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Section 0

Introduction
Probability theory provides a mathematical framework for studying random phenomena,

i.e. everything that one cannot predict. We might not be able to predict because we don’t
have full information, or maybe because it’s just not possible to predict. Maybe it is even
a bit surprising to begin with that something precise and mathematical can be said about
things we cannot predict

A bit of history
Currently probability theory is a rapidly developing branch of mathematics, with many

connections with other domains of pure mathematics and numerous applications in other
sciences and informatics. Here are some questions people have asked in different periods,
leaving aside very related questions that belong more to statistics:

Until 20th century, the main topic of probability were games of chance, lotteries,
betting, but also questions about measurement errors started coming in:

• Should I accept the even chances for the bet that at least one six appears in 4
consecutive dice throws?
• How many lottery tickets should I buy to have even chance of winning the lottery?
• How can we describe measurement errors? What if we can assume them to be the
totality of small independent errors?

In fact the last question was properly answered only in the beginning of 20th century
and is one of the most celebrated results of probability theory - the Central Limit Theorem.
It says that under quite general conditions the sum of independent errors, when properly
normalized converges to the Gaussian, also called the normal distribution. We will see this
result in the course.

Over the 20th century, however topics in probability got much more diverse and rich.
Here are some types of questions and models:

• Consider a rat in Manhattan that on each corner randomly chooses to go to left,
right, back or forth. Will it ever return to the place he started?
• Relatedly, how to describe the diffusion of heat or a gas in terms of molecules? How
does one single molecule behave, how does its trajectory look like?
• How to model flow of a gas or liquid through a porous medium, for example a gas
mask or the earth?
• How to describe the fluctuations of a stock price over time?
• How quickly do diseases spread in a population? What parameters are important?

As you noticed, these questions can still be posed from a very non-mathematical perspec-
tive, but the mathematical models behind them are much richer than just a coin toss (which,
I think, is already pretty interesting). We want to look into some of them.
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Moreover, in 20th century probability theory also started playing a role in other parts of
mathematics, through for example the so-called probabilistic method, often used to prove
existence of certain objects:

• Dvoretzky’s theorem: all high-dimensional convex bodies have low-dimensional ellip-
soid sections.
• Existence of normal numbers for simultaneous basis: a number is said to be normal
to base b, if the proportion of each digit in its expansion to base b is 1/b, i.e in decimal
expansion each digit i = 0, 1, . . . , 9 appears with the same proportion. There is no
concrete known number x for which this holds for b = 2, 3 simultaneously.

In the 21st century more new directions have entered due to interactions with computer
science, for example ending in the Page-Rank search algorithm that Google uses.

At the same time also interactions with other domains of mathematics became stronger
and probability started even sometimes influencing the development of some domains like
complex analysis and dynamics. Here are some questions, where we still lack mathematical
understanding:

• How to explain that certain structures like fractals, certain distributions like Gaus-
sians, certain statistical symmetries like scale or rotation invariance appear in so
many different contexts in nature?
• Why does deep learning work so well - e.g. why is it better than humans in GO?
How far can one go?
• Are useful quantum computers theoretically possible?

The first questions is called universality. In fact the Central Limit Theorem can be seen
as the basic example of universality – it explains why the Gaussian distribution appears in
many unrelated different contexts. You can find talks on universality by non-probabilists
like T. Tao, by mathematical physicists like T. Spencer, and probabilists like W. Werner.
I find it already inspiring that we can say anything mathematically meaningful about such
a vague question. I also find it’s a question in the spirit of today’s mathematics - we
try to mathematically understand not only structures like pure symmetries, not only pure
randomness like coin tosses, but a mixture of the two.

This course
Unfortunately, in this course we will not be able to address most of these exciting develop-

ments. We will be mainly dealing with setting up the basic mathematical framework, so that
you have the basis for studying statistics, for applications in other fields and future courses in
probability. We will also just try to get a glimpse of the probabilistic mathematical thinking,
and there will be some intrinsically beautiful mathematical results.

The course will be roughly in three chapters:
(1) The basic framework of probability theory - here, we will properly set up the modern

framework of probability theory, in other words see how one constructs a probabilistic
model.

(2) Study of random variables and mathematical expectation - random variables are
the central objects of probability theory, they are the random numbers, or other
random objects that come up in our probabilistic model. We will see how to describe
and study random variables, and meet several random variable that come up more
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frequently. Expectation is just the mathematical term for average, we will see that
it is a simple but useful tool.

(3) Limit theorems - a special case of the Law of Large Numbers says that if you keep
on tossing a fair coin, then the proportion of tails will get closer and closer to a half.
We will be prove this result, but we will also prove a version of the Central Limit
Theorem, discussed above.

We start, however, with an overview of some more elementary models for probability
theory and discuss their limitations.

0.1 Some historical probability models and their limitations
In this section we shortly discuss some preliminary probability models.

Laplace model
For a few hundred years the following simple model (which we call Laplace or classical

model) was used to study unpredictable situations, and to model the likelihood that a certain
event happens in this situation.

• Gather together all possible outcomes Ω = {ω1, . . . , ωn} and count the total number
of possible outcomes nA := |Ω| of the situation.
• Collect all the outcomes ωi for which the desired event E happens, and count their
number nE.
• Set the probability of the event p(E) to be the ratio nE

nA
.

In other words, we can set up the following definition:

Definition 0.1 (Laplace/Classical model of probability). Laplace model of probability con-
sists of a set of outcomes Ω and possible events, given by all subsets E ⊆ Ω . The probability
of each event is defined as p(E) = |E|

|Ω| .

In some sense, we are not defining any new mathematical structures here - we are just
giving a name to certain proportions.

For example if you want to model the event that two heads come up in two consecutive
coin tosses you would do it as follows:

• We take Ω = {HH,TT,HT, TH},
• set E = {HH}
• and see that p(E) = 1/4 as |Ω| = 4.

Many everyday or gambling situations can be described with this simple model.

Exercise 0.1. Write down the Laplace model for calculating the probability of having two
sixes in three throws of dice. What is this probability?

This classical model has already some very nice properties, which we certainly want to
keep for more general models.

Lemma 0.2 (Nice properties of the classical model). Consider the Laplace model on a set
Ω. Let E,F be two events, i.e. two subsets of Ω.

• If the two events E,F cannot happen at the same time, i.e.then the probability of one
of them happening p(E ∪ F ) = p(E) + p(F ).
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• The complementary event of E, i.e. the event that E does not happen, has probability
1− p(E).

Both of these results follow directly from a definition. There are many other properties
one could prove, e.g:

Exercise 0.2. Consider the Laplace model on the set Ω and let E,F be any two events.
Prove that P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

Using this, one can already also do basically all the calculations for lottery, betting,
cards...as you see on the example sheet. But there is still one basic question - how come this
ratio is of any use in telling you anything about the world?

The reason comes basically from the fact that if the same situation comes up many times
in a row, then under certain assumptions the proportion of a specific outcome among all
possible outcomes will converge to its probability. Let us prove a weak version of this here:

Proposition 0.3 (Proportion of heads goes to 1/2). Consider the Laplace model for n coin
consecutive fair coin tosses. Let 0 < ε < 1/2 be arbitrary and define the event En

ε to denote
all sequences of n tosses where the proportion of heads is less than 1/2 − ε or more than
1/2 + ε. Then for any ε > 0, we have that p(En

ε )→ 0 as n→∞.

Let us remark that the Laplace model for n coin tosses has a very specific assumption: any
sequence of n fair coin tosses has probability exactly 2−n. And in particular, the probability
of the k−th toss to be heads or tails is 1/2 independently of other outcomes - so we assume
any toss is not influenced by the other ones.

This proposition can be proved by just counting, though the counting itself is not entirely
trivial. For example, we need an asymptotic of n!, i.e. a better expression about how it
behaves as n→∞. This is called Stirling’s formula and you have probably met it already. 2

Exercise 0.3 (Weak Stirling’s formula). Prove that for some constants c, C > 0, we have
that

cnne−n ≤ n! ≤ Cnn+1e−n.

(*) Deduce that there are C, c > 0, such that for all ε > 0 small enough and all n ∈ N we
have that (

n

dn(1/2− ε)e

)
≤ CnC2n exp(−cε2n).

Armed with this, we are ready to prove the proposition.

Proof of proposition. Let En
ε,< and En

ε,> denote respectively the events that the proportion
is less than 1/2− ε, and that it is more than 1/2 + ε. As these events cannot happen at the
same time, we have that p(E) = p(En

ε,<) + p(En
ε,>) and by symmetry it suffices to only show

that p(En
ε,<) → 0 as n → ∞. Moreover, as these events are increasing with ε, it suffices to

prove the proposition for ε > 0 small enough.
Now, the number of all possible sequences of n tosses is exactly 2n as each toss has two

options. On the other hand, the number of outcomes with k heads out of n tosses is given

2Here and below an asterix means that a part of the course or exercise is not examinable.
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by exactly
(
n
k

)
. So using Lemma 0.2 several times for disjoint events of exactly k tosses, we

can write

p(En
ε,<) ≤ 2−n

dn(1/2−ε)e∑
k=0

(
n

k

) .

A direct calculation convinces you that as long as k < n/2, we have that
(
n
k−1

)
≤
(
n
k

)
. Thus

we can further bound

p(En
ε,<) ≤ 2−nn

(
n

dn(1/2− ε)e

)
.

By Exercise 0.3, for all ε > 0 small enough(
n

dn(1/2−ε)e

)
2n

≤ C ′nC+1 exp(−cnε2)

and thus p(En
ε,<) ≤ C ′n exp(−cnε2), which goes to 0 as n→∞. �

Remark 0.4. With the some strategy one could actually prove a somewhat stronger state-
ment: for example that the probability of the event Ẽn that the proportion of heads is outside
of the interval (1/2− n−1/3, 1/2 + n−1/3) goes to zero. This basically amounts to just setting
ε = n−1/3 in the proof above.

This is a special case of the Law of Large Numbers (LLN). We will prove LLN in much
greater generality and with much less calculations, but only once we have developed some
theory.

So we see that not only does Laplace model allow calculations, but it does tell you some-
thing about random phenomena - at least about reoccuring random phenomena. However,
this model also has some drawbacks:

• In the Laplace model it is implicitly assumed that all outcomes of the situation are
equally likely. What if this is not the case? For example, what if the coin is not fair,
but after long number of tosses seems to give 1/π heads?
• Also, it is hard to work with more complicated situations, where you may have to
look at an arbitrary large number of events like in the following exercise.

Exercise 0.4. Suppose your event is: I will need no more than 100 tosses before getting
three consecutive heads. Can you use the Laplace model? Can you use the Laplace model if
your event is - I obtain three consecutive heads before three consecutive tails? But if you ask
three consecutive heads before five consecutive tails? Can you use Laplace model for this?

This is related to a more general worry: as soon as there are infinitely many possible
outcomes, what should you do? Assuming that all of infinitely many outcomes are equally
likely gives a contradiction, as their probabilities would still need to add up to one! What
to do?

A (intermediate) discrete probability model
The next probability model does not presuppose that all outcomes are equally likely and

will allow also to handle an infinite number of outcomes:
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Definition 0.5 (A (intermediate) discrete probability probability model). We say that (Ω, p)
is a (intermediate) discrete probability model if Ω is a set (of outcomes) and p : Ω → [0, 1]
is a function such that

• The total probability is 1:
∑

ω∈Ω p(ω) = 1 3.
• The probabilities of disjoint subsets of Ω add up: p(E ∪ F ) = p(E) + p(F ) for all
E ∩ F = ∅.

An event E is an arbitrary subset of Ω and we set the probability p(E) :=
∑

ω∈E p(ω).

This discrete probability model is set up so that we still keep the nice properties of the
classical model that we saw above. Moreover, one can check that when |Ω| <∞ and we set
all p(ω) = |Ω|−1, we are back to the Laplace model. So it is really a generalization.

Before thinking about further mathematical properties of this model, let us think about
using it for applications. One difficulty of applying this model to real situations is now the
following question – how do we choose the numbers p(ω)? In the Laplace model, we used a
certain symmetry or exchangeability hypothesis on the set of outcomes, but if we don’t have
this, what could we do?

For example, here is a reasonable-sounding idea, based on the proportion above: in the
case of the coin toss, i.e. two possibilities, we could just toss the coin it many times and set
the proportion of heads to be the probability of heads in our model. That sounds meaningful.
However, how many times should we toss it? If we toss it just once, we set the probability to
be either 0 or 1? We will be able to give some sort of an idea of how many tosses would suffice
in the last chapter of the course...but what should you do if you don’t have a lot of data? Or
if the model is much more complicated? Luckily for us, these complicated questions belong
already more to the discipline of statistics...

So let us rather ask what is still mathematically missing in the intermediate model? Having
a countable set is now not a problem. In fact, we will see that as long as Ω is a countable set,
the intermediate model is equivalent to the modern framework of probability, introduced in
the next section.

However, uncountable sample spaces enter naturally. For example, when you need to
model for example a quantity that can be assumed to behave like ’a uniform random point’
on [0, 1] then the space of outcomes - in this case [0, 1] is uncountable. Or, similarly the
space of infinite sequences of coin tosses is uncountable (why?) - such a space is needed
when you consider for example the event that three consecutive heads occur before five
consecutive tails, as it is not determined by any fixed number of coin tosses. Finally, many
complicated discrete situations are easier to describe and study if one models them via
continuous probabilities, like the Gaussian distribution where all values of R are possible.

And as soon as we have an uncountable Ω, say Ω = R or Ω = [0, 1], things get more
involved. Indeed, if you think about it, already sums over uncountable sets are pretty
complicated (and not so well defined)! For example, there is just no function p satisfying the
hypothesis of the definition and putting a positive mass on uncountable set of points of Ω:

3Here, and elsewhere you might wonder what does this sum even mean if Ω is infinite. You can rigorously
define it as the supremum of

∑
ω∈Ω′ f(ω′) over all finite subsets Ω′ ⊆ Ω, if you wish, but in this Section nr

0 we don’t yet worry about these things so much...
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Exercise 0.5. Let Ω be any uncountable set. Consider a positive function f : Ω → [0, 1].
Then necessarily

∑
ω∈Ω f(ω) =∞.

So how should we then model the uniform number on [0, 1]? It intuitively feels that
this notion exists, but we already discussed that putting equal probabilities on infinite sets
doesn’t work...Is there any way out?

Probability vs area: an intermediate continuous probability model
There is one nice way out from the issues described above. Namely, the following hack

was used up to 20th century: if we think of a raindrop falling on the segment [0, 1], then the
probability that it falls into some set A should be exactly the area of this set! Thus to define
continuous probability, at least on [0, 1]n we could equate probability of a set with its area.

Now, this is very nice because we know that area is related to integrals - areas can be
calculated! Thus we get an idea for defining a variety of probability distributions on Rn - for
any Riemann-integrable function f with

∫
Rn f(x)dnx = 1 we define the probability of being

in A as
∫
A
f(x)dnx, in case such a thing is defined. So in conclusion, we could also define an

intermediate continuous probability model

Definition 0.6 (An intermediate continuous probability model). We say that (Rn, f) is an
intermediate continuous probability model if f is a non-negative Riemann-integrable function
with total mass 1. We identify events with subsets A such that

∫
A
f(x)dnx is defined, and

set their probability to be p(A) :=
∫
A
f(x)dnx.

Such a model shares several nice properties both with the Laplace model or the inter-
mediate model. So why do we call this again just an intermediate model, why is it not a
satisfactory resolution? For all practical purposes, it is in fact already pretty good!

However, from a purely mathematical point of view there are some drawbacks:
• Firstly, it’s just quite unsatisfactory to have two different notions of probability -
one for discrete, one for the continuous setting! It would be much nicer to have one
framework pretty much like topology offers a framework to talk about continuity for
functions between real numbers or between curves etc...
• Second, we would certainly also like to talk of random objects that are more compli-
cated than Rn - for example random continuous functions that could describe say the
shore line of Britain or mountainous landscapes or clouds. But what is the notion of
area for such complicated spaces?

As we will see, both of those issues are resolved in the modern framework of probability
theory.
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Section 1

Framework of mathematical probability
In this section we will build up the modern framework of probability, and see how it nicely

unifies the attempts from the previous section.

1.1 Measure spaces
We will start with a more general notion of a measure space. Probability spaces will then

be introduced as certain special measure spaces.
As in topology, a measure space is a set together with a certain structure. For a measure

space the structure comes in two bits:
• first, a set of subsets closed under some operations, called this time a σ-algebra;
• and second, a function defined on these subsets, called a measure.

You can think of measure as of some generalization of area, and of the σ-algebra as of all
subsets whose area can be measured.

Definition 1.1 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a
triple (Ω,F , µ), where

• Ω is a set, called the sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called a σ-algebra and any A ∈ F is called a measurable set.
• And finally, we have a function µ : F → [0,∞] satisfying µ(∅) = 0 and countable
additivity for disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An).

This function µ is called a measure. If µ(Ω) <∞, we call µ a finite measure.

Geometrically we interpret:
• Ω as our space of points
• F as the collection of subsets for which our notion of volume can be defined
• µ our notion of volume: it gives each measurable set its volume.

To already spoil the game, a probability space will be a measure space with total mass
equal to 1, i.e. µ(Ω) = 1. In that case we interpret Ω as the space of all outcomes, F as the
set of events that we can observe and P = µ will assign a number, called probability, to each
observable event.

But let us continue a bit in the realm of general measure spaces. For example, here is an
example of measure that can be defined on an arbitrary set Ω:

Definition 1.2 (Counting measure). On any set Ω one can define the counting measure µc:
we set F := P(Ω), and µc({ω}) := 1 for any ω ∈ Ω. Notice that if Ω is an infinite set, then
µc(Ω) =∞, so this is a measure, but not a finite measure.
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Here, we still used the power set P(Ω) as the sigma-algebra, however the ability to restrict
the measure only on a subcollection F is actually necessary.

1.1.1 σ-algebras
The really new bit in the measure-theoretic framework (of probability) is the second bullet

point - the notion of sigma-algebra that determines the observable sets. A way to think about
it as follows:

• We think of measure as of a generalization of the notion of area or volume. However,
this notion is not defined for all possible sets, only for nice enough ones and so F is
the set of all subsets for which this notion of area or volume exits.

In terms of probability would think like this:
• Not all sets can be observed and thus assigned probabilities to - F gives us the
collection of sets that we can observe, and that we call events.

A related analogy is the following: the Riemann integral is not defined for all functions,
even not all functions which are the indicator functions of a set. For example, the function
1E is not integrable for E = Q ∩ [0, 1]!

How should we choose our σ-algebras? In the case of a discrete state space, a natural
choice that always works is the power-set. This means that each set, and in particular each
singleton in our space can be observed and assigned a probability to.

It comes out that when Ω is uncountable, the power set is often too large to be useful -
we already saw that it is impossible to assign positive probabilities to more than countably
many singletons, but we will see other worrying examples below. One hint that complexity
is already on the level of σ-algebras is the following:

Exercise 1.1. Show that on a discrete set the smallest σ−algebra containing all singletons
{x} is the power set, but that on [0, 1] the smallest σ−algebra containing all singletons {x}
is strictly smaller than the power set.

So what should we do? As long as there is a topological structure on the set, there is
another very natural way to induce σ−algebras:

Definition 1.3 (Borel σ-algebra). Let (X, τ) be a topological space. The Borel σ-algebra Fτ
on X is defined to be the smallest σ-algebra that contains τ .

The Borel σ-algebra is well-defined because of the following lemma, which says that the
intersection of σ-algebras is still a σ-algebra. Indeed, using this one can define the Borel
sigma algebra Fτ as the intersection of all σ-algebras F containing all open sets, i.e. such
that τ ⊆ F .

Lemma 1.4 (Exo 1.3 in Dalang-Conus). Let Ω and I be two non-empty sets. Suppose that
for each i ∈ I, Fi is a σ-algebra on Ω.

• Prove that F :=
⋂
i∈I Fi is also a σ-algebra on Ω.

• Now, let G be any subset of P(Ω). Then there exists a σ-algebra that contains G and
that is contained in any other σ-algebra containing G. This is called the σ-algebra
generated by G.

Proof. On the exercise sheet. �
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The Boel σ−algebra is the standard σ-algebra that we will always use on the state space
R and more generally on Rn. Observe that

Exercise 1.2. Show that the Borel σ−algebra on any topological space contains both all the
open and all the closed sets. Deduce that on Rn it contains all open balls, all closed balls and
all singletons {x}.

Now, in the case of a discrete set, the natural topology to put on the set is the discrete
topology. In that case the Borel σ−algebra again agrees with the power-set. However, one
can play with different σ−algebras even in the case of discrete spaces as it often helps to
distinguish the level of information that one can observe.

For example, suppose we model the situation with two fair coins. To do this, we set
Ω = {(H,T ), (H,H), (T,H), (T, T )}. Now, let us look at the role of different sigma-algebras:

• If we can observe the outcome of both tosses, then our sigma-algebra would be P(Ω).
• However, suppose the only thing you can observe is the outcome of the first toss.
Then we cannot differentiate whether the full outcome was (H,T ) or (H,H), or
similarly whether it was (T,H) or (T, T ). We have thus no information about the
second toss, and maybe also no way to assign to it some probabilities. To take this
into account, we can without changing the sample space, change the sigma-algebra
and set it to be F = {∅, {(H,T ), (H,H)}, {(T,H), (T, T )},Ω}, where naturally the
first of the sets corresponds to the first toss coming up heads, and the second to the
first toss coming up tails.
• Similarly, maybe our friend only tells you whether the two tosses were the same or
different. Then we cannot differentiate between (H,H) and (T, T ), or between (H,T )
or (T,H). We could model this situation by setting

F = {∅, {(H,H), (T, T )}, {(T,H), (H,T )},Ω}.
Often in fact such a situation happens in real life: we only obtain information about the

world step by step, and thus if we want to keep on working on the same probability space,
we can consider different filtrations F1 ⊆ F2 ⊆ F3 . . . such that each next one contains more
information. All possible information is contained in the power set P(Ω).

1.1.2 Some basic properties of measruable sets and measures
Let us look at some very basic properties of the collection of measurable sets F and the

measure µ itself.
First, already the defining properties of the sigma-algebra F gave us plenty of measurable

sets. However, there are many more:

Lemma 1.5 (Constructing more measurable sets). Consider a set Ω with a σ-algebra F .
(1) If A1, A2, . . . ,∈ F , then also

⋂
n≥1A1 ∈ F .

(2) Then also Ω ∈ F and if A,B ∈ F , then also A \B ∈ F .
(3) For any n ≥ 1, if A1, . . . , An ∈ F , then also A1∪· · ·∪An ∈ F and A1∩· · ·∩An ∈ F .

Proof of Lemma 1.5. By de Morgan’s laws for any sets (Ai)i∈I , we have that⋂
i∈I

Ai = (
⋃
i∈I

Aci)
c.
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Property (1) follows from this, as if A1, A2, · · · ∈ F , then by the definition of a σ-algebra
also Ac1, Ac2, · · · ∈ F and hence

(
⋃
i≥1

Aci)
c ∈ F .

For (3), again by de Morgan laws, it suffices to show that A1∪· · ·∪An ∈ F . But this follows
from the definition of a σ-algebra, as A1 ∪ · · · ∪ An =

⋃
i≥1Ai with Ak = ∅ for k ≥ n + 1.

Finally, for (2) we can just write Ω = ∅c. Moreover, writing A\B = A ∩Bc, we conclude by
using (3). �

In a similar vein, the basic conditions on the measure, give rise to several natural proper-
ties:

Proposition 1.6 (Basic properties of a measure and a probability measure). Consider a
measure space (Ω,F , µ). Let A1, A2, · · · ∈ F . Then

(1) For any n ≥ 1, and A1, . . . , An disjoint, we have finite additivity

µ(A1) + · · ·+ µ(An) = µ(A1 ∪ · · · ∪ An).

In particular if A1 ⊆ A2 then µ(A1) ≤ µ(A2).
(2) If for all n ≥ 1, we have An ⊆ An+1, then as n → ∞, it holds that µ(An) →

µ(
⋃
k≥1Ak).

(3) We have countable subadditivity (also called the union bound): µ(
⋃
n≥1An) ≤

∑
n≥1 µ(An).

If in fact µ(Ω) = 1, and thus we have a probability space (and we set P := µ), we also have
the following properties:

(4) For any A ∈ F , we have that P(Ac) = 1− P(A).
(5) If for all n ≥ 1, we have An ⊇ An+1, then as n → ∞, it holds that P(An) →

P(
⋂
k≥1Ak).

Notice that for two events A,B properties 1 and 4 correspond to properties we already
saw for the Laplace model of probability. Property 2,3,5 are very important in probability!
Let us put them in words in the setting of probability spaces:

• (2) Increasing approximation: If a sequence of events En is increasing and grows to
E, then the probability of E is given by the limit of probabilities P(En).
• (3) Union bound: the probability that at least one of the events A1, A2, . . . happens
is smaller than the sum of probabilities of individual events.
• (5) Decreasing approximation: If a sequence of events En decreases to to E, then the
probability of E is again given by the limit of probabilities P(En).

Proof of Proposition 1.6. Finite additivity follows from countable additivity by taking Ak =
∅ for k ≥ n+ 1.

For (2), write B1 = A1 and for n ≥ 2, Bn = An/An−1. Then Bn are disjoint,
⋃N
n=1Bn = AN

and
⋃
n≥1Bn =

⋃
n≥1An.

Thus by countable additivity

µ(
⋃
i≥1

Ai) = µ(
⋃
i≥1

Bi) =
∑
i≥1

µ(Bi)
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But µ is non-negative, so ∑
i≥1

µ(Bi) = lim
n→∞

n∑
i=1

µ(Bi)

By countable additivity again
n∑
i=1

µ(Bi) = µ(
n⋃
i=1

Bn) = µ(An)

and (2) follows.
The rest is left as an exercise �

Exercise 1.3 (Counterexample for general measure spaces). Let (Ω,F , µ) be a measure
space. Find measurable sets (An)n≥1 ∈ F such that for n ≥ 1 we have that An ⊇ An+1. Show
that contrary to probability spaces, it does not necessarily hold that µ(An)→ µ(

⋂
n≥1An).

