then $\sum_{n\geq 1} \mathbb{P}(E_n) < \infty$. Hence by Borel-Cantelli lemma applied to the evens E_n , we see that almost surely only finitely many of them occur. But this means that almost surely, $\{|S_n - \mathbb{E}X_1| \leq n^{-1/8}\}$ for all but finitely many n, implying that S_n converges to $\mathbb{E}X_1$ almost surely.

Remark 6.17. Again, notice that in this proof we don't use the fact that X_i are identically distributed, we only use that $\mathbb{E}X_i^4 < C$. You should ask yourself: why did we need in this proof the 4-th moment, and in WLLN only the 2-nd moment?

These two theorems are the basis for the so called frequentist approach to probability. Indeed, we have the following immediate corollary (recall how annoying it was to prove it on the first example sheet!)

Corollary 6.18. Let E_1, E_2, \ldots be independent events with $\mathbb{P}(E_i) = p$. Then $\frac{\#\{(E_i)_{i \leq n} \text{ that occur}\}}{n}$ converges almost surely to p.

Proof. This follows directly from SLLN by noticing that $1_{E_1}, 1_{E_2}, \ldots$ are i.i.d integrable random variables of expectation p.

So for example, if you have a coin with unknown probability p of obtaining heads. Then to determine p, you start tossing the coin, and look at the average number of heads you get in n trials, and then SLLN says that with probability one these averages converge to p! It's an interesting question to see 'how fast' it converges to p, i.e. how precisely you might know p after, say, 25 or 100 throws...Although answering this question will be outside of the scope of this course, it is in certain settings related to the Central limit theorem, that describes the fluctuations of the average around its mean and is described in the next section.

6.5 Central limit theorem

The final result of the course is the Central Limit Theorem (CLT).

Theorem 6.19 (Central Limit Theorem). Let X_1, X_2, \ldots be i.i.d. random variables of finite variance σ^2 defined on the same probability space. Then $n^{-1/2} \sum_{i=1}^n (X_i - \mathbb{E}X_i)$ converges in law to $N(0, \sigma^2)$.

This is a remarkable result, saying that if we add up independent random variables of finite variance we always end up with the same distribution - the Gaussian distribution! This is the reason why at least heuristically measurement errors in physics look like Gaussians - they are sums of small independent contributions, or why Gaussians come up when looking at distributions of say heights in a population. This phenomenon that individual properties of the random variables X_i only influence the limiting law by a few parameters - the expectation, variance - is sometimes called universality.

In the CLT both the assumption of finite variance and independence are crucial: you will see an example about moment conditions on the exercise sheet. To see that without independence CLT could fail consider for example the case of $X_1 = X_2 = \ldots$ Then $n^{-1/2} \sum_{i=1}^{n} X_i = n^{1/2} X_1$ which certainly does not converge and has no reason to be a Gaussian. Whereas the condition of independence can be relaxed somewhat, there has to be a fair amount independence to guarantee that the effect of each X_i on the sum is negligible!

We can now for example deduce very easily the following result, which has come up as a technical exercise in a non-examinable section of the exercise sheet:

Corollary 6.20. Let X_n be a Bin(n,p) random variable. Then $\frac{X_n-np}{\sqrt{n}}$ converges in law to a Gaussian of variance $\sigma^2 = p(1-p)$.

Proof. We can write $X_n - np = \sum_{i=1}^n (Y_i - \mathbb{E}Y_i)$, where Y_i are i.i.d. Ber(p) random variables. Then by the CLT, we have that $\frac{X_n - np}{\sqrt{n}} = \frac{\sum_{i=1}^n (Y_i - \mathbb{E}Y_i)}{\sqrt{n}}$ converges to a Gaussian of variance $Var(Y_i) = p(1-p)$.

We will again prove CLT under further hypothesis, in particular we assume $\mathbb{E}|X_i|^3 < \infty$. There are many different proofs of this theorem, all explaining different facets of the theorem. The one we follow is based on the following idea:

• The sum of Gaussians is always a Gaussian. Moreover, if $X_1, X_2, ...$ are i.i.d. standard Gaussians, then $n^{-1/2} \sum_{i=1}^{n} X_i$ has again the same law! (Check!) Now, given general variables Y_i , we will just try to swap them one by one for Gaussian random variables of the same mean and variance. We always make an error, but if we can control the cumulative error, then we are done. This is exactly what we will do!

This key step is encapsulated in the following proposition, that we again prove under further hypothesis:

Proposition 6.21 (Lindeberg Exchange Principle). Let $X_1, X_2, ...$ be i.i.d. zero mean unit variance random variables and with $\mathbb{E}|X_i|^3 < \infty$. Let further Y be a standard Gaussian. Define $S_n := n^{-1/2} \sum_{i=1}^n X_i$. Then for every $f : \mathbb{R} \to \mathbb{R}$ smooth with uniformly bounded derivatives up to third order, we have that $|\mathbb{E}f(S_n) - \mathbb{E}f(Y)| \to 0$ as $n \to \infty$.