1.1.3 Measurable maps
In topological spaces continuous functions mix well with topology. In measure spaces

functions that mix well with σ-algebra are called measurable maps. We will see that they
come with a special name in the case of probability spaces.

Definition 1.7 (Measurable and measure-preserving maps). Let (Ω1,F1, µ1) and (Ω2,F2, µ2)
be two measure spaces.

• We call a function f : Ω1 → Ω2 measurable if the preimages of measurable sets are
measurable, i.e. if ∀F ∈ F2 =⇒ f−1(F ) ∈ F1.
• Further, a measurable function such that ∀F ∈ F2 we have that µ2(F ) = µ1(f−1(F ))
is called measure-preserving.

Observe that the measure itself does not enter in the definition of a measurable map; the
name measurable comes from the fact that the pair (Ω,F), where Ω is a set and F is a σ-
algebra is often called a measurable space. Intuitively, measurable maps preserve the entity
of sets whose area can be measured and measure-preserving maps preserve in addition the
area as well.

Similarly to topological spaces we will from now onwards try to always denote a measurable
function as f : (Ω1,F1) → (Ω2,F2) to keep track of the σ-algebras involved. However, the
function f itself is defined on the set Ω1 and takes values in Ω2, i.e. it maps ω1 ∈ Ω1 to some
ω2 ∈ Ω2.

As in topological spaces, measurability can be checked on a smaller subset of sets. This is
an important fact that helps you verify measurability:

Lemma 1.8. Suppose (Ω1,F1) and (Ω2,F2) are two measurable spaces and G generates F2,
in the sense that the smallest σ-algebra containing G is equal to F2. Prove that if f−1(G) ∈ F1

for all G ∈ G, then f is in fact a measurable function from (Ω1,F1) to (Ω2,F2).

Proof. The proof is on the exercise sheet. �

When we have a measurable map, we can transport an accompanying measure from one
space to the other. This is formalized by the idea of a push-forward measure and should be
compared to notions like push-forward metric or volume in geometry:

13



Lemma 1.9 (Push-forward measure). Consider a measurable map f from (Ω1,F1, µ1) to
(Ω2,F2). Then f induces a measure µ2 on (Ω2,F2) by µ2(F ) := µ1(f−1(F )). Moreover, then
the map f from (Ω1,F1, µ1) to (Ω2,F2, µ2) is measure-preserving.

Often this measure µ2 is called the push-forward measure of µ1. Notice when µ1 has total
mass equal to 1, then so has µ2 as then µ2(Ω2) = µ1(Ω1) = 1.

Proof. We need to just check that µ2 is a measure. It clearly satisfies µ2(∅) = 0. Further,
notice that if F1, F2, . . . are disjoint, then so are f−1(F1), f−1(F2), . . . . Thus countable
additivity for µ2 also follows from that of µ1. �

In fact, this will be a very important tool to induce new probability measures. For exam-
ple, we will see that all natural probability measures on R can be constructed via suitable
functions from probability measures on [0, 1]. Or as a concrete example:

Example 1.10. Consider the probability space of a fair dice:

(Ω,F ,P) = ({1, 2, 3, 4, 5, 6},P({1, 2, 3, 4, 5, 6}),P)

where P({i}) = 1/6. When we now want to only know whether the dice was odd, we could
take a map S : Ω → {0, 1} defined by S(1) = S(3) = S(5) := 1 and S(2) = S(4) = S(6) :=
0. This is measurable from (Ω,F) to ({0, 1},P({0, 1}). Thus by the previous lemma it
introduces a probability measure P̂ on ({0, 1},P({0, 1}), with P̂({0}) = P̂({1}) = 1/2. Thus
we have transformed our problem to a simpler probability space.

1.2 Probability spaces
As mentioned a probability space is just a measure space of total measure 1. Let us spell

it out once again:

Definition 1.11 (Probability space, Kolmogorov 1933). A probability space is a measure
space (Ω,F ,P) with total mass 1, i.e. with P(Ω) = 1.

Let us also recall that we call Ω the universe or the state space or the sample space, the
P the probability measure, the sets E ∈ F events and P(E) the probability of the event E.

Although nowadays it is natural to see the concepts of a measure space and probability
space side by side, realizing that measure theory is the right context for all probability theory
took nearly 30 years! It was only the Russian mathematician Kolmogorov who realized that
it encapsulates all the previous models and notions of probability in a satisfactory manner.
Of course, it wasn’t that people were constantly thinking about this issue, but in the 1920s
and 1930s there was a surge in probabilistic modelling and probably this led us to the right
definitions.

It is important to have a good mental picture of how these objects correspond to our
description of the world, let us also come back to the interpretation of each object in (Ω,F ,P)
in the setting of probability spaces:

• Ω is the collection of all possible states of the situation, of all possible outcomes, very
much like in the simple Laplace model.
• An event is an observable set, i.e. a set of outcomes (thus a subset of Ω) whose
happening or non-happening we can observe. The set of all events is the σ-algebra

14



F . Not all subsets of Ω are necessarily observable, i.e F is not necessarily equal to
the space of all subsets of Ω.
• Finally, the function P : F → [0, 1] assigns the probability of each event. This can be
interpreted either as the frequency of the event over many independent trials as we
saw in Section 0, or as a certain belief (we will come back to this later.) The numbers
P(E) are something we put into the model based on our assumptions.

This new framework is more general than the intermediate model (and thus Laplace
model). Indeed, if Ω is countable, we just set F := P(Ω). Now if our intermediate model
has a probability function p : Ω → [0, 1] such that

∑
ω∈Ω p(ω) = 1, we can just define

P (E) :=
∑

ω∈E p(ω) and verify that all axioms of the probability space are indeed satisfied.
For a concrete example, in the fair dice model Ω = {1, 2, 3, 4, 5, 6}, F := P(Ω) and for any
event E, we set P(E) := |E|

6
.

It does, however, not strictly encompass the continuous probability that could be defined
using the Riemann integral. Indeed, consider Ω = [0, 1] and let F be the subset of all sets
A such that 1{x∈A} is Riemann-integrable. Then surprisingly F is not a sigma-algebra, as
shown by the following exercise.

Exercise 1.4 (Riemann integral doesn’t mix with measure). Show that for any finite set
A ⊆ [0, 1] the function 1{x∈A} is Riemann-integrable. On the other hand show that 1{x∈Q} is
not Riemann-integrable (i.e. the lower and upper sums don’t converge to the same number).
Deduce that the set F of all subsets such that 1{x∈A} is Riemann-integrable is not a σ-algebra.

Still, it is well possible to talk also of continuous probability spaces in this setting and
to give sense to certain uniform measures on, say, [0, 1] or even on the space of continuous
functions. Most of this, however, requires already a deeper understanding of measure theory
and is out of the scope of this course.

1.2.1 Discrete probability spaces
Usually probability spaces are classified into discrete probability spaces, for which the

state space Ω is countable and continuous probability spaces, for which Ω is uncountable.

Definition 1.12 (Discrete probability space). Probability spaces (Ω,F ,P) with a countable
sample space Ω are called discrete probability spaces.

If |Ω| < ∞ and we set P({ω}) = |Ω|−1, then our probability space has nothing new
compared to the Laplace model. It is also easy to see that we are back to the intermediate
model in case when σ-algebra contains all subsets:

Lemma 1.13. Let Ω be a countable set. Then the set of probability measures on (Ω,P(Ω))
is in one to one correspondence with the set of functions p : Ω→ [0, 1] with

∑
ω∈Ω p(ω) = 1.

The proof is a rather boring affair:

Proof. First, given any probability measure P on (Ω,P(Ω)), consider the function pP : Ω→ R
given by just pP(ω) = P({ω}). As P is a probability measure, in fact pP takes values in [0, 1].
Further, by countable disjoint additivity∑

ω∈Ω

p(ω) =
∑
ω∈Ω

P({ω}) = P(Ω) = 1.
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In the other direction, given such a function p, define Pp : P(Ω)→ [0, 1] for every E ⊆ Ω
by

Pp(E) =
∑
ω∈E

p(ω).

We know that this sum is well defined as p is non-negative and this sum is bounded from above
by 1. It is then immediate to check that Pp satisfies all conditions for being a probability
measure: from definition it is countable additive, and also P(Ω) = 1.

Finally, as the two maps P → pP and p → Pp are inverses of each other, we obtain the
necessary bijection. �

However, here we chose the σ−algebra to be the power-set. Is there possibly an extra level
of generality induced by the freedom of choosing a σ-algebra in the discrete spaces? The
next proposition says that this is not the case.

Proposition 1.14 (Discrete probability spaces = intermediate spaces). Let Ω be a count-
able set and consider a probability space (Ω,F ,P). One can construct a probability space
(Ω2,P(Ω2),P2) such that Ω2 is countable and there is a surjective measurable and measure-
preserving map f : Ω→ Ω2, such that F is in bijection with P(Ω2) via f .

In other words, we can encode any discrete probability space equally well by a probability
space where the σ−algebra is a power-set, and thus equally well by what we called the
intermediate model.

Proof. The proof is non-examinable and can be found in the appendix. �

Now, the parameters of a discrete probability model (i.e. p(ω) for ω ∈ Ω) have to be
determined by us. Often they come via observations from the real world, or by assumptions
of equal probabilities like in the case of the Laplace model for finite Ω. Thus in this respect,
finite and countably infinite spaces behave very similarly.

One should, however, notice one difference - there are no probability measures on countably
infinite sets that treat each element of the sample space as equally likely. Let us illustrate it
in the case of Ω = Z, though a similar proof would work for any countably infinite Ω, when
replacing shifts with general bijections.

Lemma 1.15. There is no probability measure P on (Z,P(Z)) that is invariant under shifts,
i.e. such that for any A ∈ P(Z), n ∈ Z, we have that P(A+ n) = P(A) 4.

Proof. By shift-invariance P({k}) = P({0}) for any k ∈ Z. By countable additivity

1 = P(Z) =
∑
k∈Z

P({k}) =
∑
k∈Z

P({0}),

which is either equal to 0 if P({0}) = 0, or equal to ∞ if P({0}) > 0, giving a contradiction.
�

In particular, this means that we cannot really conveniently talk about a random whole
number, or about a random prime number if we want all of them to have the same probabil-
ity! Still, thinking of prime numbers as random numbers has been a very successful recent
idea. For example, we refer to a beautiful theorem about arithmetic progressions in prime

4Here, as customary, A+ n = {a+ n : a ∈ A}.
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numbers, called the Green-Tao theorem.

1.2.2 Continuous probability spaces
Probability spaces where Ω is uncountable are called continuous probability spaces. The

most typical examples are the space of sequences of coin tosses Ω = {0, 1}N, the unit interval
Ω = [0, 1] or Ω = R. It could also be Ω = Rn or why not even Ω = C0([0, 1]), i.e. the set of
continuous functions on [0, 1].

As already mentioned, in the uncountable case, things get a bit more involved. Now, given
any uncountable set Ω, one can still always define some probability measure on (Ω,P(Ω)): for
example we could just pick a single ω ∈ Ω and set P(E) = 1 if ω ∈ E and P(E) = 0 otherwise
(check this is a probability measure!). But in some sense this is not really looking at the
whole set Ω - only one point is picked out. As the following examples shows, probability
measures that consider all points on an equal stance become problematic as long as we insist
on keeping F = P(Ω).

More concretely, it seems very reasonable that there should exist a uniform probability
measure P on the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. By uniform we mean that it would
treat each point equally likely and in particular would be invariant under rotating the circle
by any fixed angle. This seems like common sense! However, the following proposition says
that this is impossible in the realm of measure theory when we want to make all subsets of
S1 measurable, i.e. when we take F = P(S1) 5:

Proposition 1.16. There is no probability measure P on (S1,P(S1)) that is invariant under
shifts, i.e. such that for any A ∈ P(S1), α ∈ [0, 2π), we have that P(A + α) = P(A), where
here we denote A+ α the set obtained by rotating the circle by α radians.

You should compare this to Lemma 1.15 and think why this is more interesting and more
difficult.

Proof. The non-examinable proof is in the appendix. �

As the circle can be seen as the interval [0, 1] pinned together at its endpoints, the same
proposition says that there is no shift-invariant probability distribution on ([0, 1],P([0, 1])).
This might seem like very bad news at first sight. However, it comes out that things can be
mended by choosing a smaller σ−algebra F , that is still big enough to carry lots of sets of
interest.

In fact, the notion of Borel σ−algebra that we introduced before will help us out: in other
words, one can define a shift-invariant probability measure on ([0, 1],FE), where FE is the
Borel σ−algebra on [0, 1]. This is however already a rather technical result that will not be
proved in this course. Thus the following theorem is out of the scope for this course, but
will be proved in Analysis IV:

Theorem 1.17 (Existence and uniqueness of Lebesgue measure on the unit cube, Lebsegue
1901 (admitted)). There exists a unique probability measure PU on ([0, 1]n,FE) such that
PU([0, x1] × . . . [0, xn]) = Πn

i=1xi. Moreover such a PU is shift-invariant: i.e. for any set
5To be more precise, it should read in the realm of measure theory and in the framework of Zermelo-

Frankel (ZF) axioms together with the axiom of choice. Indeed, there are logical frameworks which include
ZF, but not the axiom of choice and where every set of real numbers can be taken to be measurable!)

17



A ∈ FE and any y ∈ [0, 1]n we have that PU(A) = PU(A + y)6. This is called the uniform
measure or the Lebesgue measure on [0, 1]n.

Remark 1.18. In fact, as you will see next semester the σ-algebra on which we can take
the measure can be taken to be even larger - basically can also add all sets S ⊆ [0, 1]n such
that there is some B ∈ FE with µ(B) = 0 and S ⊆ B. The resulting σ-algebra is called the
Lebesgue σ-algebra. For probability, however, one usually works with the Borel σ-algebra.

As a corollary, one can obtain the existence and uniqueness of the Lebesgue measure on
Rn:

Corollary 1.19 (Existence and uniqueness of the Lebesgue measure on Rn). Consider
(Rn, τE) with its Borel σ-algebra FE. Then there exists a unique measure µ on (Rn,FE)
such that µ([a1, b1]×· · ·× [an, bn]) = Πn

i=1(bi−ai) for all vectors (a1, . . . , an) and (b1, . . . , bn)
with real numbers ai < bi for all i < n.

Proof. This is on the Exercise sheet 4. �

Defining natural probability measures on more complicated uncountable sample spaces,
is in several cases still an (interesting) open question. On Ω = C0([0, 1]), with its Borel
σ-algebra, this has been done and the measure is called the Wiener measure (or Brownian
motion).

1.2.3 Two interesting examples of discrete probability spaces
Finally, let us introduce two interesting examples of interesting discrete probability spaces.

You have already seen spaces for coin tosses, for dice, for black jack or poker. But of course
there are much more structured situations or objects that one might want to describe using
probability. We consider here two examples:

• A model of a random walk - this could be a trajectory of an ant, or a molecule or
who knows, maybe a stock on a financial market?
• A toy model of a random graph - this could be used possibly to describe social
networks, or networks in the brain etc...

We will start from the very simplest models. Real models for the listed phenomena would
be more complicated, but these simple models allow already to start playing with certain
phenomena and give a background model to test ideas and hypothesis. Moreover, one can
prove many beautiful theorems in combinatorics and probability theory about these objects!

The following is a description of an undecided person walking up and down - here we
consider each trajectory as equally likely:

Example 1.20 (Simple symmetric random walk). Let n ∈ N and let Ω be the set of all
simple walks of n steps, i.e. Z-valued vectors (S0, S1, S2, . . . , Sn) such that S0 = 0 and
|Si − Si−1| = 1.

Now set F = P(Ω) and define P such that P({ω}) = |Ω|−1 = 2−n for each ω ∈ Ω (what
does each ω here correspond to?). The corresponding probability model is called that of a
symmetric simple random walk.

6here A+ y is considered modulo 1, i.e. in n = 1 for example A+ y = {a+ y mod 1 : a ∈ A}.
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One can easily generalize this to higher dimensions by for example taking vectors of such
walks. Our main question for such models is the following: how does an instance of a
random walk look like? Can we describe using probability theory how high it will be, how
it fluctuates etc? How to do it?

For a starter, it’s good to start with some simple calculations:

Exercise 1.5. Calculate the probability that the simple random walk of length n is equal to
zero after 4 steps. What do you notice?

Similarly, maybe the easiest model of a random network or graph is the one where you
consider each graph with the same vertex set as equally likely:

Example 1.21 (Uniform random graph). Let n ∈ N. A simple graph is a set of vertices
V = {v1, . . . , vn} together with an edge set E, that is some subset of {{vi, vj} : (vi, vj) ∈
V × V, vi 6= vj}. You can imagine the graph as drawing all the n points v1, . . . , vn on the
plane and then drawing a line between vi and vj to say they are connected if and only if
{vi, vj} ∈ E.

The probability model for a uniform random graph is defined as follows: we let Ω be the set
of all simple graphs G with vertex set V , set F = P(Ω) and define P such that P({G}) = |Ω|−1

for each graph G ∈ Ω.

Here again we would basically want to see how the graph or network looks like: how many
neighbours does a vertex typically have? What is the shortest distance between two vertices?
Etc etc...All these questions have nice interpretations for example in social networks - the
number of friends, or the shortest communication path between two people etc...

Naturally, we don’t expect social networks to be well described by a model where every
graph is equally likely! Still, good to start somewhere:

Exercise 1.6 (Uniform random graphs). Consider the probability model for uniform random
graphs.

• What is the size of the sample space Ω, i.e. how many simple graphs are there on n
vertices?
• What is the probability that there are exactly 3 edges in the graph?
• Show that the probability of the event that there is an isolated vertex, i.e. a vertex
that is not connected to anyone else, goes to zero as n→∞.

In both models we see that in order to start describing them, we would like to introduce
some random quantities: the maxima of the walk, or the number of zero of the walk...or the
largest degree of a graph, the size of the biggest component etc...The mathematical concept
for doing this is called a random variable.

1.3 Random variables
In the realm of probability spaces, measurable maps have a special name - they are called

random variables.
One can think of them as follows: when you have a probability space, then events would

correspond to yes-no questions. For example, if we model the weather and each ω ∈ Ω is a
state of the atmosphere, then events would answer questions like: is it going to rain? are
there any clouds?
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Random variables on the other hand help to observe and describe numerical information:
e.g. how many mm will it rain and for how many hours? Or, even more complicated
information: What type of clouds to we expect to see?

Definition 1.22 (Random variables). A random variable is just a measurable function X :
Ω → R from some probability space (Ω,F ,P) to the measurable space (R,FE), where FE is
the Borel σ-algebra on R.

More generally, a (Ω2,F2)-valued random variable is just a measurable function X : Ω→
Ω2 from some probability space (Ω,F ,P) to a measurable space (Ω2,F2).

Thus random variables X are just functions from a probability space Ω to R. However, in
the realm of probability theory we are interested not in the exact correspondence between
individual ω−s and real numbers, but we rather ask which values in R are taken with which
proportion (according to P). This information is called the law of a random variable:

Definition 1.23 (Law of a random variables). We call the probability measure PX on (R,FE)
defined for all events E ∈ FE by

PX(E) := P(X−1(E)) = P({ω ∈ Ω : X(ω) ∈ E})
the law or the distribution of the random variable X.

Notice that the fact that PX is a probability measure follows from Lemma 1.9. For E ∈ FE
we will often use the notations

P(X ∈ E) := P(X−1(E))

insisting that we think of X as a random quantity taking some values. We also denote the
event {ω ∈ Ω : X(ω) = k} simply by {X = k} or even by just X = k. By custom, we keep
the capital letters X, Y, Z often for random variables - not to confuse with the same notation
also often used for topological spaces!

Notice that by definition, the law of a random variable is fully determined by a collection
of events. This is formalized by:

Definition 1.24 (Equality in law). Two random variables X, Y are said to be equal in law
or equal in distribution, denoted X ∼ Y if for every E ∈ FE we have that PX(E) = PY (E).

In particular, two random variables that are equal in law could be defined on different
underlying probability spaces (Ω,F ,P) - we are only interested that they give rise to the
same law on (R,FE). So in that sense the underlying probability space plays only an auxiliary
role here. This is also nice, as it paves way for comparing different probabilistic phenomena
in different contexts.

Here are some concrete examples of probability spaces and random variables defined on
them.

• Indicator functions of events. The simplest random variables arise when asking
whether and event happened or not and are just the indicator functions of events.
More precisely, if we have a probability space (Ω,F ,P), then for any E ⊆ Ω, the in-
dicator function 1E(ω), which is equal to 1 if ω ∈ E and zero otherwise, is a random
variable. Indeed, for any F ∈ FE, the preimage of F under 1E is either equal to
E,Ec,Ω or ∅ and by definition they are all measurable sets of Ω. We will return to
such random variables soon and call them Bernoulli random variables.
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• The number of heads. For n ∈ N consider the probability space ({0, 1}n,P({0, 1}n),P)
where P is the probability measure that treats each sequence of coin tosses as equal.
Let us show that

X1 = total number of heads

is a random variable: indeed, we just need to show that X1 is a measurable function
from ({0, 1}n,P({0, 1}n),P) to (R,FE). But all subsets of the probability space are
measurable, so the condition is automatically satisfied! This happens always when
the σ-algebra on our initial probability space is the power-set – this should remind
you of the fact that all functions from a topological space with the discrete topology
are continuous.
• Properties of a random graph. Further, we could also consider the example of uniform
random graphs on n vertices as in the Exercise sheet 1 or 3. Then again, we used
the power-set as the σ-algebra on the set Ω of all possible graphs on n vertices. Thus
both

Y1 = the number of edges that are present

and
Y2 = the number of connected components

are random variables. Notice that using these random variables we can much more
freely talk about this random graph and about how it looks like.
• Properties of a random walk. As a final example, consider the model of random walks
on n steps as defined earlier – again, we can describe this model well using random
variables. E.g.

Z1 = maximal value of the walk

and
Z2 = the number of times the walk visits zero

are both random variables. This is again just because our probability space for
random graphs was built using the power set as a σ-algebra and in that case all real
valued functions F : (Ω,F)→ (R,FE) are measurable and hence random variables.
• Standard normal random variable. You have probably already heard about Gaussian
random variables, we will meet them soon!

Among random variables, one usually separates discrete and continuous random variables
(but notice that there are also random variables that are neither, but rather a mixture!):

Definition 1.25 (Discrete and continuous random variable). A random variable X is called
discrete if there is a countable set S ⊆ R, called the support of X, such that for all s ∈ S we
have that P(X = s) > 0 and P(X ∈ S) = 1. We call X a continuous random variable if for
every s ∈ R, we have that P(X = s) = 0.

As you might expect from the name, discrete random variables can be indeed modelled
using a discrete probability space:

Exercise 1.7. Let X be a discrete random variable and S its support. Show that one can
define a random variable X̃ with the same law as X on the probability space (S,P(S),PS),
determined by PS(s) = P(X = s).
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We will come back to random variables very shortly. Indeed, random variables are the
language for studying and describing random situations, so a big chunk of the course will be
the study of random variables and their properties.

But first, there is maybe an even more important notion - that of independence.

1.4 Some non-examinable proofs
Proof of Proposition 1.14. The idea is to partition Ω into indecomposable sets F ∈ F , i.e. to
write Ω =

⋃
i∈I Fi such that Fi are disjoint and for any F ∈ F and any Fi, either F ∩Fi = ∅

or Fi ⊆ F . These Fi will correspond to elements or ’atoms’ of Ω2.
To do this, define for each ω ∈ Ω the set Fω =

⋂
F∈F ,ω∈F F . We claim that Fω ∈ F .

This is not obvious as the intersection might be uncountable. Now, for any ω̂ /∈ Fω, pick
some Gω̂ ∈ F with ω ∈ Gω̂ but ω̂ /∈ Gω̂. Notice that such a set must exist, as otherwise
ω̂ ∈ Fω. Moreover, notice that Ω̂ := {ω̂ /∈ Fω} is countable. Thus F̂ω :=

⋂
ω̂∈Ω̂ Gω̂ ∈ F . We

claim that in fact F̂ω = Fω. As ω ∈ F̂ω, by definition Fω ⊆ F̂ω. On the other hand also by
definition F c

ω ⊆ F̂ c
ω and thus Fω = F̂ω ∈ F .

We now claim that the sets Fω partition Ω as explained above: first let ω, ω̂ ∈ Ω. We
claim that either Fω̂ = Fω or they are disjoint. Suppose they are not disjoint. Then both
Fω ∩ Fω̂ ∈ F and Fω\Fω̂ ∈ F . But if Fω 6= Fω̂ then one of these sets contains ω and is
strictly smaller than Fω, contradicting the definition of Fω. Now, consider any other F ∈ F .
Then either Fω ∩ F = ∅, or there is some ω̂ ∈ Fω. The by definition Fω̂ ⊆ F . But also as
Fω̂ ∩ Fω 6= ∅ we have that Fω̂ = Fω and thus Fω ⊆ F .

Now, as Ω is countable, there are countably many sets Fω. Thus we can enumerate them
using a countable index set I as (Fi)i∈I . We now define f : Ω→ I by f(ω) = iω, where iω ∈ I
corresponds to the index of i such that ω ∈ Fi. It is now easy to verify that f is measurable
from (Ω,F) to (I,P(I)). Thus we can induce a probability measure PI on (I,P(I)) as a
push-forward of P, i.e. via Lemma +, and obtain that f is in fact measure-preserving as a
map from (Ω,F ,P) to (I,P(I),PI). It remains to argue that every measurable set F ∈ F
map to a measurable set. But all subsets of I are measurable and thus this follows trivially.

�

Proof of Proposition 1.16. The idea is to decompose S1 into a countable number of shifted
copies of a set R and then to draw a contradiction like in Lemma 1.15.

Consider some irrational number r ∈ [0, 1] and the following operation T : S1 → S1: we
rotate the circle by r2π radians. The inverse operation T−1 rotates it by −r2π radians.

For any x ∈ S1, consider set

Sx = {. . . , T−2(x), T−1(x), x, T (x), T 2(x), . . . }.

Notice that by the fact that r is irrational, we have that T k(x) 6= T l(x) for all k, l ∈ Z
and thus Sx is countably infinite: indeed, otherwise T k−l(x) = x, but T k−l is a rotation of
r(k − l)2π /∈ 2πZ radians and thus this is impossible.

We claim that the countably infinite sets Sx are either disjoint or coincide and that they
partition S1. First, notice that each x ∈ Sx, thus

⋃
x∈S1 Sx = S1. Hence it remains to

show that if Sx ∩ Sy 6= ∅, then Sx = Sy. So suppose that there is some z ∈ Sx ∩ Sy.
Then by definition there is some kx, ky ∈ Z such that T kx(x) = T ky(y) = z. But then
x = T−kx(z) = T ky−kz(y) and hence for any l ∈ Z, T l(x) = T l+ky−kz(y) and Sx = Sy.
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By the Axiom of choice 7 we can pick one element sx from each disjoint Sx and define R
as the union of all such elements.

Now for i ∈ Z, let Ri = T i(R). We claim that all Ri are disjoint. Indeed if z ∈ Ri and
z ∈ Rj, then there must exist w, y ∈ R such that T i(w) = z = T j(y) and in particular
T i−j(w) = y. Thus on the other hand w and y would need to belong to the same Sx, and
on the other hand this is impossible as we saw that T k(x) 6= x for all k ∈ Z. Moreover,⋃
i∈ZRi = S1 as

⋃
i∈ZRi =

⋃
x∈S1 Sx.

Hence by countable additivity 1 = P(S1) =
∑

i∈Z P(Ri) and shift-invariance P(Ri) = P(R)
gives a contradiction as in the proof of Lemma 1.15. �

7Recall that the Axiom of choice says the following: if you are giving any collection of non-empty sets
(Xi)i∈I , then their product is non-empty. In other words, you can define a function f : I →

⋃
i∈I Xi such

that for all i ∈ I, f(i) ∈ Xi. Using this axiom cannot be avoided here!
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Section 2

Conditional probability and independence
We saw in the case of Laplace model that probability has one interpretation as modelling

the frequency of something happening in a repeated experiment, when each experiment ’does
not influence’ the others. We will now develop a mathematical meaning to this ’does not
influence’. This will be called independence.

More generally, we will set up the vocabulary to talk about how the knowledge about
some random event influences the probabilities we should assign to other events. This leads
us to talk about conditional probabilities.

2.1 Conditional probability
We have already considered (in the course and on the example sheets) many unpredictable

situations where several events naturally occur either at the same time or consecutively: a
sequence of coin tosses or successive steps in a random walk, or different links or edges
in a random graph. In all these cases, the fact that one event has happened could easily
influence the others. For example, if you want to model the financial markets tomorrow, it
seems rather advisable to take into account what happened today. To talk about the change
of probabilities when we have observed something, we introduce the notion of conditional
probability:

Definition 2.1 (Conditional probability). Let (Ω,F ,P) be a probability space and E ∈ F
with P(E) > 0. Then for any F ∈ F , we define the conditional probability of the event F
given E (i.e. given that the event E happens), by

P(F |E) :=
P(E ∩ F )

P(E)
.

Recall that E ∩ F is the event that both E and F happen. Hence, as the denominator is
always given by P(E), the conditional probability given E is proportional to P(E ∩ F ) for
any event F . Here is the justification for dividing by P(E):

Lemma 2.2. Let (Ω,F ,P) be a probability space and E ∈ F with P(E) > 0. Then P (·|E)
defines a probability measure on (Ω,F), called the conditional probability measure given E.

Proof. First, notice that P is indeed defined for every F ∈ F . Next, P(∅|E) = P(∅)/P(E) = 0
and P(Ω|E) = P(E)/P(E) = 1. So it remains to check countable additivity.

So let F1, F2, . . .F be disjoint. Then also E ∩ F1, E ∩ F2, . . . are also disjoint. Hence

P(
⋃
i≥1

Fi|E) =
P((
⋃
i≥1 Fi) ∩ E)

P(E)
=

P(
⋃
i≥1(Fi ∩ E))

P(E)
=
∑
i≥1

P(Fi ∩ E)

P(E)
=
∑
i≥1

P(F1|E),

and countable additivity follows.
�

It should be remarked that conditional probability of an event might sometimes be similar
to the initial probability (we will see more about this very soon), but it might also be
drastically different. A somewhat silly but instructive example is the following: conditional
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probability of the event Ec, conditioned on E is always zero, no matter what the original
probability was; similarly the conditional probability of E, conditioned on E is always 1.

Exercise 2.1 (Random walk and conditional probabilities). Consider the simple random
walk of length n.

• What is the probability that the walk ends up at the point n at time n? Now, suppose
that the first step was −1. What is the probability that the walk ends up at the point
n at time n now?
• Suppose that n is even. What is the probability that the walk ends up at the point 0
at time n? Now, suppose that the first step was −1. What is the probability that the
walk ends up at the point 0 at time n now?

One also has to be very careful about the exact conditioning, as two similarly sounding
conditionings can induce very different conditional probabilities.

Exercise 2.2 (Uniform random graphs and conditional probabilities). Consider the uniform
random graph on n ≥ 3 vertices as in Example 2.18.

• What is the probability that the graph is connected given each vertex is connected to
exactly one edge?
• What is the probability that the graph is connected given that each vertex but one is
connected to exactly one edge?

Still, although conditional probabilities are often tricky, they are very important and
useful. For example, they help to decompose the probability space. Indeed, the following
result is a generalization of the following intuitive result: if you know that exactly one of
three events E1, E2, E3 happens, then to understand the probability of any other event F , it
suffices to understand the conditional probabilities of this event, conditioned on each of Ei,
i.e. the probabilities P(F |Ei).
Proposition 2.3 (Law of total probability). Let (Ω,F ,P) be a probability space. Further,
let I be countable and (Ei)i∈I be disjoint events with positive probability and such that Ω \(⋃

i∈I Ei
)
has zero probability. Then for any F ∈ F , we can write

P(F ) =
∑
i∈I

P(F |Ei)P(Ei).

Proof. We can write F as a disjoint union

F =

(
F ∩ (

⋃
i∈I

Ei)

)
∪

(
F ∩ (Ω \ (

⋃
i∈I

Ei))

)
and as P

(
F ∩ (Ω \ (

⋃
i∈I Ei))

)
= 0 by assumption, we see by additivity of P under disjoint

unions that P(F ) = P
(
F ∩ (

⋃
i∈I Ei)

)
.

Now rewrite F ∩ (
⋃
i∈I Ei) =

⋃
i∈I(F ∩Ei). Because (Ei)i∈I are disjoint, so are (F ∩Ei)i∈I .

Hence again by countable additivity for disjoint sets

P(F ) = P

(⋃
i∈I

(F ∩ Ei)

)
=
∑
i∈I

P(F ∩ Ei).

Now, by definition P(F ∩ Ei) = P(F |Ei)P(Ei) and the proposition follows.
�
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2.2 Independence of events
Conditional probabilities are of course not at all difficult when the probability of an event

does not change under conditioning - i.e. when P(E|F ) = P(E). Such pairs of events are
called independent. In fact the rigorous definition is slightly different:

Definition 2.4 (Independence for two events). Let (Ω,F ,P) be a probability space. We say
that two events E,F are independent if P(E ∩ F ) = P(E)P(F ).

Observe that when P(F ) > 0, then we get back to the intuitive statement of independence,
i.e.that P(E|F ) = P(E). Indeed, if E and F are independent we can write

P(E|F ) =
P(E ∩ F )

P(F )
=

P(E)P(F )

P(F )
= P(E).

We have chosen the other definition, as then we automatically also include the case where
possibly P(F ) = 0. Here are some basic properties of independence:

Lemma 2.5 (Basic properties). Let (Ω,F ,P) be a probability space.
• If E is an event with P(E) = 1 then it is independent of all other events.
• If E,F are independent, then also Ec and F are independent. In particular every
event with P(E) = 0 is independent of all other events.
• Finally, if an event is independent of itself, then P(E) ∈ {0, 1}.

Proof. Let E,F ∈ F . By inclusion-exclusion formula

P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).

Now, if P(E) = 1 then also P(E∪F ) ≥ P(E) = 1 and hence this gives P(E∩F ) = P(F ) =
P(F )P(E) and hence E and F are independent.

For the second property, we can write by law of total probability

P(Ec ∩ F ) + P(E ∩ F ) = P(F ).

By independence of E,F we have P(E ∩ F ) = P(E)P(F ) and thus it follows that

P(Ec ∩ F ) = P(F )(1− P(E)) = P(F )P(Ec)

as desired. The second part then follows from the points 1) and 2).
Finally, if E is independent of itself then P(E) = P(E ∩ E) = P(E)2. Hence P(E)(1 −

P(E)) = 0, implying that P(E) ∈ {0, 1}. �

There are two different ways to generalize independence to several events:
• mutual independence
• and pairwise independence

The stronger and more important notion is that of mutual independence.

Definition 2.6 (Mutual independence). Let (Ω,F ,P) be a probability space and let I be an
index set. Then the events (Ei)i∈I are called mutually independent if for any finite subsets
I1 ⊆ I we have that

P

(⋂
i∈I1

Ei

)
= Πi∈I1P(Ei).

26



Similarly, one can generalize this to an arbitrary collection of sets of events.
Sometimes one does not have the full mutual independence or at least does not know it

holds, and just pairwise independence can be asserted. There are similar notions of k−wise
independence.

Definition 2.7 (Pairwise independence). Let (Ω,F ,P) be a probability space and let I be an
index set. Then the events (Ei)i∈I are called pairwise independent if for any i 6= j ∈ I the
events Ei and Ej are independent.

It is important to notice that, whereas mutual independence clearly implies pairwise in-
dependence, the opposite is not true in general:

Exercise 2.3 (Pairwise independent but not mutually independent). Consider the probabil-
ity space for two independent coin tosses. Let E1 denote the event that the first coin comes
up heads, E2 the event that the second coin comes up heads and E3 the event that both coin
come up on the same side. Show that E1, E2, E3 are pairwise independent but not mutually
independent.

Finally, one can also talk about independence of collections of events. This will be impor-
tant when we try to generalize the notion of independence from events to random variables

Definition 2.8 (Mutual independence of collections of events). Consider two collections
events (Ei)i∈I and (Fj)j∈J all defined on the same probability space. We say that they are
independent if for all i ∈ I, j ∈ J :

P(Ei ∩ Fj) = P(Ei)P(Fj).

In case of a J different collections of events (Ej,i)i∈Ij , we say that they are mutually inde-
pendent if for any finite subset J1 ⊆ J and any events Ej,ij with j ∈ J1

P

(⋂
j∈J1

Ej,ij

)
= Πj∈J1P(Ej,ij).

2.2.1 Conditional independence of events
Finally, the notion of independence under a conditional measure has earned its own name:

Definition 2.9 (Conditional independence). Let (Ω,F ,P) be a probability space and let I
be an index set. Then the events (Fi)i∈I are called conditionally independent given E if for
any finite subsets I1 ⊆ I we have that

P

(⋂
i∈I1

Fi|E

)
= Πi∈I1P(Fi|E).

As with conditional probability, conditioning can also change the presence or absence of
independence - as a silly extreme example again the event E on which you condition, becomes
independent of everything. We will meet a more interesting example very soon.

Exercise 2.4. Let (Ω,F ,P) be a probability space and E1, E2, E3 pairwise independent events
with positive probability. Show that if E1 and E2 are conditionally independent, given E3,
then E1, E2, E3 are mutually independent.
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2.3 Independence of random variables
Of course we want to not only talk about independence of events, but also about inde-

pendence of random quantities, that we described using the notation of random variables.
Recall that (the law of) a random variable X is characterized by all events {X ∈ E} for
Borel sets E ⊆ R. The mutual independence of random variables is then defined as mutual
independence of these sets of events. More precisely,

Definition 2.10 (Mutually independent random variables). Let I be an index set and (Xi)i∈I
a family of random variables defined on the same probability space (Ω,F ,P). We say that
these random variables are mutually independent if for every finite set J ⊆ I and all Borel
measurable sets (Ej)j∈J we have that

P(
⋂
j∈J

{Xj ∈ Ej}) = Πj∈JP(Xj ∈ Ej).

Of course checking this condition over all possible sets of events seems like an impossible
task! Luckily it actually suffices to check independence already for a smaller collection of
events. The following lemma states that it suffices to only show that every collection of
finitely many random variables are mutually independent, and moreover that we can restrict
to only a small subset of events to check independence. The proof needs a bit more measure
theory than we have, thus it is admitted:

Proposition 2.11 (Equivalent statement of independence (admitted)). Consider random
variables X1, X2, . . . defined on the same probability space (Ω,F ,P). Then X1, X2, . . . are
mutually independent if and only if for every m ≥ 2 and all pairs (aj, bj)j=1...m with aj < bj
we have that

P(
⋂

1≤j≤m

{Xj ∈ (aj, bj]}) = Π1≤j≤mP(Xj ∈ (aj, bj]).

Assuming this, we can, however, come up with more conditions:

Exercise 2.5. Consider random variables X1, X2, . . . defined on the same probability space
(Ω,F ,P). Then X1, X2, . . . are mutually independent if and only if for every m ≥ 2 and all
pairs aj ∈ R we have that

P(
⋂

1≤j≤m

{Xj ≤ aj}) = Π1≤j≤mP(Xj ≤ aj).

We can easily prove a version of the Proposition 2.11 the case of a finite number of discrete
random variables and it is instructive to do so:

Lemma 2.12 (Independence for discrete random variables). Let X1, . . . , Xn be discrete ran-
dom variables with supports S1, . . . , Sn defined on a common probability space (Ω,F ,P).
Then X1, . . . , Xn are mutually independent if and only if for every s1 ∈ S1, . . . , sn ∈ Sn, we
have that

P(
n⋂
i=1

{Xi = si}) = Πn
i=1P(Xi = si).

Proof. This is left as an exercise. �
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Exercise 2.6 (Simple symmetric random walk). Prove that for a simple random walk of
length n all the increments of the walk, i.e. ∆i = Si − Si−1 for i = 1 . . . n, are mutually
independent random variables.

The notion of independent random variables is very important and widely used - often
also just because otherwise it is very difficult to do any calculations! Often one talks about
a sequence of i.i.d. random variables X1, X2, . . . - this means that (Xi)i≥1 are mutually
independent (first ’i’) and all have the same probability law, i.e. are identically distributed
(the ’i.d.’). Let us bring it even out as a definition:

Definition 2.13 (Independent identically distributed random variables). Let X1, X2, . . .
be random variables defined on a common probability space. We call X1, X2, . . . i.i.d., i.e.
independent and identically distributed if they are mutually independent and all have the
same probability distribution.

Intuitively, this corresponds to repeating the very same random situation or experiment
over and over again.

A silly-sounding but very reasonable question to ask is the following: does there even
exist a probability space with finite or with countably or unaccountably many independent
random variables?

In general this is not an easy question! In fact, as soon as one has countably many non-
constant random variables, the underlying probability space would need to be uncountable
to do that! We will partly deal with this question in the next subsection.

2.4 Independence and product probability spaces
Mutual independence of random variables is naturally linked to products of probability

spaces. Indeed, consider probability spaces (Ωi,Fi,Pi) for i = 1 . . . n. Then to construct the
product probability space we need a product σ−algebra and a product measure.

(1) The product σ−algebra FΠ is defined as the smallest σ−algebra containing all E1 ×
· · · × En with Ei ∈ Fi.

(2) The product probability measure PΠ of P1, . . . ,Pn on (Πn
i=1Ωi,FΠ) is defined as the

only probability measure such that

P(E1 × · · · × En) = Πn
i=1Pi(Ei)

for all E1 × · × En with Ei ∈ Fi.
There is no difficulty in defining the product σ-algebra, thanks to Lemma 1.4. Even in the

case of countably infinite products, it would work out very well. The existence and uniqueness
of the product measure are however technical already in the case of finite products. So we
will state the following theorem without proof:

Theorem 2.14 (Product measure // admitted). For i ∈ N, let (Ωi,Fi,Pi) be probability
spaces. Then there exists a unique probability measure PΠ on (Πi∈NΩi,FΠ) such that for any
finite subset J ⊂ N and any event E of the form E = Πi∈NFi with Fi = Ωi for i /∈ J and
Fi = Ei ∈ Fi for i ∈ J , we have that

(2.1) PΠ(E) = Πi∈JPi(Ei).
We call such a measure the product measure of the collection ((Ωi,Fi,Pi))i≥1.
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It is rather easy to see the existence and uniqueness in the case of a finite number of discrete
probability spaces, so let us do that. Below, we state it in the case where the σ−algebras
are equal to the power set, but as seen in Proposition 1.14 this is also encompasses the case
of general σ−algebras on discrete spaces.

Lemma 2.15 (Discrete product spaces). Let (Ωi,P(Ωi),Pi) for i = 1 . . . n be discrete proba-
bility spaces. Then the product probability PΠ measure on (Πn

i=1Ωi,FΠ) exists and is unique.

Proof. Observe that FΠ = P(Πn
i=1Ωi): indeed, as each {ωi} ∈ Fi, it follows that {(ω1, . . . , ωn)} ∈

FΠ. But we saw that in case where Ωi are discrete, the smallest σ−algebra containing all
the singletons is the power-set.

Now, we have that
E1 × · · · × En =

⋃
∀i:ωi∈Ei

{(ω1, . . . , ωn)}.

Moreover, for a finite product of discrete probability spaces this disjoint union is countable.
It follows that

PΠ(E1 × · · · × En) =
∑
∀i:ωi∈Ei

PΠ({(ω1, . . . , ωn)}).

As also ∑
∀i:ωi∈Ei

Πn
i=1Pi({ωi}) = Πn

i=1Pi(Ei),

the condition for being a product measure is equivalent to

PΠ({(ω1, . . . , ωn)}) = Πn
i=1Pi({ωi})

for all ωi ∈ Ωi. But we can just use this condition to uniquely define PΠ!
Indeed, the right-hand side is a well defined number in [0, 1] and we know that to determine

a probability measure on a discrete probability space with its power-set, it suffices to just to
determine the probability on singletons.

The only question we might have, why does this define a probability measure, i.e. why are
axioms satisfied by this definition? We leave this simple check of axioms to the reader. �

Notice that by the definition of product measure, on the product probability space with
product measure the events F1, . . . , Fn of the form Fi = Ω1 × Ω2 × . . . Ei × · · · × Ωn with
Ei ∈ Fi are mutually independent. This inspires the following observation:

• if we are given some laws of random variables and we want to construct a common
probability space on which all of these random variables are defined and are moreover
mutually independent, then we should use product spaces.

For example to model a sequence of n independent fair coin tosses we take the product
space of n copies of ({0, 1},P({0, 1})) with the probability measure that sets P({0}) =
P({1}) = 1/2. You can check that the model you get is exactly the Laplace model on n
indistinguishable fair coin tosses that we discussed in the beginning of the course.

We will again state this proposition in a larger generality than we prove it.

Theorem 2.16 (Existence of probability spaces with independent random variables // partly
admitted). Consider random variables (Xi)i≥1. Then we can find a common probability space
(Ω,F ,P) and random variables (X̃i)i=1≥1 defined on (Ω,F ,P) such that

• For all i ≥ 1, X̃i and has the law of Xi
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• Moreover, the random variables (X̃i)i≥1 are mutually independent.

We will again content ourselves with proving it in the case of discrete random variables
and for finite products.

Case of finite products of discrete random variables. Using Exercise 1.7, we can find for i =

1 . . . n discrete probability spaces (Ωi,P(Ωi),Pi) and random variables X̂i : Ωi → R that
have the same law as Xi.

By the Lemma 2.15 above, we can construct the product probability space corresponding
to these probability spaces, denoted (Πn

i=1Ωi,FΠ,PΠ).
Now, define X̃i(ω1, . . . , ωn) := X̂i(ωi). One can check that X̃i thus defined are all random

variables and they are defined to have the same law as Xi. Indeed, by the definition of X̃i

and the product measure

PX̃i
(E) = PΠ(R× · · · × X̂−1

i (E)× R× · · · × R) = PX̂i
(E).

Finally, we need to check that the random variables (X̃i)i=1...n are mutually independent
on the space (Πn

i=1Ωi,FΠ,PΠ). From the identity

{X̃j ∈ Ej} = {R× · · · × X̂−1
i (E)× R× · · · × R}

we have that:
PΠ(

⋂
i=1...n

{X̃i ∈ Ei}) = PΠ(Πn
i=1X̂

−1
i (Ei)).

By the definition of product measure this equals Πn
1=1PX̂i

(Ei), which in turn equals Πn
i=1PX̃j

(Ej)

by equality in law. The last expression is equal to Πn
i=1PΠ(X̃i ∈ Ei) by definition and we

conclude. �

2.4.1 Examples of product spaces
As explained above, as soon as we deal with independence, product spaces is a good choice

for the underlying probability space. For example, product spaces come up naturally when
modelling a sequence of independent coin tosses.

Example 2.17. Suppose you have a coin that is not fair, but comes up heads with probability
p ∈ (0, 1). How would you model the sequence of independent n such tosses?

The assumption of all sequences being equally likely does not make sense any longer (e.g.
think of the case when p is near 1, then certainly the sequence of all zeros and all ones
cannot have the same probabilities). However, the assumption of mutual independence and
its relation to product measures are useful!

Indeed, we can define the probability space as follows:
• we take the product space of n copies of ({0, 1},P({0, 1}),Pp) , where Pp such that it
gives 1 with probability p and 0 with probability 1− p.

Notice that in this probability space, the probability of a fixed sequence of n tosses with m
heads and tails n−m is exactly pm(1− p)n−m. If we further want to calculate the probability
that we have exactly m heads we have to sum over all sequences with m heads and we get(
n
m

)
pm(1− p)n−m. Check that

∑n
m=0

(
n
m

)
pm(1− p)n−m = 1!
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In fact, product spaces become very handy in many probabilistic models. For example,
the random walk defined in Example 1.20 can be modeled on a product space and in the
case of random graphs, it gives a nice a very natural way to generalize our model:

Example 2.18 (Erdös-Renyi random graph). For n ∈ N consider again a set of vertices
V of size n The Erdös-Renyi random graph Gp of parameter p ∈ [0, 1] is then defined by
including each possible edge independently with probability p

Exercise 2.7 (Erdös-Renyi random graph). Define the Erdös-Renyi random graph for pa-
rameter p on a product probability space and show that the probability of each possible graph
G is given by Pp({G}) = p|E|(1 − p)n(n−1)/2−|E|, where |E| is the number of edges in this
graph G.

• Show that if we take p = 1
logn

, then the probability that the graph is connected con-
verges to 1 as n→∞.
• Show that if we take p = 1

n2 , then the probability that the graph is connected converges
to 0 as n→∞.

2.5 Bayes’ rule
Often one hears about conditional probabilities not through independence, but through

the Bayes’ rule:

Proposition 2.19 (Bayes’ rule). Let (Ω,F ,P) be a probability space and E,F two events of
positive probability. Then

P(E|F ) =
P(F |E)P(E)

P(F )

It’s not only that the statement looks innocent, but also the proof is a one-liner - by
definition of conditional probability, we can write

P(E|F )P(F ) = P(E ∩ F ) = P(F |E)P(E).

So why is this simple result so important and talked-about? Let us look at an example
that comes from Thomas Bayes himself, who was looking at a slightly more advanced version
of the same situation.

2.5.1 Example of Thomas Bayes
Suppose that every week the same lottery takes place with the same rules, there are

10000 tickets and a proportion p of them wins. To begin with, you don’t know what is the
proportion p of winning this lottery, you only know it is either 1/3 or 2/3.

But now, you have played n times and won m times - can you say whether anything about
this parameter p? Clearly, the number of times you have won tells you something about this
probability - if you win every single time, you would guess that this winning proportion is
rather 2/3 than 1/3; if you never win in 100 rounds, you probably guess the opposite.

To analyse this situation more precisely, we want to construct a probability space. We
want to both include the unknown proportion p, which will correspond to the probability of
winning, and the outcomes of each weekly lottery.

How should we do it?
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• First, suppose the winning probability is p. Then each week there is an independent
event of winning with this probability. This is exactly the same as having n inde-
pendent coin tosses with a biased coin of probability p and we can model it using a
product space.
• But this probability p, the ’chance parameter’ itself is unknown! To solve this, we
actually make this probability p also a random quantity our model, as to begin with
it could be either 1/3 or 2/3.

Thus we can build our probability space as follows
• We set Ω = {1/3, 2/3} × {0, 1}n, where the first co-ordinate denotes the unknown
’chance parameter’ p and the coordinates model the outcomes of n weekly lotteries
by setting 1 if we win, and 0 if we lose.
• A priori all possible combinations could be observed, so we set F := P(Ω).
• Finally, how should we set the probabilities? As we know nothing about p to begin
with, we consider both possibilities of p equally likely. Further, conditioned on the
value of this ’chance parameter’ p, all the weekly lotteries are conditionally indepen-
dent and have winning probability p. Thus, conditioned on the value of p, a fixed
sequence with m wins and n−m losses would have probability pm(1− p)n−m, as in
the case of coin tosses with a biased coin before.