Before proving the proposition, let us see how to deduce CLT from this proposition. The idea is as follows: we saw already that knowing $\mathbb{E}g(X)$ for all continuous bounded g determines the distribution of X. In fact, this would be also true if we only assumed it to hold for smooth g! Moreover, convergence in law can be also deduced from knowing the convergence of $\mathbb{E}g(X_n) \to \mathbb{E}g(X)$ for all g that are smooth and bounded, and have further conditions on derivatives. The idea is similar to Proposition 5.13 - we approximate indicator functions $1_{X < x}$ via smooth functions and thus obtain the convergence the c.d.f at all continuity points.

Lemma 6.22. Suppose that X, X_1, X_2, \ldots are random variables. If for all smooth bounded g with uniformly bounded derivatives up to 3rd order we have $\mathbb{E}g(X_n) \to \mathbb{E}g(X)$ as $n \to \infty$, then X_n converge in law to X.

Proof. This is on the exercise sheet.

Proof of CLT:. Given random variables X_i of variance σ^2 , we have that $\widehat{X}_i := \frac{X_i - \mathbb{E} X_i}{\sigma}$ are zero mean and unit variance. Thus we can apply Proposition 6.21 and Lemma 6.22 to deduce that $n^{-1/2} \sum_{i=1}^n \widehat{X}_i$ converges to a standard Gaussian. But now multiplying everything by σ gives the CLT.

It remains to prove the proposition.

Proof of Lindeberg Exchange Principle: Let Y and $Y_1, Y_2...$ be i.i.d. standard Gaussians. For $k \geq 1$, write

$$S_{n,k} := \frac{\sum_{i=1}^{k-1} X_i + \sum_{i=k}^n Y_i}{n^{1/2}}.$$

Notice that $S_{n,n+1} = S_n$ and $S_{n,1} = n^{-1/2} \sum_{i=1}^n Y_i \sim N(0,1)$. Thus we can write

(6.1)
$$f(S_n) - f(Y) = \sum_{k=1}^n f(S_{n,k+1}) - f(S_{n,k}).$$

Our aim will be to control each individual summand. To do this write further

$$S_{n,k}^0 := \frac{\sum_{i=1}^{k-1} X_i + \sum_{i=k+1}^n Y_i}{n^{1/2}},$$

where we have omitted the k-th term altogether.

By third-order Taylor's approximation we can write a.s.

$$f(S_{n,k+1}) = f(S_{n,k}^0) + \frac{X_k}{n^{1/2}} f'(S_{n,k}^0) + \frac{X_k^2}{2n} f''(S_{n,k}^0) + \frac{X_k^3}{6n^{3/2}} f'''(x_1),$$

with x_1 between $S_{n,k+1}$ and $S_{n,k}^0$ and similarly

$$f(S_{n,k}) = f(S_{n,k}^0) + \frac{Y_k}{n^{1/2}} f'(S_{n,k}^0) + \frac{Y_k^2}{2n} f''(S_{n,k}^0) + \frac{X_k^3}{6n^{3/2}} f'''(x_2).$$

Taking expectations, as X_k is independent of $S_{n,k}^0$, we see that

$$\mathbb{E}f(S_{n,k+1}) = \mathbb{E}f(S_{n,k}^0) + \mathbb{E}\frac{X_k}{n^{1/2}}\mathbb{E}(S_{n,k}^0) + \mathbb{E}\frac{X_k^2}{2n}\mathbb{E}f''(S_{n,k}^0) + \mathbb{E}\left(\frac{X_k^3}{6n^{3/2}}f'''(x_1)\right).$$

Using further that X_k has mean zero, unit variance and $\mathbb{E}|X_k|^3 < \infty$, we obtain that

$$\mathbb{E}f(S_{n,k+1}) = \mathbb{E}f(S_{n,k}^0) + \frac{1}{2n}\mathbb{E}f''(S_{n,k}^0) + E_r,$$

with $|E_r| \leq \mathbb{E}\left(\frac{|X_k|^3}{6n^{3/2}}|f'''(x_1)|\right) = O(n^{-3/2})$ as by assumptions on f, we have that |f'''(x)| < C and $\mathbb{E}|X_k|^3 < \infty$. Similarly, as also Y_k is independent of $S_{n,k}^0$, we obtain that

$$\mathbb{E}f(S_{n,k}) = \mathbb{E}f(S_{n,k}^{0}) + \frac{1}{2n}\mathbb{E}f''(S_{n,k}^{0}) + \widehat{E}_{r}$$

with $|\widehat{E}_r| = O(n^{-3/2})$. Thus $|\mathbb{E}f(S_{n,k+1}) - \mathbb{E}f(S_{n,k})| = O(n^{-3/2})$. By the triangle inequality we obtain

$$|\mathbb{E}(f(S_n) - f(Y))| \le \sum_{k=1}^n |\mathbb{E}f(S_{n,k+1}) - \mathbb{E}f(S_{n,k})| = O(n^{-1/2})$$

and the proposition follows.

I wish there was more...but that's all!