Exercise 2.8. Consider the probability model for the example of Thomas Bayes, i.e. Ω =
{1/3, 2/3} × {0, 1}n, F := P(Ω), P({(p, ω1, . . . , ωn}) = 1

2
pm(1− p)n−m. For i = 1, 2, denote

by Fi the event that p = i/3 and by Em the event that we got exactly m wins in n weeks.
Calculate

• the probability P(Fi)
• the probability P(Em|Fi)
• the probability P(Em)

Using Bayes formula obtain an expression for P(Fi|Em), i.e. the conditional probability of
the winning chance i/3 given m wins.

Show that in this calculation when m = n, we have that P(F2|Em) → 1 as m → ∞.
Conversely, show that if m = 0, we have that P(F1|Em) → 1 as m → ∞. Calculate the
probabilities P(Fi|Em) in the case m = n/3 as n→∞.

This example already explains the usefulness of Bayes’ rule to large extent. Namely, very
often we start modelling unknown situations from very little information, so to build up
our probabilistic model we have to use some assumptions – like the assumptions of equal
probability for each winning probability in this concrete case – and when we have more data,
and more observations we can start updating our model to build a more accurate description
of the situation.

2.5.2 A more recent example of Bayes
Most often, one hears about Bayes’ rule though in the realm of medicine. Let us give an

example of this from a spring of a year that will not be remembered happily.
In late spring 2020 one used several different tests to see whether your body has produced

antibodies against SARS-CoV-2 and thus whether you carry the disease / could be immune
to COVID at least that moment.
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Their preciseness was a good-sounding 95%, meaning that both false-positives (the test
tells that you have antibodies when you actually don’t) and false-negatives (the test tells
that you don’t have antibodies, but you actually do) would only appear in 5% of the tests
taken.

However, despite this good preciseness, caution was recommended in interpreting your
result. Let’s try to understand why:

Exercise 2.9 (Bayes’ rule and positive test results). What are the different events of interest
in a probability model describing the above situation?

• You hear someone claim that, when some tests positive they have 95% chance of
actually having antibodies. Is this statement correct?
• Now, consider this additional information: in late spring 2020 it was estimated that

5% of the population have actually been in contact with SARS-CoV-2. Which proba-
bility space would you now build to estimate the probability that you have antibodies
after a positive test? What is this probability? What if you take two independent tests
on the same day and both come up positive?
• Suppose now that 50% of the population have been in contact with SARS-CoV-2.
In our model, does this change the probability of actually having antibodies, given a
positive test?
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Section 3

Random variables
In this chapter, we will look more closely into random variables and n-tuples of random

variables, called random vectors.

3.1 The cumulative distribution function of a random variable
Our first aim is to get some understanding about how to classify random variables. We

already saw that the law of each random variable is described by the probability over all
possible events, but this is a description that is very difficult to deal with.

It comes out that all the information about the law of a random variable can be uniquely
encoded using what is called a cumulative distribution function.

Definition 3.1 (Cumulative distribution function). We call a function F : R → [0, 1] a
(cumulative) distribution function (abbreviated c.d.f.) if it satisfies the following conditions:

(1) F is non-decreasing;
(2) F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→∞;
(3) F is right-continuous, i.e. for any x ∈ R and any sequence (xn)n≥1 ∈ [x,∞) such

that xn → x, we have that F (xn)→ F (x).

Given a random variable X, we define its cumulative distribution function as follows:

Proposition 3.2 (Cum.dist. function of a random variable). For each random variable X
(defined on some probability space (Ω,F ,P)), the function FX(x) := P(X ∈ (−∞, x]) defines
a cumulative distribution function (c.d.f).

Proof. Set FX(x) = P(X ∈ (−∞, x]). Then as (−∞, x] ⊆ (−∞, y] for x ≤ y, we have by (1)
of Proposition 1.6 that F is non-decreasing.

Let us next check right-continuity of F . So let (xn)n≥1 be any sequence in [x,∞) converging
to x. Then setting An := ∩1≤k≤n(−∞, xk] we get that

⋂
n≥1An = (−∞, x] and right-

continuity follows from (5) of Proposition 1.6.
Now, if (xn)n≥1 → −∞ we have that

⋂
n≥1(−∞, xn] = ∅. Hence similarly to above (5) of

Proposition 1.6 implies that F (xn)→ 0. Finally, if (xn)n≥1 →∞, we have
⋃
n≥1(−∞, xn]→

R and thus by (2) of the same proposition again F (xn)→ 1. �

In fact, it comes out the conversely each cumulative distribution function gives rise to a
unique law of a random variable.

Theorem 3.3 (Laws of random variable are uniquely determined by c.d.f. // uniqueness
admitted). Each cumulative distribution function F gives rise to a unique law of a random
variable X such that FX(x) = P(X ∈ (−∞, x]).

First recall the following exercise:

Exercise 3.1 (Monotonicity and measurability). Let B ⊆ R be an interval. Consider a
non-decreasing (or non-increasing) function f : B → R. Then f is measurable from (B,FE)
to (R,FE).
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We now prove the existence part of theorem using the existence of the uniform measure
on ([0, 1],FE). We will admit the uniqueness part, which again would follow from a gen-
eral statement about uniqueness of measures (see Dynkin’s lemma in the starred section of
Exercise sheet if interested).

Proof of Theorem 3.3, existence. Suppose we are given a cumulative distribution function F .
The idea is to construct the random variables using the probability space PU on ((0, 1],FE,PU),
i.e. the unit interval with the uniform measure.

To do this define XF : (0, 1]→ R by

XF (x) := inf
y∈R
{F (y) ≥ x}.

Then clearlyXF is non-decreasing and hence by Exercise 3.1 above measurable from ((0, 1],FE)
to (R,FE). Hence XF is a random variable.

But now

PU(XF ∈ (−∞, x]) = PU((0, sup
z∈(0,1]

{z < F (x)})) = PU((0, F (x)]) = F (x)

and hence indeed F is the cumulative distribution function of the random variable XF .
�

Example 3.4. Let us calculate the c.d.f of the so called Bernoulli random variable X that
takes value 1 with probability p and 0 with probability 1−p. Notice that all indicator functions
of events correspond to such random variables with P(E) = p.

We have FX(x) = (1 − p)1x≥0 + p1x≥1. More generally for a random variable that
takes only finite number of values x1, . . . , xn with probabilities p1, . . . , pn, we have FX(x) =∑

i=1...n p11x≥xi. (Why?)

Thus we see that FX encodes the behaviour of X rather naturally. Let us now look at
this relation between the cumulative distribution function FX and the random variable X
more closely. By F (x−) we denote the limit of F (xn) with (xn)n≥1 → x from below, i.e. by
numbers xn < x.

Lemma 3.5 (C.d.f vs r.v.). Let X be a random variable on some probability space (P,Ω,F)
and FX its cumulative distribution function. Then for any x < y ∈ R

(1) P(X < x) = F (x−)
(2) P(X > x) = 1− F (x)
(3) P(X ∈ (x, y)) = F (y−)− F (x).
(4) P(X = x) = F (x)− F (x−).

Proof. This is on exercise sheet. �

Thus we see that all jumps of FX correspond to points where PX(X = x) > 0. But how
many jumps are there?

Lemma 3.6. A cumulative distribution function FX of a random variable X has at most
countably many jumps.

Proof. Let Sn be the set of jumps that are larger than 1/n and Ŝn any finite subset of Sn.
Then Ŝn is measurable and 1 ≥ P(X ∈ Sn) ≥ |Ŝn|n−1. Thus it follows that |Ŝn| ≤ n. As
this holds for any finite subset of Sn, we deduce that |Sn| ≤ n and in particular Sn is finite.

36



Now the set of all jumps can be written as a union
⋃
n≥1 Sn. Hence as each Sn is finite

and a countable union of finite sets is countable, we conclude. �

These jumps of a c.d.f. FX are sometimes called atoms of the law of X. More precisely,
we call s ∈ R an atom for the law of X if and only if P(X = s) > 0.

In the extreme case FX increases only via jumps, i.e. is piece-wise constant changing value
at most countable times. Precisely:

Definition 3.7 (Piece-wise constant with at most countable jumps). We say that f : R →
[0,∞) is piece-wise constant with countably many jumps iff there is some countable set S
and some real numbers cs > 0 for s ∈ S such that

∑
s∈S cs <∞ and

f(x) =
∑
s∈S

cs1x≥s.

In the other extreme FX could also be everywhere continuous. Let’s see that these two
extreme correspond to discrete and continuous random variables defined before:

Exercise 3.2. Prove that a random variable X is discrete if and only if FX is piece-wise con-
stant changing value at most countable many times. Moreover, prove that X is a continuous
random variable if and only if FX is continuous.

As the following proposition says, the c.d.f. of any random variable can be written as a
convex combination of c.d.f-s of a discrete and continuous random variable.

Proposition 3.8. Any cumulative distribution function F can be written uniquely as convex
combination of a continuous c.d.f Fc and a piece-wise constant c.d.f. with countably many
jumps Fj i.e. for some a ∈ [0, 1] we have that F = aFj + (1− a)Fc.

In the exercise sheet you will see how to interpret as saying that each random variable can
be written as a random sum of a continuous and discrete random variable.

Proof. If F is either continuous or piece-wise constant with countably many jumps, the
existence of such writing is clear. So suppose that F is neither. Write S for the countable
set of jumps of F . Define

F̂j(x) =
∑
s∈S

1x≥s(F (s)− F (s−)),

which is piece-wise continuous with countably many jumps.
We claim that F̂c := F − F̂j is continuous. Indeed, by definition both F and F̂j both

right-continuous, and thus is also their difference. Moreover, both are continuous at any
continuity point x of F , i.e. when x /∈ S as by definition then F (x) = F (x−) and one can
check the same for Fj. Finally, when s ∈ S, then again by definition of F̂j, we have that

F (s)− F (s−) = 1s≥s(F (s)− F (s−)) = F̂j(s)− F̂j(s−)

and thus F̂c is continuous at such s too.
Now, as F is neither continuous nor piece-wise constant increasing with jumps, we have

that 0 < F̂j(∞) < 1 and 0 < F̂c(∞) < 1. Hence, we can define

Fj(x) :=
F̂j(x)

F̂j(∞)
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and

Fc(x) :=
F̂c(x)

F̂c(∞)
.

By definition both of those are non-decreasing, right-continuous satisfying the correct limits
at ±∞ and hence are c.d.f-s for random variables. As Fj increases only via jumps and Fc is
continuous, we have the desired writing with a = F̂j(∞) and 1− a = F̂c(∞).

Uniqueness is left as an exercise.
�

3.2 Discrete random variables
There are several families of laws of discrete random variables that come up again and

again. As we will see, sometimes these laws also have very nice mathematical characteriza-
tions.

Recall that to characterise the law of a random variable, we can either give the value of
PX(F ) for a sufficiently large set of F (e.g. all intervals) or give the c.d.f. For a discrete
random variable it suffices to just determine the support S and determine PX(X = s) for
each s ∈ S (why?).

Bernoulli random variable
As mentioned already, a random variable that takes only values {0, 1}, taking value 1 with
probability p is called a Bernoulli random variable of parameter p. It is named after the
Swiss mathematician Bernoulli, who also thought that all sciences need mathematics, but
mathematics doesn’t need any. Leaving you to judge, let us see that these examples come
up very often.

Namely, on every probability space (Ω,F ,P), every indicator function of an event, i.e. 1E
gives rise to a Bernoulli random variable and the parameter p is equal to the probability of
the event. Indeed for any event E in a probability space (Ω,F ,P) the indicator function
1E : (Ω,F) → (R,F) is measurable and hence a random variable. Moreover, it is {0, 1}
valued by definition and P({1E = 1}) = P(E) = p.

Sometimes one talks about Bernoulli random variables more generally whenever there are
two different outcomes, e.g. also when the values are {−1, 1}. We then call it the Bernoulli
random variable with values {−1, 1}.

Uniform random variable
Any random variable that takes values in a finite set S = {x1, . . . , xn}, each with equal
probability 1/n is called the uniform random variable on S. We call the law of this random
variable the uniform law. Its c.d.f is given by simply FX(x) = n−1

∑n
i=1 1x≥xi .

Examples are - a fair dye, the outcome of roulette, taking the card from the top of a
well-mixed pack of cards etc...Concretely, for a trivial example is that if we model a fair dye
on Ω = {1, 2, 3, 4, 5, 6}, F = P(Ω) and P(i) = 1/6, then the random variable X(ω) := ω ∈ R
gives rise to a uniform random variable.

We use this family of random variables every time we have no a priori reason to prefer one
outcome over the other. A fancy mathematical way of saying this would be to say that the
uniform law is the only probability law on a finite set that is invariant under permutations
of this set. We will also see on the example sheet that this is the so called maximum entropy
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probability distribution with values in a finite set S.

Binomial random variable
A random variable that takes values in the set {0, 1, . . . , n}, and takes each value k with
probability

pk(1− p)n−k
(
n

k

)
is called a binomial random variable of parameters n ∈ N and 0 ≤ p ≤ 1 (why do the
probabilities sum to one?). We denote the law of such a binomial random variable by
Bin(n, p).

Notice that for n = 1, we have the Bernoulli random variable. Bernoulli random variable
comes up naturally in models of independent coin tosses, random graphs, or models of
random walks. The reason why it comes up so often is that it always describes the following
situation - we have a sequence of independent indistinguishable events and we count the
number of those who occur. Or in other words, the Binomial random variable Bin(n, p) can
be seen as a sum of n independent Ber(p) random variables.

Exercise 3.3 (Binomial r.v. is the number of occurring events). Suppose we have n mutually
independent events E1, . . . , Ek of probability p on some probability space (Ω,F ,P). Consider
the random number of events that occurs: X =

∑n
i=1 1Ei

. Prove that X is a random variable
and has the law Bin(n, p).

For a concrete lively example, let’s go back to the Erdos-Renyi random graph on n ver-
tices, where each edge is independently included with probability p. We can then fix some
vertex v and consider the random variable Mv giving the number of vertices adjacent to v,
i.e. linked to v by an edge. The exercise above shows that this random variable has law
Bin(n− 1, p).

Geometric random variable
A random variable that takes values in the set N, each value k with probability p(1− p)k−1

for some 0 < p ≤ 1 is called a geometric random variable of parameter p. We denote the law
of a geometric random variable by Geo(p). One should again check that this even defines a
random variable, by seeing that the probabilities do sum to one.

A geometric random variable describes the following situation: we have independent events
E1, E2, . . . each of success probability p and we are asking for the smallest index k such that
the event Ek happens. For example, Geo(1/2) describes the number of tosses needed to get
a first heads. This will be made precise on the exercise sheet.

There is also a nice property that characterizes the geometric r.v.:

Lemma 3.9 (Geometric r.v. is the only memoryless random variable). We say that a random
variable X with values in N is memoryless if for every k, l ∈ N we have that PX(X >
k + l|X > k) = PX(X > l). Every geometric random variable is memoryless, and in fact
these are the only examples of memoryless random variables on N.

Proof. Let us start by proving that the geometric random variable satisfies the memoryless
property. First, notice that if P(X = 1) = 1, then X is a degenerate geometric random
variable with p = 1. So we can suppose that we work in the case P(X > 1) > 0.
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Let us check that a geometric r.v. is memoryless. First, it is easy to check that for a
geometric random variable X, we have that P(X > l) = (1 − p)l for some p ∈ (0, 1]. As by
the definition of conditional probability

P(X > k + l|X > k) =
P(X > k + l)

P(X > k)
,

it follows that P(X > k + l|X > k) = (1− p)k+l−k = (1− p)l = P(X > l) as desired.
Now, let us show that each random variable satisfying the memoryless property has the

law of a geometric random variable. Again if P(1) = 1, we are done. Otherwise we can write

P(X > 1 + l|X > 1)P(X > 1) = P(X > 1 + l).

As for a memoryless random variable P(X > l) = P(X > 1 + l|X > 1), we obtain

P(X > l)P(X > 1) = P(X > l + 1).

Thus inductively P(X > l) = P(X > 1)l and hence X is a geometric random variable of
parameter p = 1− P(X > 1). �

Poisson random variable

Poisson was a French mathematician who has famously said that the life is good for only
two things - mathematics and teaching mathematics. His random variables come up quite
often.

The Poisson random variable is a discrete random variable with values in {0} ∪ N and
taking the value k with probability

e−λ
λk

k!
for some λ > 0. We denote this distribution by Poi(λ). Poisson random variables de-
scribe occurrences of rare events over some time period, where events happening in any two
consecutive time periods are independent. For example, it has been used to model

• The number of visitors at a small off-road museum.
• More widely, the number of stars in a unit of the space.
• Or more darkly, it was used to also model the number of soldiers killed by horse kicks
in the Prussian army.

One way we see the Poisson r.v. appearing is via a limit of the Binomial distribution if
the success probability p scales like 1/n:

Lemma 3.10 (Poisson random variable as the limit of Binomials). Consider the Binomial
distribution Bin(n, λ/n). Prove that as n→∞ it converges to Poi(λ) in the sense that for
every k ∈ {0} ∪ N, we have that

P(Bin(n, λ/n) = k)→ e−λ
λk

k!
.

Proof. By definition, for any fixed n ∈ N and k ∈ {0} ∪ N, we have

P(Bin(n, λ/n) = k) =

(
n

k

)
λk

nk

(
1− λ

n

)n−k
.

40



Using (
n

k

)
=

n!

(n− k)!k!
=
n(n− 1) · · · (n− k + 1)

k!
.

we can write

P(Bin(n, λ/n) = k) =
λk

k!

(
1− λ

n

)n
n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)−k
.

But now as n→∞ (
1− λ

n

)n
→ e−λ.

Moreover, for any fixed t > 0 also n−t
n
→ 1 as n→∞ and hence

n(n− 1) · · · (n− k + 1)

nk
→ 1

and (
1− λ

n

)−k
=

(
n− λ
n

)−k
→ 1,

proving the lemma. �

To connect this to the occurrences of rare events described before, one could think as
follows. Suppose we try to model the number of arrivals over time window [0, 1], say one
year in a distant location. We then cut a time-window [0, 1] into n equal time-segments of
length 1/n with n large, say into 365 days, so that we can suppose that at each time-segment,
say each day, there is at most one arrival. In this case we can describe the arrival or non-
arrival using Ber(p) or 1E for some event E. If we further suppose that all days are alike,
we can take this parameter p to be the same for all time-segments of the same length, e.g.
for all days. Moreover, if we suppose that an arrival in one time-segment does not influence
arrivals in other time-intervals, we can assume that all events E corresponding to different
time intervals are mutually independent. Hence the total number of arrivals is the number
of independent events happening, when the event probability is p - we saw above that this
gives a Bin(n, p) random variable. But now, if you check carefully the proof above, you see
that if p is not of the form λ/n for some λ > 0, then in fact the number of events will either
go to infinity or go to zero - i.e. to have a non-trivial random variable in the limit n→∞,
we are forced to set p = λ/n.

Poisson random variables also behave very well under taking independent copies. In
particular, the related Poisson point processes is a very interesting random process:

Exercise 3.4 (Poisson random variables). Let X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2) be two
independent random variables defined on the same probability space.

• Prove that then X1 +X2 is also a Poisson random variable with parameter λ1 + λ2.
• Let now Y1, Y2, . . . be independent Ber(p) random variables defined on the same prob-
ability space. Prove that X :=

∑X1

i=1 Yi also has the law of Poi(pλ) and X1 −X has
the law of Poi((1− p)λ) and is independent of X.

Now, we consider what is called a Poisson point process on N: This is a collection of i.i.d.
random variables (Xi)i∈N where each Xi ∼ Poi(λ). For example you can think that some
Newtonian apples fall on each integer. What is the law of the total number of apples on a
finite set S ⊆ N? Now colour every apple independently red with probability p and green with
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probability 1 − p - i.e. every apple is ripe with probability p. Prove that restricting to only
ripe / green apples also gives a Poisson point process on N and that moreover these processes
are independent.

Finally, let i1 be the first index of N, which contains at least one apples, let i2 be the
second index that contains at least one apple etc. What is the distribution of the vector
(i1, i2 − i1, i3 − i2, . . . )?

3.3 Continuous random variables
Recall that we called a random variable X continuous if FX was continuous, i.e. without

any jumps. From Lemma 3.5 it follows that P(X = x) = 0 for all x ∈ R. Most often
continuous random variables arise via what is called a density function and this is also how
we will usually construct them.
Definition 3.11 (Continuous r.v. with density). Let X be a random variable and fX : R→
R be a non-negative integrable function with

∫
R fX(x)dx = 1. Then we say that a r.v. X has

density fX if for every x ∈ R

FX(t) =

∫ t

−∞
fX(x)dx.

Remark 3.12. We remark straight away that there are also continuous random variables
without a density (see starred section of the exercises).

8

Let us now look at the definition more closely. First, it is important to check the definition
even makes sense, i.e. that the FX defined actually is a cumulative c.d.f.:
Exercise 3.5. Consider a non-negative Riemann integrable function fX with

∫
R fX(x)dx =

1. Define FX(x) :=
∫ x
−∞ fX(x)dx.

• Prove that FX is a cumulative distribution function.
• Prove that if two random variables have the same density function, they have the
same law
• Prove that given FX , there is at most one continuous fX such that FX(t) :=

∫ t
−∞ fX(x)dx.

• Give examples to show that fX is however not uniquely defined by FX .
Further, let us look at an interpretation. Using Lemma 3.5 and the remark above that

P(X = x) = 0 for every a < b, we can also write

P(X ∈ (a, b)) = P(X ∈ [a, b]) =

∫ b

a

fX(x)dx.

8You might have already heard - and if not you will hear from me, and more next semester - that there
are several notion of an integral. In particular, next to the Riemann integral stands the Lebesgue integral.
So what do we mean by integrable?

We have seen that Riemann integral does not go well with measure theory - for example the set Q is a
Borel set in R, however 1Q is not Riemann-integrable. So it would be much more convenient to use the notion
called the Lebesgue integral that you meet fully in Analysis IV and partly later on in this course. However,
for now, it is really no restriction for us if for the sake of precision we just consider Riemann integrals. In
fact, all examples of densities we will see are Riemann integrable, so this is not a real restriction. Moreover,
none of the results change become untrue when you come back and change Riemann integrals for Lebesgue
integrals - in fact, as you will see next semester, for any function f that is Riemann integrable, its Lebesgue
integral and Riemann integral agree.
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it is important to notice that fX does not give you the probability of {X = x} at each point
- we already saw that for continuous random variables this probability is 0 for all x ∈ R.
However, taking b = a + ε, we can still obtain an interpretation of fX , explaining why it is
called the density function. Indeed, if for example fX is continuous, we can write

P(X ∈ (a, a+ ε)) =

∫ a+ε

a

fX(x)dx = εfX(a) + o(ε),

and thus one can think of εfX(a) as of the probability in being in the interval (a, a+ ε). In
particular, notice that ε−1P(X ∈ (a, a + ε)) → fX(a) as ε → 0. This is of course related
to the Fundamental theorem of calculus, which in the case of continuous fX tells us that
F ′X(x) = fX(x).

Let us now look at some examples. From the exercise above we see that to describe a
continuous random variable with density it suffices to give the density function: an integrable
non-negative function with total integral 1.

Uniform random variable on [a, b]
A random variable U with density fU(x) = 1

b−a1[a,b] is called a uniform random variable on
the interval [a, b] and is denoted sometimes U = U[a,b]. We have already met the uniform ran-
dom variable on [0, 1] - as expected its law PU is equal to the uniform / Lebesgue measure on
[0, 1], considered as a probability measure on R. It’s c.d.f is given by FU(x) = 10≤x min{x, 1}.
You can also think of it as the limit of discrete uniform random variables taking values in
{i/n : i = 1 . . . n} - we will make this precise on the example sheet in some form, and then
come back to it again later in the course.

Exponential random variable
Let λ > 0. The random variable X with density fX(x) = λe−λx1x≥0 is called the exponential
random variable of parameter λ, and its law is denoted sometimes Exp(λ). (We will check
on the exercise sheet that the total mass is 1). In this case you can think of the exponential
random variable as a continuous friend of the geometric random variable, as it also satisfies
the memoryless property:

Exercise 3.6 (Exponential r.v. is the only memoryless random variable). We say that
continuous a random variable X satisfying P(X > 0) = 1 is memoryless if for every x, y > 0
we have that PX(X > x + y|X > y) = PX(X > x). Prove that the exponential random
variable is memoryless. Moreover, prove that every continuous memoryless random variable
has the law of the exponential random variable.

As geometric random variables, exponential random variables too are related to waiting
times, just the underlying process is no longer in discrete time (like a sequence of tosses) but
continuous time (like waiting for the next call from a friend). We will be able to make some
more precise statements later in the course.

Gaussian random variable

Maybe the most important example of a random variable is that of a normal or Gaussian
random variable. Given two parameters µ ∈ R and σ ∈ R, we say that N has the law of a
normal random variable of mean µ and variance σ2, denoted N ∼ N (µ, σ2) if its density is
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given by

fN(x) =
1√

2πσ2
exp(−(x− µ)2

2σ2
).

We call the law N (0, 1) the standard normal random variable, or the standard Gaussian.
Normal laws come up everywhere because of the so called Central limit theorem. A weak
version of it could be vaguely stated as follows:

• Let X1, X2, . . . be a sequence of i.i.d. random variables such that Xi has the same
law as −Xi and moreover, each Xi is bounded in the sense that there is some C > 0
with P(Xi < C) = 1. Let Sn =

∑n
i=1Xi. Then in the limit n → ∞ we have

that Sn√
n
becomes a normal random variable: for every interval (a, b), we have that

P( Sn√
n
∈ (a, b))→ P(N ∈ (a, b), where N is a Gaussian random variable.

For example in physics experiments often we rarely expect to get the ’exact’ value, but rather
it comes with an error. This error is assumed to be a sum of many independent smaller errors,
and thus, unless there is some bias that has not been accounted for, the observed values will
have a normal distribution around the actual value.

We will prove a version of this theorem towards the end of the course, after having devel-
oped more tools to work with random variables. There is a first version of this in the starred
section of the exercises.

It is common to mention here that although the normal random variable is the most used
one, its cumulative distribution function - that has earned its own notation Φµ,σ2 - given as
always by

Φµ,σ2(x) = P(N ≤ t) =
1√

2πσ2

∫ t

−∞
exp(−(x− µ)2

2σ2
)dx

does not admit a more explicit formula. So in the old days one had to really check a long
table with values to see give a numerical answer for, say, P(N > 12) or P(|N | < 200). I
suspect there might be more modern ways now...

3.3.1 More random variables
Like we have seen before in the course - when we want to create more objects, one way is

to start applying some operations to already existing objects. Here, this means operations
on random variables.

Here is one easy way to construct more random variables:

Lemma 3.13. Let X be a random variable on some probability space (Ω,F ,P). Then for
any continuous real function φ : R → R, we have that φ(X) is also a random variable that
can be defined on the same probability space.

Proof. This follows from two observations:
• Each continuous function f from (X, τX) to (Y, τY ) is measurable w.r.t. the respective
Borel σ−algebras: indeed, by Lemma 1.8 it suffices to check that each U ∈ τY ,
f−1(U) is measurable and we know f−1(U) is open by continuity and thus also Borel
measurable as τX ⊆ FτX .
• The composition of measurable functions is measurable: this can be checked directly.

�
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It is natural to ask whether the two classes of random variables - discrete and continuous -
are stable under this operation. It comes out that this is always the case for discrete random
variables, but not for the continuous random variables.

Exercise 3.7 (Functions of a random variable). Let X be a discrete random variable and
φ : R→ R be a continuous real function. Prove that φ(X) is also a discrete random variable.
Is the image of a continuous random variable necessarily a continuous random variable?

Still, in case of continuous random variables X, when g is nice enough, we do know that
g(X) is also continuous and we can even determine its density:

Proposition 3.14 (Density of the image). Let U, V be any open subsets of R such that
1U , 1V are Riemann-integrable. Let X be a continuous random variable with a density fX
that is continuous in U and zero outside of cl(U). Let φ : R → R be continuous and such
that its restriction to U is bijective to V and continuously differentiable with φ′ non-zero
everywhere on U . Then φ(X) is also a continuous random variable with a density fφ(X) that
is zero outside of cl(V ) and given inside of V by:

fφ(X)(x) =
1

|φ′(φ−1(x))|
fX(φ−1(x))

Proof. As φ is continuous, φ(X) is a random variable. As P(X ∈ U) = 1, we have that
P(φ(X) ≤ t) = P(φ(X) ∈ V ∩ (−∞, t]). But {y ∈ U : φ(y) ≤ t} is Riemann-integrable and
thus for t ∈ R

P(φ(X) ≤ t) = P(φ(X) ∈ V ∩ (−∞, t]) =

∫
R

1y∈U1φ(y)≤tfX(y)dy.

Inside U , we can use the diffeomorphism φ : U → V to change the coordinates x = φ(y) to
obtain ∫

R
1x∈V 1x≤tfX(φ−1(x))

1

|φ′(φ−1(x))|
dx.

Setting fφ(X)(x) = 0 for x /∈ V we obtain the claim as the above integral can be written as∫
x≤t

fX(φ−1(x))
1

|φ′(φ−1(x))|
dx

for any t ∈ R.
�

Remark 3.15. It might be more illustrative for you to actually also do the previous proof
more by hand: we already saw that in case of continuous density for every x ∈ X it holds
that P(X ∈ (x, x + ε)) = εfX(x) + o(ε) and thus ε−1P(X ∈ (x, x + ε)) → fX(x) as ε → 0.
Now, by bijectivity of φ, we have P(φ(X) ∈ (x, x + ε)) = P(X ∈ (φ−1(x), φ−1(x + ε))). Use
this to deduce the above formula.
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Section 4

Random vectors
We already saw in the notes and on the example sheet that often several random variables

come up in the same probabilistic situation and are naturally defined on the same probability
space. So far we were looking mainly at their individual laws, or the situation when they
were independent. But this is not always the case. When one starts being interested in the
joint behaviour of several random variables, one often thinks in terms of random vectors:

Definition 4.1 (Random vectors and marginal laws). Consider a probability space (Ω,F ,P).
We say that (X1, X2, . . . , Xn) is a random vector if and only if each of X1, X2, . . . , Xn is a
random variable. The law PXi

of each r.v. Xi is called its marginal law.

Marginal laws are just the individual laws of random variables Xi that appear as compo-
nents of a random vector and that we have been discussing so far. We know how to describe
those. Yet they don’t encode the relation between the random variables.

For example consider on the one hand (X1, X2), where bothX1 andX2 encode independent
fair coin tosses. On the other hand, consider (X1, X̃2), where X1 is a fair coin toss, but X̃2

is heads when X1 is tails and X̃2 is tails if X1 is heads. Then the marginal laws of the
vector (X1, X2) and (X1, X̃2) are the same (why?), yet they clearly describe very different
situations!

So how can we mathematically encode this relation between the random variables? In fact,
to look at joint laws, it is actually natural to look at (X1, . . . , Xn) as a Rn-valued random
variable:

Lemma 4.2 (Joint law of random vectors). Let X = (X1, . . . , Xn) be a random vector
defined on (Ω,F ,P). Then (X1, . . . , Xn) as a vector is a (Rn,FE)-valued random variable.
In particular it induces a probability measure PX on (Rn,FE) called the joint law of the
vector X.

In the other direction, any (Rn,FE)-valued random variable gives rise to a random vector
by the definition above.

The question here is measurability: does measurability of each component as a function
(Ω,F)→ (R,FE) guarantee the measurability of the function (Ω,F)→ (Rn,FE) and vice-
versa. Thus the lemma follows directly from a very general result in measure theory, which
we will not prove here: 9:

Lemma 4.3. Let (Ω,F) and ((Ωi,Fi))1≤i≤n be measurable spaces. Then the map f :
(Ω,F)→ (Π1≤i≤nΩi,FΠ) is measurable if and only if for every i = 1 . . . n the map fi = pi ◦f
mapping (Ω, F ) → (Ωi,Fi) is measurable (here pi is the projection map to the i-th coordi-
nate).

This is a very useful lemma, as we can start doing arithmetic operations using random
variables:

This set-up allows us to quickly prove the following basic result:
9Notice the similarity to the following statement from topology: if fi : (X, τX)→ (Yi, τYi) are continuous,

then so is f : (X, τX)→ (Y1 × · · · × Yn, τΠ) given by f = (f1, . . . , fn).
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Lemma 4.4. Let X be a random vector in Rn and a any fixed vector in Rn. Then
∑n

i=1 aiXi

is a random variable. Also Πn
i=1Xi is a random variable.

I encourage you to even prove by hand that the sum of two random variables X1 and X2

is a random variable - it gets very messy!

Proof. We saw that in fact X is a measurable function from (Ω,F) to (Rn,FE). But now
Φ : Rn → R given by Φ(x) =

∑n
i=1 aixi is continuous from (Rn, τE) to (R, τE). But as argued

before, a concatenation f2 ◦ f1 of measurable maps f1 : (Ω,F) → (Ω1,F1), f2 : (Ω1,F1) →
(Ω2,F2) is (Ω,F) → (Ω2,F2)-measurable. Thus

∑n
i=1 aiXi = Φ(X) is measurable from

(Ω,F) to (R, τE) and hence a random variable. �

4.1 Joint cumulative distribution function
Similarly to the case of a single random variable, random vectors can be characterised by

a certain family of functions.

Definition 4.5 (Joint cumulative distribution function). Any function F : Rn → [0, 1] is
called a joint cumulative distribution function (c.d.f.), if it satisfies the following conditions:

(1) F is non-decreasing in each coordinate.
(2) F (x1, . . . , xn)→ 1 when all of xi →∞.
(3) F (x1, . . . , xn)→ 0, when at least one of xi → −∞.
(4) F is right-continuous, meaning that for any sequence (xm1 , . . . , x

m
n )m≥1 such that for

all m ≥ 1 we have that xmi ≥ xi, it holds that F (xm1 , . . . , x
m
n )→ F (x1, . . . , xn).

Notice that for n = 1 we are back to the case of individual c.d.f. Moreover, if we send any
n− 1 coordinates to infinity, then we also obtain the c.d.f. of the remaining coordinate:

FXi
(xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞).

As mentioned, each random vector uniquely identifies a joint c.d.f. and vice-versa. One
part of the proposition is again easy:

Proposition 4.6 (Joint c.d.f.s of random vectors). Let X := (X1, . . . , Xn) be a random
vector defined on some probability space (Ω,F ,P). Then

FX(x1, . . . , xn) := PX(X1 ≤ x1, . . . , Xn ≤ xn)

gives rise to a joint cumulative distribution function.

Proof. This is left as an exercise. �

However, the existence and uniqueness part given the joint c.d.f. is technical and thus
admitted.

Theorem 4.7 (Existence and uniqueness of random vectors via joint c.d.f. (admitted)).
Any joint c.d.f. gives rise to a unique joint law of a random vector.

Again, random vectors give us mainly a clearer way of looking at things. We can for
example now rephrase the last point of Lemma 2.11 as follows:

Lemma 4.8 (Independence using joint c.d.f.). Consider a random vector X = (X1, . . . , Xn)
defined on some probability space. Then X1, . . . , Xn are mutually independent if and only if
FX(x1, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn) for all x = (x1, . . . , xn) ∈ Rn.
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As in the case of usual random variables, one can also talk about discrete and continuous
random vectors - in both cases what we have in mind is that all components are either dis-
crete or continuous. But there could well also mixed cases. Here is a concrete example of a
discrete random vector:

Multinomial random vector. Recall that the Binomial random variable Bin(n, p) mod-
els the number of heads out of n independent tosses of a coin that comes up heads with
probability p. As n is equal to the sum of heads and tails, it actually models both the num-
ber of heads and the number of tails. But suppose you want to model the random vector
(n1, n2, . . . , n6) that gives you respectively the numbers of 1-s, 2-s etc of n independent dice
throws? This is modelled by the so called multinomial random variable of parameters n, 6
and p1 = · · · = p6 = 1/6.

The probability law of the multinomial random vectorM ∼Mul(n,m, p) with parameters
n,m, p is defined by

PM(M = (k1, . . . , km) =
n!

k1! · · · km!
pk1

1 · · · pkmm ,

whenever
∑m

i=1 ki = n and by PM(M = (k1, . . . , km) = 0 otherwise. Notice that the marginal
law on any coordinate i is given by the Binomial law Bin(n, pi).

As explained above, the multinomial random vector appears in the following situation: we
consider a discrete random variable X taking values x1, . . . , xm with probabilities p1, . . . , pm.
And let X1, X2, . . . , Xn be i.i.d. copies of X defined on some common probability space.
Now define the random vector M = (M1, . . . ,Mn) as Mj =

∑n
i=1 1Xi=xj . Then it is simple

to check that each Mj is a random variable (in fact you have already proved this!) and thus
M is a random vector. You can also verify that this random vector has the multinomial law.

4.2 Random vectors with density
Let us now consider the very special case of continuous vectors with density. This will be

also a good source for more interesting examples.

Definition 4.9 (Random vectors with density). Let X = (X1, . . . , Xn) be a random vector
and let fX be a non-negative Riemann-integrable function from Rn → [0,∞) with total
integral equal to 1. Then we say that fX is the joint density of X if and only for any box
(a1, b1]× . . . (an, bn]

(4.1) PX̄(X1 ∈ (a1, b1], . . . , Xn ∈ (an, bn]) =

∫
(a1,b1]×···×(−an,bn]

fX(x̄)dx̄.

Remark 4.10. Again, given the Lebesgue integral the natural statement would be that for
every Borel measurable set E:

P(X ∈ E) =

∫
E

fX(x̄)dx̄.

In the case of Riemann integral the notion of integral might just not be defined on all such
E.
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Similarly to the 1d case, we also have the interpretation of this density as representing
the probability of being in an infinitesimal neighbourhood around a point t = (t1, . . . , tn).
Indeed, if fX is continuous, then you can check that we have

(4.2) PX((X1, . . . , Xn) ∈ (t1, . . . , tn) + [−ε/2, ε/2]n) = fX(t1, . . . , tn)εn + o(εn).

Further, we can let ai → −∞, for every (t1, . . . , tn) ∈ Rn set

FX̄(t1, . . . , tn) :=

∫
(−∞,t1]×···×(−∞,tn]

fX(x̄)dx̄

and verify that this indeed gives rise to a c.d.f. Hence as joint c.d.f. characterise the joint
law of random variables, can define laws of random vectors via their density function.

Finally, from the results in your course in Analysis II it then follows that if E is a subset
of Rn such that 1E is Riemann-measurable, then in fact:

P(X ∈ E) =

∫
Rn

1EfX(x̄)dx̄.

Notice that by the Fubini theorem for multiple Riemann-integrable functions, if the random
vector admits a density, then also do its components:

Lemma 4.11 (Marginal densities). Let X = (X1, . . . , Xn) be a random vector with density
fX such that for every I0 ⊆ {1, . . . , n} the function fIc0(x′) obtained by fixing all the co-
ordinates in I0 is Riemmann-integrable. Then the marginal laws PI0 obtained by projecting on
the co-ordinates contained in I0 admits a density given by integrating out all the components
in {1, . . . , n} \ I0.

Remark 4.12. Here we ask the condition that fixing any set of coordinate gives a Riemann-
integrable function. This might be tiresome to check, but it is for example always true when
f is continuous, or when f is piece-wise continuous with finite number of jumps along any
co-ordinate – we call the latter just piece-wise continuous.

Here are some quick examples of random vectors:

Uniform random vector on [a, b]n. Similarly to a uniform random point on an interval,
we can talk of a uniform random point U = (U1, . . . , Un) in a rectangular box. To do this,
we just define the density:

fU(x1, . . . , xn) =
1

|b− a|n
1x∈[a,b]n .

Notice that in this case the marginal laws Ui are just uniform random variables on [a, b].
Can you see why the variables (U1, . . . , Un) are mutually independent?

Gaussian random vector. Maybe the most important example here is that of the Gaussian
(also called a normal) random vector N (µ,C), where µ is a vector in Rn and C positive
definite symmetric n × n matrix. We will call µ the mean of the Gaussian vector, and the
matrix C the covariance matrix – we will get to the reasons for this vocabulary in a few
lectures time. The density of the Gaussian random vector is given by:

fX(x1, . . . , xn) =
1

(2π)n/2
√

det(C)
exp(−1

2
(x− µ)TC−1(x− µ)).
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When µ = 0 and C is the n × n identity matrix In, we call the law N (0, In) the standard
Gaussian in Rn. As you will see on the exercise sheet, all other Gaussian vectors in Rn

are given by just linear transformations of the standard Gaussian. To prove that we need
to however develop a bit more theory on how the density of random vectors changes under
transformations.

We already saw that transformations of random vectors remain random vectors. As in the
1D case, in the case of random vectors with density, we can again also determine the density.
In this respect recall that for a diffeomorphism Φ : Rn → Rn one defines the differential DΦ
as the n×n matrix (DΦ)ij = ∂Φi

∂xj
. The Jacobian is defined as the determinant of this matrix.

Proposition 4.13 (Density of the image of a random vector). Consider two open Riemann-
integrable sets U, V ⊆ Rn. Let X be a continuous random vector with density fX that is zero
outside of cl(U) and is continuous in U . Let Φ : Rn → Rn be continuous, and when restricted
to U both bijective and continuously differentiable with a Jacobian JΦ(x) = detDΦx that is
non-zero on U , i.e. a C1-diffeomorphism between U and V . Then Φ(X) is also a continuous
random vector with a density fΦ(X) that is zero outside of V and inside of V iss given by:

fΦ(X)(x) =
1

|JΦ(Φ−1(x))|
fX(Φ−1(x)).

The proof is basically the same as in the one-dimensional case.

Proof. Let E be a box. Then 1Φ−1(E∩V )1U is Riemann-integrable by results from Analysis II.
By using the fact that Φ is bijective on U and P(X ∈ U) = 1,

P(Φ(X) ∈ E) = P(X ∈ U ∩ Φ−1(E ∩ V )).

As X has density, we can thus write

P(X ∈ Φ−1(E ∩ V ) ∩ U) =

∫
Rn

1U1Φ−1(E∩V )fX(x̄)dx̄.

Now, we can use the multidimensional change-of-coordinates theorem of Analysis II for the
transformation Φ−1 to write∫

Rn

1U1Φ−1(E∩V )fX(x̄)dx̄ =

∫
Rn

1E1V fX(Φ−1(x̄))|JΦ−1(x̄)|dx̄

As |JΦ−1(x̄)| = 1
|JΦ(Φ−1(x))| , by setting fφ(X) = 0 outside of V we conclude.

�

Remark 4.14. This would be a bit nicer, more natural and more general if we had the notion
of Lebsegue integral - we have already seen that the Riemann integral and Borel σ−algebra
are not an ideal couple!

A nice application of this is determining the density of a sum of i.i.d. random variables:

Corollary 4.15. Let X1, X2 be two independent continuous random variables with contin-
uous densities fX1 and fX2. Then their sum is a continuous random variable with density
given by fX1+X2(y) =

∫
R fX1(x)fX2(y − x)dx, i.e. by the convolution of the two densities.

This definition of the density might look asymmetric, but you should check that it is not.
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Proof. We use Proposition 4.13 with Φ(x, y) = (x, x+ y). Indeed, this is an invertible linear
map and thus a C1 diffeomorphism from R2 → R2. Moreover, its Jacobian J = 1. Thus by
Proposition 4.13 the density of the vector Φ(X, Y ) at s, t is given by:

fX1,X1+X2(x, y) = fX1,X2(x, y − x).

But now X1, X2 are independent and hence we can further write this as fX1(x)fX2(y − x).
Finally, we notice that the law of X1 + X2 is the marginal law of Φ(X, Y ) in the second
coordinate. So we can use Lemma 4.11 to calculate this marginal density and obtain the
desired formula. �

Let us look at a cute example:
• Consider two independent standard Gaussian random variables X1, X2. Then also

X1+X2√
2

is a standard Gaussian random variable. Indeed, by the corollary above the
density of X1 +X2 is given by 1

2π

∫
R e
−x2/2e−(y−x)2/2dx, which we can rewrite as

1√
2π

∫
R

1√
2π
e−(x−y/2)2

e−y
2/4dx =

e−y
2/4

√
4π

∫
R

1√
π
e−(x−y/2)2

dx.

But the last integral is just the total mass of a Gaussian N (y/2, 1/2) and thus equal
to 1. Hence we recognize that X1 + X2 is a Gaussian N (0, 2). It is an easy check
that then X1+X2√

2
is a standard Gaussian.

The joint density gives us moreover a new condition for checking mutual independence:

Exercise 4.1 (Independence using densities). Consider a random vector X = (X1, . . . , Xn)
defined on some probability space. Suppose that X = (X1, . . . , Xn) admits a continuous den-
sity and all Xi admit a continuous density. Prove that X1, . . . , Xn are mutually independent
if and only if fX(x1, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn). What happens if the densities are
piece-wise continuous with finitely many jumps?

Deduce that for the uniform random vector U = (U1, . . . , Un) on [a, b]n the components
U1, . . . , Un are mutually independent. Moreover, deduce that if (X, Y ) is a Gaussian random
vector N (µ,C), then X and Y are independent Gaussians if and only if C(1, 2) = 0.

Remark 4.16. In fact, the statement holds in more generality, however one needs care.
Indeed, we saw that density functions are not uniquely defined - for example changing the
value at a point does not change the density function. So a natural statement is actually
asking for the equality only on some very large set, but we don’t really have tools to deal with
this setting at the moment. So for now, you can just assume that whenever the density of fX
is given by the product of fxi for all but countable number of points, we have independence;
and on the other hand, if there is independence the joint density functions is equal to the
product of the densities in the sense that all integrals over boxes agree.

4.3 Conditional laws for random vectors
Given a random vector (X1, . . . , Xn), we talked about the joint law that describes the

probability measure induced on Rn. We also discussed marginal laws, that give the individual
laws of each component or a vector of components.
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We now add to this list the conditional laws. Recall that given any probability space
(Ω,F ,P) and any event E ∈ F with P(E) > 0, one could define the conditional probability
measure on (Ω,F) by setting P(F |E) := P(E∩F )

P(E)
for each F ∈ F .

Given two random variables X1, X2 we will be interested in knowing the conditional law
of X1, given the value of X2 – so we are just calculating conditional probability measures,
with events E of the type X2 = x. I will state the definition in a larger context and then
come back to a simpler example.

Definition 4.17 (Conditional law for discrete random variables). Let X1, X2, . . . , Xn be
discrete random variables on a common probability space. Write {1, . . . , n} as a union of two
disjoint subsets I0 and I1. Now consider some fixed vector (xi)i∈I1 with P((Xi = xi)i∈I1) > 0.
Then the conditional law of (Xi)i∈I0 given (Xi = xi)i∈I1 is given by

P((Xi = yi)i∈I0|(Xi = xi)i∈I1) :=
P((Xi = yi)i∈I0 ∩ (Xi = xi)i∈I1)

P((Xi = xi)i∈I1)
.

Let us write this out in the case of n = 2: then, assuming that P(X2 = x2) > 0 the
conditional law of X1 given X2 = x2, is - as expected - described by giving for each x in the
support of X1, the conditional probability

P(X1 = x|X2 = x2) :=
P({X1 = x} ∩ {X2 = x2})

P(X2 = x2)
.

Now continuous random variables take any value with zero probability, so this wouldn’t
work directly. And as you will see on the exercise sheet, conditioning on events of zero proba-
bility is tricky. So we cannot just blindly reuse the definition of the conditional probabilities.
Yet, for variables with a nice density one can give sense to conditional laws via densities.

As the general version might be a bit harder to parse, let us start from a simple version

Definition 4.18 (Conditional law for continuous random variables with density (simple)).
Let X = (X1, X2) be random vector with a continuous joint density. Let y be such that the
marginal density of X2 is positive: fX2(y) > 0. Then the conditional law of X1, given X2 = y
is defined to be the continuous r.v. with the following density:

fX1|X2=y(x) :=
fX1,X2(x, y)

fX2(y)
.

It requires a check that the conditional density is indeed a density, but I leave this to you.
As a philosophy - although densities are not like probabilities, one can sometimes use them
in similar roles. Let me now state a general version of the definition, where one can condition
on a part of the vector.

Definition 4.19 (Conditional law for continuous random variables with density (general)).
Let X = (X1, X2, . . . , Xn) be random vector with a continuous joint density. Write {1, . . . , n}
as a union of two disjoint subsets I0 and I1 and write XI0 and XI1 for the corresponding
random vectors. Now consider some fixed vector x such that the marginal density at xI1 is
positive, i.e. fXI1

(xI1) > 0. Then the conditional density of XI0 given XI1 = xI1 is defined
by

fXI0
|XI1

=xI1
(xI0) :=

fX(x)

fXI1
(xI1)

.
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As above, it is an easy check that this does actually define a density. As with conditional
probabilities in general, conditional laws are usually notoriously difficult to calculate and
might be very different from the initial law.

However, there is one case, where things are nice again - this is Gaussian vectors. Although
this holds in a large generality and could even be proved with the methods we already have,
we restrict ourselves here to the 2-dimensional case. We will come back to the general case,
once we have some more elegant and efficient tools at hand.

Lemma 4.20 (Conditional laws for Gaussians in 2D). Let (X, Y ) be a Gaussian random
vector N (µ,C).Then the conditional law of Y , given X = x for any x ∈ R is also Gaussian,
similarly if we switch the roles of X, Y .

Proof. This is on the exercise sheet
�
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Section 5

Mathematical expectation
We will continue working with random variables and start looking at several different

characteristics or properties of their law, based on the concept of mathematical expectation.
Mathematical expectation, or just ’expectation’, or ’expected value’, or ’mean’ is a fancy
name for taking the average in context of probability measures. Its introduction in the early
times of probability was roughly motivated by a very simple question:

• Suppose you are offered the following deal - a dice is thrown and you get as many
francs as many dots come up on the top of the dice; but you have to pay n francs
independently of the result in return. How many francs should you agree to pay?

Whereas what is really the ’right’ answer still depends on some further conditions and
assumptions. However, the following vaguely stated mathematical result gives some insight
into the problem (and was used in these old times of gambling!):

• Let X1, X2, . . . be independent random dice throws. Let Sn =
∑n

i=1Xi. Then in the
limit n→∞ we have that Sn

n
converges to 1+2+3+4+5+6

6
= 3.5.

This result is a specific case of the so called law of large numbers, and it tells you that the
average gain from one dice throw is 3.5. So would this mean that you should offer anything
below 3.5 francs? While pondering on this worldly problem, let us dig into the mathematical
theory.

5.1 Expected value of a discrete random variable
We start with the discrete case to lay clear foundations. The continuous case can be seen

as an extension of this:

Definition 5.1 (Expected value of a discrete random variable). Let X be a discrete random
variable defined on some probability space (Ω,F ,P) and with support S. We say that X
admits an expected value or that X is integrable if

∑
x∈S |x|P(X = x) <∞.

For an integrable random variable X, the expected value of X, denoted E(X) is defined as

E(X) =
∑
x∈S

xP(X = x).

Remark 5.2. Observe the following
• The condition for integrability is there of absolute summability - otherwise the order
in the sum would matter, and there would be no unique answer to the expectation.
We have that X is integrable if |X| is.
• The expectation only depends on the law PX of the random variable and not the
probability space on the background.
• Discrete random variables with finite support are always integrable.

Before proving some properties that make the expected value extremely useful, let us look
at some examples:

Deterministic random variable
If a random variable X takes some value x ∈ R with probability 1, then its expectation is
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also clearly equal to x

Bernoulli random variable
Let E be an event on a probability space, and consider the random variable 1E. As its
support is finite, it is integrable. From the definition of expectation, we directly have that
E(1E) = P(E). Thus in particular if X is a Ber(p) random variable, then its expectation is
just E(X) = p.

Uniform random variable
Consider the uniform random variable Un on {1, 2, . . . , n}. Again as it takes only finitely
many values, it is integrable. Its expected value is

E(Un) =
1

n

n∑
i=1

i =
n+ 1

2
.

Poisson random variable
Consider the Poisson random variable P of parameter λ > 0. The support of a Poisson
random variable is not finite and thus one needs to verify that it is integrable. But in fact,
the same computation also gives the expectation:

E(P ) =
∑
n≥0

nP(P = n) =
∑
n≥1

n
e−λλn

n!
= λe−λ

∑
m≥0

λm

m!
= λ.

Hence, even if a random variable can take arbitrary large values, its expectation can be finite.
This is, however, not always the case. For example

• Consider a random variable X such that it takes value 2n with probability 2−n. Then
clearly E(X) =∞ and X is not integrable.

If a random variable is non-negative, then its expected value doesn’t exist only if it is too
large, i.e. is infinite. Sometimes one still defines expected value for any positive random
variable, just saying that E(X) =∞, in case it is infinite.

You will see more examples on the exercise sheet:

Exercise 5.1 (Expectations of discrete random variables). Prove that the expected value of
a Binomial random variable Bin(n, p) is equal to np. Prove also that the expected value of a
geometric random variable of parameter p is equal to 1/p.

For now, let us verify some nice conditions of the expectation. We will use the following
notation: if X, Y are random variables, we write X ≥ Y to say that the event X ≥ Y
happens with probability 1.

Proposition 5.3. Let X, Y be two integrable discrete random variables defined on the same
probability space. Then the expected value satisfies the following properties:

• It is linear: we have that E(λX) = λE(X) for all λ ∈ R. Further, X+Y is integrable
and E(X + Y ) = E(X) + E(Y ).
• If X ≥ 0 i.e. P(X ≥ 0) = 1 , then E(X) ≥ 0,
• If X ≥ Y i.e. P(X ≥ Y ) = 1 , then E(X) ≥ E(Y ). Deduce that if P(c ≤ X ≤ C) = 1,
then c ≤ E(X) ≤ C.
• We have that E(|X|) ≥ |E(X)|.
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Proof. The fact that E(λX) = λE(X) follows directly from the definition. Let us next prove
that X + Y is integrable and E(X + Y ) = EX + EY . Denote by SX , SY the supports of X
and Y respectively. Denote by SX+Y the support of X + Y . Notice that

P(X + Y = s) =
∑
x∈SX

∑
y∈SY

P(X = x, Y = y)1x+y=s

Thus we can write∑
s∈SX+Y

|s|P(X + Y = s) =
∑

s∈SX+Y

∑
x∈SX

∑
y∈SY

|x+ y|P(X = x, Y = y)1x+y=s.

By triangle inequality we can bound |x+ y| ≤ |x|+ |y| and thus obtain

(5.1)
∑

s∈SX+Y

|s|P(X + Y = s) ≤
∑

s∈SX+Y

∑
x∈SX

∑
y∈SY

(|x|+ |y|)P(X = x, Y = y)1x+y=s.

Now, observe that for fixed x and y either P(X = x, Y = y) = 0 or x + y ∈ SX+Y and we
have that

P(X = x, Y = y) = P(X = x, Y = y)
∑

s∈SX+Y

1x+y=s.

Moreover, for fixed x by the law of total probability we have that∑
y∈SY

P(X = x, Y = y) = P(X = x).

Thus as everything in Equation (5.1) is positive, we can now switch the order of summation,
and to recognize the RHS as a sum of∑

x∈SX

∑
y∈SY

∑
s∈SX+Y

|x|P(X = x, Y = y)1x+y=s =
∑
x∈SX

|x|P(X = x)

and ∑
y∈SY

∑
x∈SX

∑
s∈SX+Y

|y|P(X = x, Y = y)1x+y=s =
∑
y∈SY

|y|P(Y = y).

Hence we bound∑
s∈SX+Y

|s|P(X + Y = s) ≤
∑
x∈SX

|x|P(X = x) +
∑
y∈SY

|y|P(Y = y)

and deduce integrability. Thereafter, the same way of separating sums also gives that E(X+
Y ) = E(X) + E(Y ).

For the second bullet point, we notice that if X ≥ 0 with full probability, then for every
s ∈ SX , we have that s ≥ 0. Thus it follows from definition of expectation that E(X) ≥ 0.

For the third bullet point, notice that by the condition X − Y ≥ 0. Thus X − Y ≥ 0
with full probability, and hence by the second bullet point E(X − Y ) ≥ 0. The first bullet
point then gives that E(X) ≥ E(Y ). Plugging in Y = c in this inequality, and noticing that
Ec = c, gives E(X) ≥ c. The other inequality follows similarly.

Finally, for the fourth bullet point notice that −E(X) = E(−X) by the first point. Hence
it suffices to show that E(X) ≤ E|X|. But this just follows from the definition, as P(X = x)
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is always positive for x ∈ SX and hence

E(X) =
∑
x∈SX

xP(X = x) ≤
∑
x∈SX

|x|P(X = x) = E(|X|),

where in the last equality we use that P(|X| = |x|) = P(X = x) + P(X = −x) and the fact
that |x| ∈ |SX | if and only if either x ∈ SX or −x ∈ SX . �

5.2 Expected value of an arbitrary random variable
The idea for defining the expectation of a general random variable X is to approximate it

by discrete random variables. More precisely, given X, we define the discretizations of X as:

Xn(w) = 2−nb2nX(w)c =
∑
k∈Z

k2−n1X(w)∈[k2−n,(k+1)2−n).

Notice that Xn is indeed a discrete random variable - it is a non-decreasing function of X,
so it is a random variable, and it takes only countably many values, thus it is discrete.
The following exercise says that these discretizations really approximate the initial random
variable very well.

Exercise 5.2 (Discretizations are nice). Let X be a random variable defined on (Ω,F ,P).
and (Xn)n≥1 be the discretizations Xn = 2−nb2nXc =

∑
k∈Z k2−n1X∈[k2−n,(k+1)2−n).

Prove that for every ω ∈ Ω, we have that Xn(ω) ≤ X(ω) ≤ Xn(ω) + 2−n and thus the
sequence (Xn(ω))n≥1 converges to X(ω).

We can now use the definition of the expectation E(X) for discrete random variables X
to define expected value of an arbitrary random variable:

Proposition 5.4 (Expected value of a random variable). Let X be a random variable defined
on some probability space. If E(|X1|) < ∞, then E(|Xn|) < C for some constant C and we
call X integrable. The expected value of X is then defined as

E(X) = lim
n→∞

E(Xn).

Remark 5.5. Notice that X is integrable if and only if |X| is integrable. It is important
to verify that a random variable is integrable before calculating the expectation. We will see
below that for example bounded random variables are automatically integrable.

Remark 5.6. Also, observe again that the expectation only depends on the law of X and not
on the underlying probability space: this is clear in the case of discrete random variables, but
now notice that if X and Y have the same law, then so do the discretizations Xn and Yn.

Remark 5.7. A peek into future: if you consider (Ω,F ,P) = ([0, 1],FL,PU) where FL is the
Lebesgue σ−algebra and PU the Lebesgue measure (we also called it uniform measure). Then
for any integrable random variable X, which is just a measurable function from ([0, 1],FL)
to ([0, 1],FE), EX is its Lebesgue integral. You will see a more general construction in your
Analysis IV course using a larger family of approximations.

The idea for proving this proposition is just to show that the sequence E(Xn) is Cauchy.
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Proof. Notice that from the Exercise 5.2 above we see that X1 − 1 ≤ Xn ≤ X1 + 1 and
hence |Xn| ≤ |X1| + 1. Thus if E(|X1|) < C − 1, then from Proposition 5.3 it follows that
E(|Xn|) < C for all n ≥ 1. It follows that Xn is integrable for every n ≥ 1 and hence E(Xn)
well-defined.

We now claim that E(Xn) is a Cauchy sequence. So consider m ≥ n. Then from Proposi-
tion 5.3 it follows that

|E(Xn)− E(Xm)| = |E(Xn −Xm)| ≤ E(|Xn −Xm|).
But we can bound |Xn−Xm| ≤ 2−n using Exercise 5.2. Hence |E(Xn)−E(Xm)| ≤ E(2−n) =
2−n. It follows that the sequence (E(Xn))n≥1 is Cauchy and thus converges to a unique limit
as n→∞. �

An easy but important sanity check is that this definition indeed agrees with the previous
definition for discrete random variables, i.e. that the Definition 5.1 of E(X) and the definition
of E(X) by Proposition 5.4 agree for any discrete random variable X.

Remark 5.8 (Jargon - ’almost surely’). We have tried to avoid too much probabilistic jargon
so far, but it is now high time to introduce at least one expression: One says that an event
E on a probability space (Ω,F ,P) happens almost surely, if P(E) = 1.

For example, if for some c ∈ R we have that P(X = c) = 1, we would say that X is
almost surely a constant. Or if P(X = Y ) = 1 for some random variables X, Y on the same
probability space, we would say X = Y almost surely, or if P(X > 0) = 1, we would say that
X is positive almost surely.

Remark 5.9 (Expectation for non-negative random variables). When X ≥ 0 almost surely
(i.e. P(X ≥ 0) = 1), there are exactly two options: either X is integrable and EX < ∞,
or it is not integrable. In the latter case each EXn is a positive non-convergent sum and it
makes sense still to set EX =∞.

Further, one can also check that all the properties that hold for the expectation of the
discrete random variable, also hold for the expectation in general:

Proposition 5.10. Let X, Y be two integrable random variables defined on the same prob-
ability space. Then the expected value satisfies the following properties:

• It is linear: we have that E(λX) = λE(X) for all λ ∈ R. Further, X+Y is integrable
and E(X + Y ) = E(X) + E(Y ).
• If X ≥ 0 i.e. P(X ≥ 0) = 1 , then E(X) ≥ 0,
• If X ≥ Y i.e. P(X ≥ Y ) = 1 , then E(X) ≥ E(Y ). Deduce that if P(c ≤ X ≤ C) = 1,
then c ≤ E(X) ≤ C.
• We have that E(|X|) ≥ |E(X)|.

Proof. All these points follow from Proposition 5.3 via discretizations and Exercise 5.2. This
is a somewhat tedious verification that I leave for you.

For example, as for all n , we have that Xn+2−n ≥ X, then X ≥ 0 means that Xn ≥ −2−n.
It follows from Proposition 5.10 that E(Xn) ≥ −2−n, implying that for every ε > 0, for all n
large enough E(Xn) ≥ −ε and hence E(X) ≥ 0. �

Let us now see that in the case of random variables with density, we can use Riemann
integration and the density to calculate expectation.
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Proposition 5.11 (Expected value for r.v. with density). Let X be a random variable with
density fX . Then X is integrable iff

∫
R |x|fX(x)dx <∞ and we have

E(X) =

∫
R
xfX(x)dx.

Proof. Consider the discretizations Xn = 2−nb2nXc. Notice that

P(Xn ∈ [k2−n, (k + 1)2−n)) =

∫ (k+1)2−n

k2−n

fX(x)dx

and hence

E(|X1|) =
∑
k≥0

k2−1

∫ (k+1)2−1

k2−1

fX(x)dx+
∑
k≥1

k2−1

∫ (−k+1)2−1

−k2−1

fX(x)dx.

Now, if |x| ∈ [k2−1, (k + 1)2−1) then k2−1 ≤ |x| ≤ k2−1 + 2−1. Using the fact that∫
R fX(x)dx = 1 and that fX is non-negative, we conclude that

−1 +

∫
R
|x|fX(x)dx ≤ E(|X1|) ≤ 1 +

∫
R
|x|fX(x)dx.

Thus X is integrable iff
∫
R |x|fX(x)dx <∞.

Next, as

E(Xn) =
∑
k∈Z

k2−n
∫ (k+1)2−n

k2−n

fX(x)dx,

we see similarly to above that also

E(Xn) ≤
∫
R
xfX(x)dx ≤ E(Xn) + 2−n.

But E(Xn)→ E(X) as n→∞, and hence the proposition now follows by taking n→∞. �

Let us calculate densities for some known random variables:

Uniform random variable on [a, b]
Consider a uniform random variable U on [a, b]. Recall its density is given by fU(x) =
(b− a)−11x∈[a,b]. First notice that U is bounded and hence integrable. Thus we calculate:

E(U) = (b− a)−1

∫
R
x1x∈[a,b]dx = (b− a)−1

∫ b

a

xdx =
b2 − a2

2(b− a)
=
a+ b

2
.

Gaussian random variable
Consider a standard normal random variable N ∼ N (0, 1). We first note that

1√
2π

∫
R
|x| exp(−x

2

2
)dx =

2√
2π

∫ ∞
0

x exp(−x
2

2
)dx =

2√
2π

<∞.

Thus N is integrable. We further notice that

E(N) =
1√
2π

∫
R
x exp(−x

2

2
)dx = E(−N),

as the density of −N is the same as that of N . Hence Proposition 5.10 implies that E(N) = 0.
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Now, consider a general Gaussian random variable Nµ,σ2 ∼ N (µ, σ2). Recall that we can
write Nµ,σ2 ∼ σN + µ and hence Nµ,σ2 is integrable. Further, we can use Proposition 5.10
one more time to deduce that ENµ,σ2 = σE(N) + µ = µ. This is the reason why µ is called
the mean of the Gaussian random variable.

Again, further examples are on the exercise sheet.

5.3 Expected value of a function of a random variable
It comes out that the expected value, even if just a number, is very useful tool to describe a

random variable. Often we might not be interested in the expectation of some given random
variables, but of certain functions of these random variables. For example, given a r.v. X
we might be interested in E ((X − EX)2), or given X, Y , we might be interested in EXY . In
fact, as we will see, if we know Eg(X) for sufficiently many functions g, then this determines
the random variable itself!

To start, let us look at the following proposition telling us that sometimes there is a nice
way to calculate expectations of functions of a r.v.:

Proposition 5.12. Let X = (X1, . . . , Xn) be a random vector defined on (Ω,F ,P) and φ a
measurable function from (Rn,FE) to (R,FE), so that φ(X) is a random variable.

• If all X1, . . . , Xn are discrete and φ(X) is integrable, then

E(φ(X)) =
∑
x∈SX

φ(x)P(X = x),

where SX ⊆ Rn is the support of the random vector X, i.e. the set of s = (s1, . . . , sn) ∈
Rn such that P(X = s) > 0 for all x ∈ SX and P(X ∈ SX) = 1.
• If X is a random vector with density, φ(X) an integrable random variable and φ
sufficiently nice - meaning that φ−1([a, b)) is Riemann measurable for any interval
[a, b) - then

E(φ(X)) =

∫
Rn

φ(x)fX(x)dx̄.

The condition ’sufficiently nice’ is of course not quite natural. This is yet again due to
the fact that Riemann integration and measurability in the sense of Borel (or Lebesgue) do
not play together in full harmony. After Analysis IV next semester, you should be able to
revisit many of these results and restate them in more natural ways, if interested of course.
Still, notice that the condition holds for many natural functions like xn or exp(x).

Proof. The discrete case is on the exercise sheet.
To prove the second case, we use discretizations - we set φn(x) = 2−nbφ(x)2nc. Then -

given integrability - we have that

E(φn(X)) =
∑
k∈Z

k2−nP(φn(X) = k2−n).

Now, given that φ−1([a, b)) are Riemann-measurable, we can write

k2−nP(φn(X) = k2−n) =

∫
Rn

1x∈φ−1([k2−n,(k+1)2−n))k2−nfX(x)dx̄.
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Again by absolute summability 10 we can switch the order of sum and integration to get

E(φn(X)) =

∫
Rn

fX(x)
∑
k∈Z

1x∈φ−1([k2−n,(k+1)2−n))k2−ndx̄.

As above, for any fixed x, we have that 1x∈φ−1([k2−n,(k+1)2−n)) is equal to 1 for only one value
of k and thus from the definition of φn, we obtain∑

k∈Z

1x∈φ−1([k2−n,(k+1)2−n))k2−n = φn(x).

Hence
E(φn(X)) =

∫
Rn

φn(x)fX(x)dx̄.

We can now conclude similarly to Proposition 5.11. �

Looking at expectations of functions of a random variable turns out to be a powerful thing:

Proposition 5.13. Let X, Y be two random variables. Then X and Y are equal in law if
and only if for all bounded continuous functions g : R→ R we have that Eg(X) = Eg(Y ).

Proof. If X and Y have the same law, then also do g(X) and g(Y ) for any continuous and
bounded g. Hence, as bounded functions are integrable and the expectation only depends
on the law of the r.v., we indeed have that Eg(X) = Eg(Y ).

In the other our aim is to show that ∀t ∈ R, FX(t) = FY (t). To do this recall that
FX(t) = P(X ≤ t) = E(1x≤t), so our aim will be to consider continuous approximations
gt,n of the indicator function 1x≤t, defined as follows. Fix some t ∈ R and set gt,n(x) = 1 if
x ≤ t, we set gt,n(x) = 0 if x ≥ t+ 2−n and we set gt,n(x) = 1− 2n(x− t) inside the interval
(t, t+ 2−n).

Then, one the one hand

FX(t) = P(X ≤ t) = E(1x≤t) ≤ E(gt,n(X))

and on the other hand

E(gt,n(X)) ≤ E(1x≤t+2−n) = P(X ≤ t+ 2−n) = FX(t+ 2−n).

Thus by right-continuity of FX(t) we see that E(gt,n(X)) converges to FX(t) as n→∞. But
similarly also E(gt,n(Y )) converges to FY (t) as n → ∞. As by assumption E(gt,n(X)) =
E(gt,n(Y )), we can conclude the proposition. �

Also independence can be restated in an elegant way using expectations - X, Y are inde-
pendent if the expectation factorizes for all continuous functions!

Proposition 5.14. Let X, Y be two random variables. Then
• If for all g : R→ R, h : R→ R continuous and bounded we have that

(5.2) E (g(X)h(Y )) = Eg(X)Eh(Y ),

then X and Y are independent.

10More precisely, we are using there that if either
∑

n≥1

∫
R |fn(x)|dx < ∞ or

∫
R
∑

n≥1 |fn(x)|dx < ∞,
then

∫
R
∑

n≥1 fn(x)dx =
∑

n≥1

∫
R fn(x)dx. You have met the analogous result for swapping two sums∑

k≥1

∑
n≥1, and the proof is basically the same.
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• On the other hand, if X and Y are independent, then for all measurable functions
g, h : R→ R such that g(X) and h(Y ) are integrable the Equation (5.2) holds.

Proof. The first part follows similarly to the last proposition:
From Lemma 4.8 we know that to prove X, Y are independent, it suffices to prove that

for all s, t ∈ R we have that F(X,Y )(s, t) = FX(s)FX(t). Further, recall that F(X,Y )(s, t) =
E1X≤s,Y≤t = E1X≤s1Y≤t. We follow the strategy of Proposition 5.13. Indeed, consider the
same continuous functions gt,n(x) satisfying 1x≤t ≤ gt,n(x) ≤ 1x≤t+2−n .

Using the expression of F(X,Y ) above, definition of gt,n and properties of expectation be
can bound

Egs−2−n,n(X)gt−2−n,n(Y ) ≤ F(X,Y )(s, t) ≤ Egs,n(X)gt,n(Y ).

By assumption

Egs−2−n,n(X)gt−2−n,n(Y ) = Egs−2−n,n(X)Egt−2−n,n(Y )

and similarly Egs,n(X)gt,n(Y ) = Egs,n(X)Egt,n(Y ). As Egs−2−n,n(X) and Egs,n(X) both con-
verge to FX(s) and similarly Egt−2−n,n(Y ) and Egt,n(Y ) both converge to FX(t), we conclude.

For the other direction, we first observe the following (this will be on the exercise sheet):

Exercise 5.3. Prove that if X, Y are independent random variables, then so are g(X), h(Y ).

Given this, the second point follows when we show that for any integrable random vari-
ables X, Y we have that E(XY ) = E(X)E(Y ).We first deal with the case of discrete random
variables, and then pass to the limit using approximations. We will discuss this next time.

The discrete case
Denote the supports by SX , SY and write

E(X)E(Y ) =

(∑
x∈SX

xP(X = x)

)(∑
y∈SY

yP(Y = y)

)
=
∑
x∈SX

∑
y∈SY

xyP(X = x)P(Y = y).

Now, for any random variables X, Y and every fixed x ∈ SX , y ∈ SY we have the identity

P(X = x, Y = y) = P(X = x, Y = y)
∑
s∈SXY

1xy=s.

Further, by independence of X, Y we have P(X = x, Y = y) = P(X = x)P(Y = y). Thus we
can write ∑

x∈SX

∑
y∈SY

xyP(X = x, Y = y) =
∑
x∈SX

∑
y∈SY

xyP(X = x, Y = y)
∑
s∈SXY

1xy=s.

By integrability of X, Y , this triple-series is absolutely summable, and thus we can change
the order of sums and observe xy1xy=s = s1xy=s to get∑

s∈SXY

∑
x∈SX

∑
y∈SY

s1xy=sP(X = x, Y = y).

Finally, we observe that∑
x∈SX

∑
y∈SY

1xy=sP(X = x, Y = y) = P(XY = s)
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which implies the claim for discrete r.v. Observe that this very same change of summation
also gives the integrability of XY .

The general case
The general case proceeds via approximation and is left as an exercise.

�

Corollary 5.15. Let us spell out a corollary of the proof: if X and Y are independent and
integrable, then also XY is integrable.

5.4 Variance and covariance
Next to the mean value or expectation, a key parameter or characteristic of a random

variable is its variance (and its standard deviation, which is just the square-root of the
variance).
Definition 5.16 (Variance of a random variable). Let X be an integrable random variable.
Then if E(|X|2) <∞, we say that X has a finite second moment and define its variance

Var(X) := E((X − EX)2) ≥ 0.

Standard deviation is defined as σ(X) :=
√
VarX.

Notice that indeed (X − EX)2 is integrable when |X|2 is, as we can write (X − EX)2 ≤
2|X|2 +2(EX)2. A useful tool for calculating variance is to notice that by opening the square

Var(X) = E
(
(X − EX)2

)
= E(X2)− 2E(XEX) + (EX)2 = E(X2)− (EX)2.

So let us calculate some variances using this:
• The variance of a Bernoulli random variable X ∼ Ber(p) is E(X2)−(EX)2 = p−p2 =
p(1− p). Why is this reasonable?
• Similarly, using the same formula we can calculate the variance of an exponential
random variable X ∼ Exp(λ). Indeed, as x2 satisfies the conditions of Proposition
5.12, we can write

EX2 = λ

∫ ∞
0

x2 exp(−λx)dx.

We now calculate by doing twice integration by parts

λ

∫ ∞
0

x2 exp(−λx)dx = 2

∫ ∞
0

x exp(−λx)dx = 2λ−1EX = 2λ−2.

Hence Var(X) = λ−2.
Variance tells us how much the random variable fluctuates or deviates around its mean,

as is illustrated for example by the following lemma:
Lemma 5.17 (Chebyshev’s inequality). Let X be an integrable random variable with finite
variance. Then P(|X − EX| > t) ≤ Var(X)

t2
.

Proof. This follows directly from the Markov’s inequality P(Y > t) ≤ EY
t

that we proved for
non-negative integrable random variables Y on the previous exercise sheet. Indeed, we just
apply Markov’s inequality to Y = (X − EX)2 to get that

P(|X − EX| > t) = P((X − EX)2 > t2) ≤ Var(X)

t2
.
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In fact, variance also gives us a new view on expectation itself as the minimizer of certain
error: if X is an integrable random variable of finite variance, then the real number a that
minimizes the so called mean squared error: E(X − a)2 is given by a = EX! Again, you will
find this on the example sheet.

5.4.1 Covariance and correlation
As discussed, one is often is interested how two random variables are related to each other.

We already saw the notion of independence - random variables are independent if they don’t
influence each other at all. In the other extreme there is the case where they are equal, i.e.
P(X = Y ) = 1 in which case we say X = Y almost surely. Both of those are very strong
notions. A weaker measure of how two random variables are related, and a way to in some
sense measure the level of dependence is described by notions of covariance and correlation.

Definition 5.18 (Covariance and correlation). Suppose that X, Y are two integrable random
variables of finite variance defined on the same probability space. The covariance of X and
Y , denoted Cov(X, Y ) is then defined as

Cov(X, Y ) = Cov(Y,X) = E ((X − EX)(Y − EY )) = E(XY )− EXEY.
If neither of X, Y is almost surely a constant, then the correlation ρ(X, Y ) is defined as

ρ(X, Y ) =
Cov(X, Y )√
Var(X)Var(Y )

.

A first question might be why is even covariance well-defined? I.e. why is E(XY ) finite
when X, Y have finite variance? This follows from the Cauchy-Schwarz inequality, which I
believe you have already seen in some form. You will find an non-eximinable proof at the
end of the section.

Theorem 5.19 (Cauchy-Schwarz inequality). Let X, Y be two random variables on (Ω,F ,P)
such that X2, Y 2 are integrable. Then |XY | is also integrable, and moreover

E(|XY |) ≤
√
E(X2)E(Y 2).

Moreover, the equality holds if and only if |X| = λ|Y | almost surely for some λ > 0.

Notice that in particular it also follows that

E(XY ) ≤ |E(XY )| ≤ E|XY | ≤
√
E(X2)E(Y 2).

The relevant cases of equality can be also worked out.
Using this inequality, we see that not only are covariance and correlation well defined,

but also we can see that having full correlation means that the random variables are almost
surely equal.

Exercise 5.4 (Covariance and dependence). Let X, Y be two random variables of finite
positive variance defined on the same probability space.

• Show that the correlation ρ(X, Y ) ∈ [−1, 1]. When is it equal to 1, when is it equal
to −1, how to interpret this?
• Show that if X, Y are independent, integrable with finite variance, then their covari-
ance is zero.
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• Show that if X, Y are integrable with finite variance, then

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

and deduce that if X, Y are also independent, then Var(X + Y ) = Var(X) +Var(Y ).
• Finally, find random variables X, Y with zero covariance that are not independent.

Given a random vector, it is often useful to define the covariance between each pair of
components.

Definition 5.20 (Covariance matrix). Let X = (X1, . . . , Xn) be a random vector such that
all components have finite variance. Then the covariance matrix Σi,j is defined as

Σi,j = Cov(Xi, Xj).

In fact, we have already met a covariance matrix! indeed, for a Gaussian random vector
N (µ,C), the matrix positive-definite symmetric matrix C is the covariance matrix and µ =
(EX1, . . . ,EXn):

Exercise 5.5 (Independence and Gaussians). Prove that for a Gaussian random vector
X̄ ∼ N (µ,C), the matrix C is the covariance matrix and µ = (EX1, . . . ,EXn). Show that in
the case of a Gaussian random vector, if Cov(Xi, Xj) = 0, then Xi and Xj are independent.

Observe that this in particular means that a Gaussian vector is determined only by its
mean and covariance, which is a very nice indeed!

5.5 Moments of a random variable
We have seen that E(X) and E((X−EX)2) contain valuable information about a random

variable X. Moreover, we saw that if we look at Eg(X) for all bounded continuous g, then
this determines the law of X completely. But this is already quite a lot of information! An
intermediate task would be to ask EXn for all n ≥ 1. Does knowing this determine the
random variable?

Definition 5.21 (Moments of a r.v.). Let X be a random variable and n ∈ N. If E|X|n <∞,
we say that X admits a n-th moment. We call EXn the n-th moment of X.

To understand the relation between different moments, let’s recall the Jensen’s inequality.
A function φ : R→ R is called convex if for all x, y and all λ ∈ [0, 1] we have that

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y).

We call λx+(1−λ)y a convex combination of x, y. Using this vocabulary, Jensen’s inequality
can be reworded as saying that the image under φ of a convex combination of two points is
always smaller than the convex combination of the images of the two points under φ. (What
does it mean geometrically?)

Finally, recall that a convex function is continuous and thus if X is a random variable,
then so is φ(X). We can now state Jensen’s inequality:

Theorem 5.22 (Jensen’s inequality). Let X be an integrable random variable and φ a convex
function such that φ(X) is also integrable. Then

φ(EX) ≤ Eφ(X).
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Notice the similarity to the defining property of convexity: EX can be thought of as a
convex combination of the possible values of X. Thus, for example if X takes only two values
x, y with probabilities λ and 1 − λ then Jensen’s inequality is just a reformulation of the
defining property of convexity.

I expect you have seen and will see many different proofs of this nice inequality. Still there
is one in the appendix on this section for completeness.

We now have the following simple lemma, saying that the existence of higher moments
implies the existence of lower moments too:

Lemma 5.23. Let X be a random variable defined on some probability space (Ω,F ,P that
admits a n-th moment. Then it also admits a m-th moment for all m ≤ n and moreover
E|X|n ≥ (E(|X|m))n/m.

Proof. Let m ≤ n. Let us first notice that if |X|n is integrable, then also is |X|m with m ≤ n.
Indeed, we can bound

|X(ω)|m ≤ max(|X(ω)|n, 1) ≤ |X(ω)|n + 1

and thus integrability of |X|m follows from that of |X|n.
Now, for n ≥ m, consider φ(x) = |x|n/m. This is a convex function. Hence, as both |X|m

and |X|n = φ(|X|m) are integrable, we can apply Jensen’s inequality to φ and |X|m and
obtain

E|X|n = E(φ(|X|m)) ≥ φ(E|X|m) = (E(|X|m))n/m ,

concluding the proof. �

In particular, the former Lemma says that if the second moment of X exists, then both
X is integrable and of finite variance. Many random variables you will see in statistics or
numerics will have finite variance, so it’s useful to have a good condition for that. You will
see on the example sheet that the converse is not true, there will be examples of integrable
random variables with infinite variance and so on.

The existence of moments has a direct influence on how the tails of the random variable
behave. Indeed, by Markov’s inequality if E|X|n <∞, we know that

P(X > t) ≤ P(|X|n > tn) ≤ E|X|n

tn
,

i.e. the tail behaves like O(t−n). In case of finite variance we only knew that the tail behaves
like O(t−2) for example. Or in simple words - having higher moments that very big values
are taking with smaller probability.

Let us now come to the interesting question - do the moments uniquely determine the
distribution? This is true in quite large generality, but not always. We will here prove a
partial result:

Proposition 5.24. Let X, Y be two almost surely bounded random variables, i.e. r.v. such
that almost surely X ∈ [−A,A] and Y ∈ [−A,A] for some A > 0. Suppose further that
EXn = EY n for every n ∈ N. Then X and Y have the same law.

Before embarking on the proof, observe that trivially for bounded random variables all
moments do exist - namely, if X is bounded then every |X|n is bounded too. The proof we
give relies on the following theorem of independent interest:
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Theorem 5.25 (Stone-Weierstrass). Let f be a continuous function on some interval I =
[−A,A]. Then f can be uniformly approximated by polynomials: i.e. there is a sequence
of polynomials (Pn)n≥1 such that (Pn)n≥1 converges to f in (C(I,R), d∞), where as usual
d∞(f, g) = supx∈I |f(x)− g(x)|.

Most likely, you will see the proof of this theorem in several courses from several points of
view. As it is a beautiful result, it is well worth mentioning it several times. In fact, we will
also provide a short probabilistic, but non-examinable proof at the end of the subsection.
Let us first see how it implies the proposition.

Proof of Proposition 5.24. The proposition follows rather easily from Stone-Weierstrass theo-
rem. Indeed, by the assumption and by linearity of expectation, we see that EP (X) = EP (Y )
for each polynomial P .

Our aim is to use Proposition 5.13, i.e. to prove that Eĝ(X) = Eĝ(Y ) for all continuous
bounded ĝ. Notice that any such ĝ gives rise to a continuous function g : [−A,A] → R, by
restriction. Moreover as X, Y ∈ [−A,A] almost surely, we see that Eĝ(X) = Eg(X) and
hence it suffices to argue that Eg(X) = Eg(Y ) for continuous functions on [−A,A].

Given such a function g, by the Stone-Weierstrass theorem for every ε > 0, there is some
polynomial Pε such that d∞(g, Pε) < ε. As EPε(X) = EPε(Y ), we can write

|Eg(X)− Eg(Y )| = |Eg(X)− EPε(X) + EPε(Y )− Eg(y)|,
and bound this from above using by triangle inequality by

|E (g(X)− Pε(X)) |+ |E (g(Y )− Pε(Y )) |.
Further,

|E (g(X)− Pε(X)) | ≤ E|g(X)− Pε(X)| < ε.

But now as X ∈ [−A,A] almost surely, and |g(x) − Pε(x)| < ε for x ∈ [−A,A], we see
that |g(X) − Pε(X)| < ε almost surely, and hence by Proposition 5.10 we deduce that
E|g(X)− Pε(X)| < ε.

Hence we conclude that |Eg(X) − Eg(Y )| ≤ 2ε and as ε > 0 was arbitrary we conclude
that Eg(X) = Eg(Y ). As g was arbitrary, the proposition now follows from Proposition
5.13. �

So what could go wrong in general?
First, of course all moments might not exist and then only the few existing moments

might not characterize the distribution. For example, if you define discrete random variables
X1 and X2 with supports Z \ {0} and 2Z \ {0} respectively by setting P(X1 = k) = ck−3

and P(X2 = 2k) = ck−3 with c = 1
2
∑

k≥1 k
−3 , then X1, X2 are integrable with zero mean by

symmetry. However neither admits a second moment (see Exercise sheet) and they are also
not equal in law as their supports are different.

Second, even if all moments exist, they might grow too quickly to characterize the distri-
bution:

Exercise 5.6 (Moment problem). Let X be a standard normal random variable. Prove that
W = exp(X) admits all moments and calculate these moments. Let a > 0, and consider a
discrete random variable Ya with support

Sa = {aem : m ∈ Z}
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and defined by

P(Ya = aem) =
1

Z
a−me−m

2/2

with Z =
∑

m∈Z a
−me−m

2/2 (why is it finite?). Show that Ya admits all moments and that
moreover for every n ∈ N, EW n = Eexp(Xn) = EY n

a .

5.5.1 Moment generating function
We considered moments of random variables and saw that they might give a useful count-

able collection of numbers that fully characterizes the underlying random variable. But what
if instead of moments we look at some other family of functions g(X) and their expectations?
It comes out that a very useful family is directly related to moments: we consider EetX for
all t ∈ R such that etX is integrable.

Definition 5.26 (Moment generating function). If X is a random variable such that exp(tX)
is integrable for some interval I = (−c, c) around 0. We say that X admits a moment-
generating function (MGF) in a neighbourhood around 0 and denote MX(t) = E exp(tX) for
t ∈ I.

The name comes from the fact that when MX(t) exists in a small interval, we can write

MX(t) = E(exp(tX)) = E(
∑
n≥1

tnXn

n!
).

Checking that you can exchange the summation and the expectation (On the Exercise sheet),
one obtains

MX(t) =
∑
n≥1

tn

n!
EXn.

In particular, from here it is not hard to deduce that if we look at MX(t) as a function of t,
then in fact moments dn

dtn
MX(t) evaluated at t = 0 just gives the n-th moment. We will skip

this calculation that is not examinable.
It comes out that MGF-s also characterize the distribution. We state this result and you

are free to use it, though the proof is out of the scope of this course:

Theorem 5.27 (MGF determines the distribution (admitted)). Let X, Y be random vari-
ables such that MX(t) and MY (t) exist in some open interval around 0, and moreover
MX(t) = MY (t) in this interval. Then X and Y have the same law.

In fact moment generating functions and this concrete theorem for MGFs also nicely
generalize to random vectors:

Theorem 5.28 (MGF for random vectors (admitted)). Let X be a random vector taking
values in Rn such that Ee〈t,x〉 < ∞ for t in some open neighbourhood of 0.11 We then call
MX(t) = Ee〈t,x〉 the moment generating function of X. Again, if MGFs of two random
vectors X and Y are equal in some neighbourhood around 0, then X and Y have the same
law.

These two results are extremely useful. First, as an application MGF-s can be used to
determine independence:

11Here 〈·, ·〉 denotes the inner product in Rn
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Lemma 5.29 (Independence and MGF). Let X, Y be random variables such that there exists
an open interval I ⊂ R containing zero such that MX(t) and MY (t) exist for all t ∈ I. Then
X, Y are independent iff for each t, s ∈ I, MX(t)MY (s) = M(X,Y )((t, s)).

Proof. Firstly, if X, Y are independent then the condition follows directly from Proposition
5.14. Indeed, for each t, s ∈ I we can take g(x) = exp(tx) and h(y) = exp(sy). Then
MX(t) = Eg(X) and MY (s) = Eh(Y ) and by assumption both are integrable. Hence that
proposition implies that MX(t)MY (s) = E exp(tX + sY ) = M(X,Y )(t, s).

The other direction is a direct application of Theorem 5.28: indeed, let (X, Y ) be a pair
of random variables such that for each t, s ∈ I, MX(t)MY (s) = M(X,Y )((t, s)). Further, let
(X̃, Ỹ ) be a pair of independent random variables such that X̃ has the law of X and Ỹ has
the law of Y . In particular then MX(t) = MX̃(t) and MY (s) = MỸ (s)for all t, s ∈ I.

Now, by the first part MX̃(t)MX̃(s) = M(X̃,Ỹ )((t, s)). We conclude that M(X,Y )((t, s)) =

M(X̃,Ỹ )((t, s)) and deduce from Theorem 5.28 that (X, Y ) and (X̃, Ỹ ) have the same joint
law. In particular X and Y are independent. �

Second, it really makes some things much easier, in particular calculations with Gaussians:

Exercise 5.7. Prove X is a Gaussian vector with mean µ and covariance C if and only if
MX(t) = exp(〈t, µ〉+ 1

2
〈t, Ct〉). Deduce that

• If X is a standard Gaussian on Rn, then so is OX for every orthogonal n×n matrix.
• The Gaussian vector with mean µ and covariance C on Rn can be written as AY +µ,
where Y is the standard Gaussian on Rn and C =

√
AAT (You may assume such a

matrix A exists, but you have seen it in linear algebra!)

Thus having an MGF can really simplify and reduce calculations. The drawback of mo-
ment generating functions is that they do not always exist.

Exercise 5.8. Consider the log-normal random variable, i.e. Z = exp(X) where X is a
standard Gaussian. Prove that there is no open interval around 0 such that Mt(Z) exists in
this interval.

This can be mended by considering what is called the characteristic function:

Definition 5.30 (Characteristic function). Let X be a random variable. Then

cX(t) = EeitX = E cos(tX) + iE sin(tX)

is called the characteristic function of X.

The nice thing is that the characteristic function exists for all t ∈ R as both cos(tX) and
sin(tX) are trivially bounded. Moreover, it uniquely characterizes the law of the random
variable and in case of random variables with density, it corresponds to the Fourier transform
of the density. But this and much more will already topic of a future course...

5.6 ? Proofs of some auxiliary results (non-examinable) ?
[? non-examinable section begins ?]
In this non-examinable section we present proofs of some auxiliary results. I do recommend

the probabilistic proof of the Stone-Weierstrass theorem, it is a gem!
First let us prove the Cauchy-Schwarz inequality:
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Proof of Cauchy-Schwarz inequality. Define Ŷ , X̂ as Ŷ = Y√
E(Y 2)

and X̂ = X√
E(X2)

. This

is possible as X2, Y 2 are integrable. Notice that by definition then E(Ŷ 2) = E(X̂2) = 1.
Moreover, the Cauchy-Schwarz inequality is then equivalent to

(5.3) E(|X̂Ŷ |) ≤ 1.

But now for every ω ∈ Ω, we have that |X̂(ω)Ŷ (ω)| ≤ 1
2
(X̂2(ω) + Ŷ 2(ω)). Thus we see that

|XY | is integrable and by properties of expectation

E(|X̂Ŷ |) ≤ 1

2
E(X̂2 + Ŷ 2) = 1,

and the inequality 5.3 follows.
The equality holds if and only if |X̂Ŷ | = 1

2
(X̂2 + Ŷ 2) almost surely, which in turn holds if

and only if |X̂| = |Ŷ | almost surely. As Ŷ , X̂ are normalized versions of X, Y , this is turn
holds if |X| = λ|Y | almost surely for some λ > 0. �

Next, it is time to prove Jensen’s inequality. We will do it using the following chracteri-
zation of convex functions:

• φ : R → R is convex if and only if for every x ∈ R, there is some c = c(x) ∈ R so
that for every y ∈ R, we have that φ(x+ y) ≥ φ(x) + cxy.

Proof of Jensen’s inequality. Consider x = EX and y = X −EX. Then injecting this in the
formulation of convexity just above, we obtain

φ(X) ≥ φ(EX) + c(X − EX)

almost surely. Taking now expectation, and using the fact that E(X −EX)) = 0, we deduce

Eφ(X) ≥ φ(EX)

as claimed. �

And finally the cute probabilistic proof of the Stone-Weierstrass theorem:

Proof of Theorem 5.25. By translation and scaling, it is simple to see that it suffices to prove
the theorem for the case I = [0, 1] and f continuous on [0, 1]. Now for every x ∈ [0, 1], n ∈ N
let Xn,x be a Binomial random variable of parameters (n, x) We define Pn(x) = Ef(Xn,x/n).
By Proposition 5.12 we then have

Pn(x) =
n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k,

and hence Pn(x) is a polynomial of order n in x.
We claim that Pn(x) converges to f uniformly. First, notice that as f is continuous on

[0, 1] it is bounded by some M , and uniformly continuous - i.e. for every ε > 0, there is some
δε > 0 so that if |x− y| < δε, then |f(x)− f(y)| < ε.

Now, write

|Pn(x)− f(x)| = |E(f(Xn,x/n)− Ef(x)| ≤ E|f(Xn,x/n)− f(x)|.
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The crux is something we have already seen: in fact Xn,x is very close to its expectation xn
for n large. Indeed, we by Chebyshev’s inequality and the fact that Var(Xn,x) = nx(1− x)

P(|Xn,x/n− x| > t/n) = P(|Xn,x − nx| > t) ≤ VarXn,x

t2
=
nx(1− x)

t2
.

In particular, if we choose t = n2/3, then P(|Xn,x/n− x| > n−1/3) < n−1/3.
To use this fact we write:

E|f(Xn,x/n)−f(x)| = E
(
|f(Xn,x/n)− f(x)|1|Xn,x/n−x|>n−1/3

)
+E

(
|f(Xn,x/n)− f(x)|1|Xn,x/n−x|<n−1/3

)
.

Then as |f(x)| < M for x ∈ [−A,A], we can bound the first term by

ME1|Xn,x/n−x|>n−1/3 = MP(|Xn,x/n− x| > n−1/3) < Mn−1/3.

Fix some ε > 0 and choose n large enough so that n−1/3 < δε. We can bound the second
term by

Eε1|Xn,x/n−x|<n−1/3 ≤ ε.

Hence if we also require that n−1/3 < ε, we obtain altogether

E|f(Xn,x/n)− f(x)| < Mn−1/3 + ε ≤ (M + 1)ε.

As this is uniform in x and holds for arbitrary ε, the theorem follows. �

[? non-examinable section ends ?]
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Section 6

Limit theorems
In this section, we will look at infinite sequences of events and infinite sequences of random

variables. Some questions we will be interested in:
• When can we be sure that at least one of the events A1, A2, . . . happens? For example,
under what conditions can you guarantee that you will eventually win with a lottery
or get a 6 in the exam? Or suppose, you start a random walk in Manhatten - at
every corner you choose uniformly one of four directions. Will you ever get back to
your hotel?
• Under what criteria do only finitely many of the events A1, A2, . . . fail? For example,
under what criteria do we know that a infectious disease that is spreading will only
last for a finite time?
• When can we say something about the limit of the sequence of random variables
X1, X2, . . . ? We have already seen some vague statements in the lines thatBin(n, λ/n)
converge to Poisson or Bin(n, 1/2) when normalized converges to the Gaussian. How
to make such statements mathematically precise, especially and how to treat these
situations in general?
• What about the limit of EX1,EX2, . . . if the underlying random variables converge?

We will see how such questions come up naturally, find some cases where they become
tractable and even easy. As often in mathematics, looking at limiting situations makes
things more tractable. For example, somtimes to gain understanding of complex random
systems, e.g. like complex networks, it is useful to see what happens if we let the size of the
network go to infinite. Can we talk of some infinite network?

6.1 Probability space for infinite coin tosses
Let us start by revisiting the probability space for infinite fair coin tosses. In Theorem

2.16 we assumed the existence of a probability space that carries a countable sequences of
fair coin tosses - i.e. one can define X1, X2, . . . that are mutually independent and Ber(1/2)
distributed.

In fact, there is actually a slick way of proving this. The key lemma is the following
bi-measurable correspondence between ({0, 1}N, FΠ) and ([0, 1],FE):

Lemma 6.1 (Dyadic correspondence). For each x ∈ [0, 1] consider its dyadic expansion
x =

∑
i≥1 2−ixi, where we make the expansion unique by choosing it such that it doesn’t end

in a infinite sequence of 1-s. Then the map f : [0, 1]→ {0, 1}N defined by f(x) = (x1, x2, . . . )
is injective and measurable from ([0, 1],FE) to ({0, 1}N,FΠ).

Proof. Injectivity is clear. Measurability follows from the following points:
(1) FΠ is generated by the sets of the form F1 × F2 × · · · × Fn × {0, 1} × {0, 1} × . . .

(from definition);
(2) FE is generated by intervals of the form [j2−n, (j+1)2−n) over j = 1 . . . 2n and n ≥ 1

(this is a small check);
(3) the sets of the form F1×F2×· · ·×Fn×{0, 1}×{0, 1}× . . . are correspondence with

finite unions of intervals of the type above via f .
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To see the third point, notice that every set of the form E = Πi∈IFi where Fi = {ωi} for all
i ≤ n and Fi = {0, 1} otherwise is in correspondence with an interval of length 2−n of the
form above. �

Using this, it is rather easy to construct the product space for infinitely many fair coin
tosses:

Proposition 6.2 (Space of infinite fair coin tosses). For each i ≥ 1 let Ωi = {0, 1}, Fi =
P(Ωi) and Pi(0) = Pi(1) = 1/2. Then there exists a product probability measure PΠ on
(Πi≥1Ωi,FΠ).

Notice that in particular each sequence of n coin tosses has probability exactly 2−n, i.e.
like in the case of Laplace model for n equivalent coin tosses.

Proof. Consider the dyadic map f : [0, 1] → {0, 1}N from the lemma above. This lemma
says that the map is measurable from ([0, 1],FE) to ({0, 1}N,FΠ). Thus, by Lemma 1.9, the
uniform measure PU on ([0, 1],FE) induces a probability measure PΠ on ({0, 1}N,FΠ).

It remains to see that this measure is indeed a product measure. Fix some ω ∈ {0, 1}N,
i.e. ωi ∈ {0, 1} for each i ≥ 1. Now, consider a finite subset J = {1, . . . , n} ⊆ N and
set Fi = {ωi} for all i ∈ J and Fi = {0, 1} otherwise, and let E = Πi∈IFi. Now observe
that PU(f−1(E)) = 2−n. But this is exactly equal to Πi∈JPi(Fi) and thus we indeed have a
product measure. �

In fact it is not too hard to extend this method and define in the same way the probability
space containing independent random variables with any law; we will leave it however to
non-exmainable exercises.

6.2 Infinite collections of events and random variables
Before stating a few interesting limit theorems, let us start by formalizing some of the

limiting notions in the context of events. Fix a probability space (Ω,F ,P) and a sequence of
events E1, E2, . . . that could for example be repetitions of the same random situation, like
repetitive coin tosses. Recall that Ei is an event means that Ei ⊆ Ω and Ei ∈ F . Each ω
gives a random state of the universe, and ω ∈ Ei if the event Ei happens for this particular
state.

Now, we say that
• First, we could ask whether at least one event of the sequence En happens. By defini-
tion, {ω ∈ Ω : ω ∈ Ei for some i} =

⋃
n≥1En. Sometimes one says that ’Ei happens

eventually’. An example would be the following example from an earlier example
sheet: tossing independent coins, we eventually obtain heads with full probability
(this also follows from the lemma just below). Notice that there is some sequence of
tosses that gives no heads - the sequence TTTTT . . . , however as it has 0 probability,
it does not matter.
• Second, we might ask whether the events Ei happen infinitely often. It requires a
check to see that

{ω ∈ Ω : ω ∈ Ei for infinitely many i} =
⋂
m≥1

⋃
n≥m

En.
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This event is also sometimes denoted by lim supn≥1En. In the case of coin tossing,
each Ei could mean that the i-th toss comes up heads, and we have seen that in
the case of independent coins, indeed Ei would happen infinitely often with full
probability.
• Finally, we might ask whether all but finitely many Ei happen. One can again see
(on the exercise sheet), that

{ω ∈ Ω : ω ∈ Ei for all but finitely many i} =
⋃
m≥1

⋂
n≥m

En.

This event is also denoted by lim infn≥1En. An example situation would be as follows:
you start with 10 CHF, and as long as you have some money left, you bet with the
European central bank (that can always print more money when needed!) on whether
independent coin tosses are head or tails. The winner gets 1 CHF, and the loser loses
1 CHF. It’s a mathematical fact that after almost surely, after finitely many bets you
are left with 0 CHF. So if we denote by Ei the event after i bets you are bankrupt,
this event fails only finitely many times.

Here are some useful criteria to study such events. First, a very naive criterion:

Lemma 6.3. Let E1, E2, . . . be independent events of probability pi. Then P(
⋃
i≥1Ei) = 1

if and only if Πn
i=1(1− pi)→ 0 as n→∞.

Proof. This is on the exercise sheet. �

For example, if each event happens with the same probability p, then Πn
i=1pi = pn, which

clearly goes to zero. So even if you toss a coin that comes up heads with probability 0.00001,
you will eventually see heads.

A verey useful criteria for verifying that some even cannot happen but finitely many times
is given by the first Borel-Cantelli lemma:

Lemma 6.4 (Borel-Cantelli I). Let E1, E2, . . . be any sequence of events on a common
probability space (Ω,F ,P). If

∑
n≥1 P(En) <∞, then almost surely only finitely many events

Ei happen, i.e. P(
⋂
m≥1

⋃
n≥mEn) = 0.

Notice that we are not assuming anything on the dependence or independence of the
events Ei! Also, this lemma does not say that there is some fixed number 1000 of events
that happen. Indeed, exactly how many events can happen and exactly which events happen
depends on ω ∈ Ω.

For example, consider a sequence of unfair coins with probability of heads for the n-
th coin given by n−2. If En denotes the event of obtaining heads on the n-th toss, then∑

n≥1 P(En) <∞. Thus, by the lemma, we see that almost surely one obtains only finitely
many heads in an infinite sequence of coin tosses. However, notice that whether you obtain
10 or even 100 heads depends on the exact sequence of tosses, i.e. on the ’randomness’
encoded by the state ω ∈ Ω.

Proof. Fix some ε > 0. As
∑

n≥1 P(En) < ∞, we can find some n0 ∈ N such that∑
n≥n0

P(En) < ε. But now as P(A ∩B) ≤ P(B),

P(
⋂
m≥1

⋃
n≥m

En) ≤ P(
⋃
n≥n0

En) ≤
∑
n≥n0

P(En) < ε,
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where in the last inequality we use the union bound. As ε was arbitrary, the claim follows. �

The short proof might make you suspicious if it is of any use. But think for example of
the following. Assume that we have X1, X2, . . . be a sequence of random variables on the
same probability space, each with law Geo(1/2) but such that we know nothing about the
dependence structure. What can we say about the maximum of n first random variables?

Using Borel-Cantelli I, we can easily get some nice information:

Exercise 6.1. Assume that we have X1, X2, . . . be a sequence of random variables on the
same probability space, each with law Geo(1/2). Let En = {maxni=1Xi >

√
n}. Show that

almost surely only finitely many of E1, E2, . . . happen, i.e. P(
⋂
n≥1

⋃
i≥nEi) = 0. Deduce

that there exists some random variable C : Ω → R that takes a.s. non-negative values and
such that P(maxni=1Xi(ω) < C(ω)

√
n) = 1.

This is partly complemented by the second Borel-Cantelli lemma, which gives a condition
for infinitely many events to happen. Notice that here we again ask for independent events.

Lemma 6.5 (Borel-Cantelli II). Let E1, E2, . . . be a sequence of independent events on a
common probability space (Ω,F ,P). Suppose that

∑
n≥1 P(En) = ∞. Then almost surely

infinitely many events Ei happen, i.e. P(
⋂
m≥1

⋃
n≥mEn) = 1.

Proof. We have that
P(
⋂
m≥1

⋃
n≥m

En) = 1− P(
⋃
m≥1

⋂
n≥m

Ec
n)

and hence it suffices to show that P(
⋃
m≥1

⋂
n≥mE

c
n) = 0. By the union bound

P(
⋃
m≥1

⋂
n≥m

Ec
n) ≤

∑
m≥1

P(
⋂
n≥m

Ec
n).

Further, as Ei are independent, so are Ec
i , and hence

P(
⋂
n≥m

Ec
n) = Πn≥mP(Ec

n) = Πn≥m(1− P(En)).

Now using the inequality 1 − x ≤ e−x for x ∈ [0, 1], we can bound the RHS further by
exp(−

∑
n≥m P(En)). But the sum in the exponential equals ∞ by the assumption. Thus

P(
⋂
n≥mE

c
n) = 0, hence P(

⋃
m≥1

⋂
n≥mE

c
n) = 0 and we conclude.

�

As already exemplified by the proof, the criteria of independence is indeed necessary:

Exercise 6.2. Find events E1, E2, . . . on the same probability space such that
∑

n≥1 P(En) =
∞, but P(

⋂
m≥1

⋃
n≥mEn) = 0. Also, find events E1, E2, . . . such that P(

⋂
m≥1

⋃
n≥mEn)

happens with probability p ∈ (0, 1).

These lemmas look very innocent, but actually have nice applications (we will see some
later). First, a simple corollary says that independent events either happen infinitely often
with probability 1 or 0 - this is quite remarkable, as a priori one might think that it could
happen with any probability, like in the exercise above. So we see how the ’simple-looking’
assumption of independence can really sway things:
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Corollary 6.6. Let E1, E2, . . . be mutually independent events on a common probability
space. Then P(

⋂
m≥1

⋃
n≥mEn) ∈ {0, 1}, i.e. Ei happens infinitely often either with proba-

bility 0 or 1.

Proof. This follows directly from the Borel-Cantelli lemmas, as either
∑

n≥1 P(En) < ∞ or∑
n≥1 P(En) =∞. �

In fact, this is a special case of a more general Kolmogorov 0-1 law, that we only meet in
the non-examinable section this year.

Things are similar, but a bit more exciting when we switch from events to sequences of
random variables X1, X2, . . . . Again, firstly the question is what we can even ask about an
infinite sequence of random variables - not all functionals might be measurable!

For example some questions that we might be interested in are:
• Is same value k attained by the sequence of random variables?
• Are all but finitely many of Xi positive?
• Is the sequence of random variables bounded in absolute value?
• Does it converge?

For the first one measurability is clear, as we can write it as the union
⋃
n≥1{Xi = k},

similarly for the second one. For the third one, already some thought might be required:
the event that the sequence of random variables is bounded in absolute value by M ∈ N
is given by EM :=

⋂
n≥1{|Xi| ≤ M}. But we want to allow different bounds for different

sequences. So we have to take also a union overM to get
⋃
M∈NEM , which again shows that

the question makes fully sense.

6.3 Convergence of random variables
We now get to the heart of this section which is not only asking whether sums or sequences

of random variables converge or not, but trying to understand what do they converge to.
So our model situation will be something as follows: X1, X2, . . . are some random variables
and we ask if Xn converges in some sense and to what it might converge. In fact, there
are several notions of convergence: almost sure convergence, convergence in probability and
convergence in law. They apply in different situations and describe different things.

6.3.1 Almost sure convergence
Maybe the most natural notion is that of almost sure convergence. For this notion, the

setting is as follows: we have some random variables X1, X2, . . . defined on the same prob-
ability space (Ω,F ,P) and we just ask about the event {ω ∈ Ω : Xn(ω) converges}. For
example, again with coin tossing you might toss coin a hundred times and take the average,
and then a thousand times and take the average. Do these averages converge? The definition
is as follows.

Definition 6.7 (Almost sure convergence). Let X1, X2, . . . be random variables defined on
a common probability space (Ω,F ,P). If for some random variable X defined on (Ω,F ,P)
we have that P({ω ∈ Ω : (Xn(ω)n≥1 → X(ω)}) = 1, then we say that the sequence (Xn)n≥1

converges almost surely to X.
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Your first question should be again, why is this event in the definition even measurable!
The exercise sheet will help you out.

Remark 6.8 (? non-examinable ?). In the spirit of the first half of the course, you might
further ask - given the joint laws of any (Xi1 , . . . , Xin) for any finite subset {i1, . . . , in} of N,
can we even define a common probability space (Ω,F ,P) such that X1, X2, . . . are random
variables defined on this space and satisfy the given joint laws? We have argued that this
is possible in case X1, X2, . . . are mutually independent by the construction of a product
measure. This can be generalized to hold for more general sequences, as long as certain
consistency conditions hold for the finite-dimensional joint laws. The relevant theorem is
called Kolmogorov Extension Theorem. However, we will restrict ourselves to sequences of
independent random variables, and thus will not go any deeper into this.

6.3.2 Convergence in law
The most common notion and maybe the most important one is however ’convergence in

law’. Convergence in law describes the convergence of distributions, if you wish - geometri-
cally the convergence of histograms. For example, you could think of the following situation
- your aim of life is to learn to toss a perfect random coin. In the beginning, you don’t throw
strong enough and there is a bias for the coin to do only one revolution and come on top
with the side that was downwards. So you model your throw with Ber(p) random variable
with p 6= 1/2. As you practice more and more, you get better and finally your coin tosses
are really nearly perfect Ber(1/2) random variables. At different stages of your development
you have different distributions, that you can model on different probability spaces. Over
time these probability distributions start looking more and more like Ber(1/2) in sense that
their probability laws converge.

Definition 6.9 (Convergence in law). We say that a sequence of random variables X1, X2, . . .
converges in law (also: converges in distribution) to a random variable X if FXn(t)→ FX(t)
for every t that is a continuity point of FX , i.e. that is such that P(X = t) = 0.

Notice that we don’t ask X1, X2, . . . to be defined on the same probability space! This
is not necessary, as we are in any case only looking at their laws PXi

, that are uniquely
characterized by FXi

.
It might be strange that we don’t ask for convergence at all points t ∈ R. The reason

is the following: consider deterministic random variables Xn taking value 1/n. Then we
would intuitively want to say that Xn converge to the deterministic random variable X that
takes value 0 almost surely. However, notice that FXi

(0) = 0 for all n ∈ N, but FX(0) = 1.
Thus if we asked for convergence for all t, the random variables Xn would not converge to
0...however, with the definition given above, they nicely do!

Still, notice that if the limiting random variable is continuous, we really do ask the point-
wise convergence of c.d.f. at all points.

To better understand the notion of convergence in law, it might be useful to think of an
equivalent criteria. In fact there are many equivalent criteria!

Proposition 6.10. Let X1, X2, . . . be a sequence of random variables. They converge to a
random variable X in law if and only if for every a < b with P(X = a) = P(X = b) = 0 we
have that P(Xn ∈ (a, b))→ P(X ∈ (a, b))
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Proof. If (Xn)n≥1 converge in law to X then by definition FXn(t)→ FX(t) for any continuity
point t of FX(t). In particular, if P(X = a) = P(X = b) = 0, then the points a, b are such
continuity points. We can write

P(X ∈ (a, b)) = FX(b)− FX(a) = lim
n→∞

(FXn(b)− FXn(a)).

But now P(Xn ∈ (a, b)) = (FXn(b−)−FXn(a)). It suffices to now see that limn→∞ FXn(b−) =
limn→∞ FXn(b). But this follows from the fact that b is a continuity point as for every ε > 0
we have that

FXn(b− ε) ≤ FXn(b−) ≤ FXn(b)

and if b− ε is also a continuity point, we deduce

FX(b− ε) ≤ lim inf
n→∞

FXn(b−) ≤ lim sup
n→∞

FXn(b−) ≤ FX(b),

which letting ε→ 0 gives the desired equality.
In the other direction, we want to prove that for each t with P(X = b) = 0, we have

that P(Xn < b) → P(X < b). Now, we know that for any a < b with P(a = 0), we have
P(Xn ∈ (a, b))→ P(X ∈ (a, b)). As there are only countably many a with P(X = a) > 0, we
can choose a→ −∞ and conclude that P(Xn < b) ≥ P(Xn ∈ (a, b))→n→∞ P(X ∈ (a, b)). As
P(X ∈ (a, b)) → P(X < b) as a → −∞, we deduce that lim infn→∞ P(Xn < b) ≥ P(X < b).
Similarly one can see that lim infn→∞ P(Xn > b) ≥ P(X > b). But now

1 ≥ lim inf
n→∞

(P(Xn < b)+P(Xn > b)) ≥ lim inf
n→∞

P(X < b)+lim inf
n→∞

P(X > b) ≥ P(X < b)+P(X > b).

As P(X < b) + P(X > b) = 1, we see that in fact the inequalities have to be equalities and
thus we conclude. �

Remark 6.11. In fact the same proof gives a seemingly weaker but actually equivalent con-
dition: we ask that for all a < b, it holds that lim infn≥1 P(Xn ∈ (a, b) ≥ P(X ∈ (a, b). I
leave it to you to check.

6.3.3 Comparison of different modes of convergence
Almost sure convergence is a strictly stronger notion than convergence in law, even if the

random variables are defined on the same probability space. First, that convergence in law
does not imply almost sure convergence is illustrated by the following example

• Let X1, X2, . . . be i.i.d Ber(1/2) random variables defined on the same probability
space. Then clearly (Xn)n≥1 converges in law to a Ber(1/2) random variable as for
every n ≥ 1 , we have that Xn ∼ Ber(1/2). Yet we claim that Xn does not converge
almost surely. This can be seen in many ways, for example we have that in the case
of Ber(1/2) random variables

{ω : (Xn(ω))n≥1 converges} = {ω : Xn(ω) = Xm(ω) for all m,n large enough}.

I leave it to you to argue that these events are measurable (see also the exercise
sheet). Now, define En = {ω : Xk(ω) is constant for k ∈ [2n, 2n+1]}. If Xn converges,
then at the very least it has to be constant on infinitely many of these intervals, thus

P((Xn)n≥1 converges) ≤ P(infinitely many En happen).
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However, P(En) = 2
22n and thus

∑
n≥1 P(En) < ∞. In particular by Borel-Cantelli I

we see that almost surely only finitely many of the events En happen end hencet not
only we don’t have almost sure convergence, instead

P({ω ∈ Ω : (Xn(ω))n≥1 does not converge) = 1.

We now prove the other direction:

Proposition 6.12 (Almost sure convergence implies convergence in law). Let X1, X2, . . . be
random variables defined on a common probability space (Ω,F ,P). Then if (Xn)n≥1 converge
almost surely, they also converge in law.

Proof. The proof is based on the following claim:

Claim 6.13. Suppose X1, X2, . . . converge almost surely to X. Then for every ε > 0, we
have that P(|Xn −X| > ε)→ 0 as n→∞.

Before proving the claim, let us see how it implies the proposition. Let x be a continuity
point for FX . Then both

FX(x) = lim
m→∞

FX(x− 1/m) = lim
m→∞

FX(x+ 1/m).

By the claim for every m ∈ N, for n large enough it holds that P(|Xn −X| > 1/m) < 1/m.
Notice further that

{Xn ≤ x} ∩ (X > x+ 1/m)} ⊆ {|X −Xn| > 1/m}.
Thus writing

FXn(x) = P (Xn ≤ x) = P((Xn ≤ x) ∩ (X ≤ x+ 1/m)) + P((Xn ≤ x) ∩ (X > x+ 1/m))

we can bound

FXn(x) ≤ FX(x+ 1/m) + P(|X −X| > 1/m) < FX(x+ 1/m) + 1/m.

Using a similar inequality for the other direction, we obtain that for every m ∈ N, for all n
large enough.

FX(x− 1/m)− 1/m < FXn(x) < FX(x+ 1/m) + 1/m.

Taking first n → ∞ and then m → ∞, we obtain that limn≥1 FXn(x) = FX(x) and thus
deduce the convergence in law of Xn to X.

It remains to prove the claim.

Proof of Claim. Fix some ε > 0. Then

{(Xn)n≥1 → X} ⊆ {|Xn −X| < ε for all large enough n} =
⋃
m≥1

Em.

12 with Em = {∀n ≥ m : |Xn−X| < ε}. Notice that these events are nested, i.e. Em ⊆ Em+1,
as there are less conditions imposed by the latter. As P({(Xn)n≥1 → X}) = 1 we get that

1 = P(
⋃
m≥1

Em) = lim
m→∞

P(Em).

But now P(|Xn −X| > ε) ≤ 1− P(En) and thus the claim follows. �

12In case you have trouble seeing what’s happening, I recommend writing out everything using ω, e.g.
{ω : (Xn(ω))n≥1 → X(ω)} ⊆ {ω : |Xn(ω)−X(ω)| < ε for all n ≥ n(ω)} etc.
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In fact, in the claim above we introduced another notion of convergence that is often used:
convergence in probability.

Definition 6.14 (Convergence in probability). One says that a sequence of random variables
X1, X2, . . . defined on the same probability space converge to X in probability if and only if
for every ε > 0 we have that P(|Xn −X| > ε)→ 0 as n→∞.

The proof above then gives us the following implications:
• Convergence in probability implies convergence in law.
• Almost sure convergence implies convergence in probability.

We already saw that convergence in law doesn’t imply almost sure convergence, but in fact
stronger converses are true:

Exercise 6.3. By considering the sequence of i.i.d. Ber(1/2) random variables, or otherwise,
prove that convergence in law does not imply convergence in probability.

Now, let Xn be a random variable taking value 0 with probability 1 − 1/n and value 1
with probability 1/n defined on (Ω,F ,P). Prove that (Xn)n≥1 converges to 0 in probability.
Further, show that if Xn are mutually independent, then they do not converge to 0 almost
surely. Does this remain true when Xn are not mutually independent?

There are in fact even further notions of convergence, but we will leave them to your further
courses. You might already ask though, why should we care about so many different notions?
The difference between almost sure convergence and convergence in law is maybe more
intuitive and was already explained above. To recall, in the case of almost sure convergence
we really look at the convergence of a sequence of numbers for each ω ∈ Ω; in the case of
convergence in law, we look at the convergence of the respective probability laws, via e.g.
their c.d.f-s. In the latter case the random variables don’t need to defined on the same
probability space. But why do we need this third notion of convergence in probability?

First, we saw it enter rather naturally when comparing almost sure convergence and con-
vergence in law. Second, almost sure convergence is often a too strong notion, as illustrated
in the exercise above. And third, convergence in probability is often much easier to work
with than almost sure convergence, as one can work with events for fixed n ∈ N. Finally,
convergence in probability gives naturally rise to a very useful metric structure on random
variables defined on (Ω,F ,P), where there is no topology on the space of random variables
on (Ω,F ,P) such that convergence in this topology would correspond to almost sure conver-
gence! (See the non-examinable section of the exercise sheet.) So maybe in fact convergence
in probability is natural and not the a.s. convergence? We will come back to this shortly,
but of course this is only a meta-mathematical question, so let us for now push forward with
actual mathematics.

6.4 Weak and Strong law of large numbers
Let us start by stating both theorems. Roughly, they both say that if you repeat the same

random experiment independently n times to obtain i.i.d random variables X1, X2, . . . , Xn

then as n→∞ the average ofXi converges to the expectation ofX1. This is quite remarkable
that the distribution of the variables does not play any larger role in this limit - only the
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integrability and the expectation matter. Both of these theorems are related to so called
ergodic theorems, which roughly link the temporal (here n) and spatial (here E) averages.

Theorem 6.15 (Weak law of large numbers (WLLN)). Let X1, X2, . . . be i.i.d. integrable
random variables defined on (Ω,F ,P). Then as n→∞, we have that

P(|
∑n

i=1 Xi

n
− EX1| > ε)→ 0,

i.e. the sequence Sn =
∑n

i=1Xi

n
converges in probability to EX1.

The stronger version is as follows:

Theorem 6.16 (Strong law of large numbers (SLLN)). Let X1, X2, . . . be i.i.d. integrable
random variables defined on (Ω,F ,P). Then we have that

P(

∑n
i=1Xi

n
converges to EX1) = 1,

i.e. the sequence Sn =
∑n

i=1Xi

n
converges almost surely to EX1.

As almost sure convergence implies convergence in probability, we see that the second
result is indeed stronger. What is the difference of these two theorems?

The weak law says that if you do independent experiments X1, X2, . . . and look at the
average outcome of the first n of them with n large, then the random variable you obtain
is very close to the constant EX1. Indeed, for evert ε > 0, if you do sufficiently many
experiments then the probability that this random average differs from EX1 by more than ε
is less than, say, 0.00001. WLLN doesn’t however say how the consecutive averages behave
for a fixed sequence of outcomes.

The strong law on the other hand says exactly that almost surely for any sequence of
outcomes, if you look at the average of the first n outcomes and then increase n, these
averages converge to EX1. SLLN doesn’t look only at snaphots for fixed n, but describes for
every sequence the evolution of averages.

In both cases, both the integrability and independence are important. You will think
about the role of integrability on the example sheet; for necessity of some independence you
can consider the case X1 = X2 . . . . Then the average of X1, . . . , Xn is just equal to X1

and has no reason to converge to a constant. In general, LLN also holds under some weak
dependence, but this is out of scope here.

So why do we state the weak law at all? The reason is that it is considerably easier to
prove! In fact, although we prove both theorems under weaker hypothesis then stated, the
full case of the WLLN could be proved with not much more effort, whereas proving the sharp
version of SLLN is already not that easy.

Proof of WLLN for i.i.d. random variables with bounded variance. Suppose that EX2
1 < C.

In this case E(|Sn − EX1|2) is well defined and we can write

E(|Sn − EX1|2) =
∑
i,j≤n

n−2E [(Xi − EX1)(Xj − EX1).]
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But X1, X2, . . . are mutually independent and EXj = EX1. Thus we see that if i 6= j, then
E [(Xi − EX1)(Xj − EX1).] = 0. Hence

E(|Sn − EX1|2) = n−2

n∑
i=1

Var(Xi) = n−1C → 0

as n→∞. By Chebyschev inequality we have that
P(|Sn − EX1| > ε) ≤ ε−1n−1C → 0

and and WLLN for random variables with bounded variance follows.
�

Notice that we didn’t really use independence here - just the fact that Cov(Xi, Xj) = 0
for all i, j! Moreover, we also didn’t use that the variables were i.i.d., we just used that for
all i ≥ 1, we have that EX2

i < C - i.e. the variances are uniformly bounded. We prove SLLN
under even stronger hypothesis. Notice how the proofs start similarly, but that there is an
extra step in the end.

Proof of SLLN for i.i.d. random variables with EX4
i < C. Suppose that for some C > 0, we

have EX4
i < C. By increasing the value of C (but not the number of notations!) we

can assume that for this C also E(Xi − EXi)
4 < C for some C > 0 (why?). In this case

E(|Sn − EX1|4) is well defined and we can write

E(|Sn − EX1|4) =
∑

i,j,k,l≤n

n−4E [(Xi − EX1)(Xj − EX1)(Xk − EX1)(Xl − EX1)] .

Notice that if one index appears only once (e.g. we have i = 1, j = k = l = 2), then as in
the proof of WLLN

E [(Xi − EX1)(Xj − EX1)(Xk − EX1)(Xl − EX1).] = 0

because of independence and the fact that EX1 = EXi. Hence

E(|Sn − EX1|4) = n−4
∑
i,j≤n

E
[
(Xi − EX1)2(Xj − EX1)2

]
.

By Cauchy-Schwarz,
E
[
(Xi − EX1)2(Xj − EX1)2

]
≤ E

[
(Xi − EX1)4

]
≤ C.

Thus
E(|Sn − EX1|4) ≤ Cn−2

and by Markov’s inequality

P(|Sn − EX1| > n−1/8) = P(|Sn − EX1|4 > n−1/2) ≤ E|Sn − EX1|4

n−1/2
≤ Cn−3/2.

Thus when we define En = {|Sn − EX1| > n−1/8}, then
∑

n≥1 P(En) <∞. Hence by Borel-
Cantelli lemma applied to the evens En, we see that almost surely only finitely many of them
occur. But this means that almost surely, {|Sn − EX1| ≤ n−1/8} for all but finitely many n,
implying that Sn converges to EX1 almost surely. �

Remark 6.17. Again, notice that in this proof we don’t use the fact that Xi are identically
distributed, we only use that EX4

i < C. You should ask yourself: why did we need in this
proof the 4-th moment, and in WLLN only the 2-nd moment?
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These two theorems are the basis for the so called frequentist approach to probability.
Indeed, we have the following immediate corollary (recall how annoying it was to prove it
on the first example sheet!)

Corollary 6.18. Let E1, E2, . . . be independent events with P(Ei) = p. Then #{(Ei)i≤n that occur}
n

converges almost surely to p.

Proof. This follows directly from SLLN by noticing that 1E1 , 1E2 , . . . are i.i.d integrable
random variables of expectation p. �

So for example, if you have a coin with unknown probability p of obtaining heads. Then
to determine p, you start tossing the coin, and look at the average number of heads you get
in n trials, and then SLLN says that with probability one these averages converge to p! It’s
an interesting question to see ’how fast’ it converges to p, i.e. how precisely you might know
p after, say, 25 or 100 throws...Although answering this question will be outside of the scope
of this course, it is in certain settings related to the Central limit theorem, that describes
the fluctuations of the average around its mean and is described in the next section.

6.5 Central limit theorem
The final result of the course is the Central Limit Theorem (CLT).

Theorem 6.19 (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables of finite
variance σ2 defined on the same probability space. Then n−1/2

∑n
i=1(Xi −EXi) converges in

law to N(0, σ2).

This is a remarkable result, saying that if we add up independent random variables of finite
variance we always end up with the same distribution - the Gaussian distribution! This is
the reason why at least heuristically measurement errors in physics look like Gaussians - they
are sums of small independent contributions, or why Gaussians come up when looking at
distributions of say heights in a population. This phenomenon that individual properties of
the random variablesXi only influence the limiting law by a few parameters - the expectation,
variance - is sometimes called universality.

In the CLT both the assumption of finite variance and independence are crucial: you
will see an example about moment conditions on the exercise sheet. To see that with-
out independence CLT could fail consider for example the case of X1 = X2 = . . . . Then
n−1/2

∑n
i=1Xi = n1/2X1 which certainly does not converge and has no reason to be a Gauss-

ian. Whereas the condition of independence can be relaxed somewhat, there has to be a fair
amount independence to guarantee that the effect of each Xi on the sum is negligible!

We can now for example deduce very easily the following result, which has come up as a
technical exercise in a non-examinable section of the exercise sheet:

Corollary 6.20. Let Xn be a Bin(n, p) random variable. Then Xn−np√
n

converges in law to a
Gaussian of variance σ2 = p(1− p).

Proof. We can write Xn−np =
∑n

i=1(Yi−EYi), where Yi are i.i.d. Ber(p) random variables.
Then by the CLT, we have that Xn−np√

n
=

∑n
i=1(Yi−EYi)√

n
converges to a Gaussian of variance

Var(Yi) = p(1− p).
�
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We will again prove CLT under further hypothesis, in particular we assume E|Xi|3 <∞.
There are many different proofs of this theorem, all explaining different facets of the theorem.
The one we follow is based on the following idea:

• The sum of Gaussians is always a Gaussian. Moreover, if X1, X2, . . . are i.i.d. stan-
dard Gaussians, then n−1/2

∑n
i=1 Xi has again the same law! (Check!) Now, given

general variables Yi, we will just try to swap them one by one for Gaussian random
variables of the same mean and variance. We always make an error, but if we can
control the cumulative error, then we are done. This is exactly what we will do!

This key step is encapsulated in the following proposition, that we again prove under
further hypothesis:

Proposition 6.21 (Lindeberg Exchange Principle). Let X1, X2, . . . be i.i.d. zero mean unit
variance random variables and with E|Xi|3 < ∞. Let further Y be a standard Gaussian.
Define Sn := n−1/2

∑n
i=1Xi. Then for every f : R → R smooth with uniformly bounded

derivatives up to third order, we have that |Ef(Sn)− Ef(Y )| → 0 as n→∞.

Before proving the proposition, let us see how to deduce CLT from this proposition.
The idea is as follows: we saw already that knowing Eg(X) for all continuous bounded g
determines the distribution of X. In fact, this would be also true if we only assumed it
to hold for smooth g! Moreover, convergence in law can be also deduced from knowing
the convergence of Eg(Xn) → Eg(X) for all g that are smooth and bounded, and have
further conditions on derivatives. The idea is similar to Proposition 5.13 - we approximate
indicator functions 1X<x via smooth functions and thus obtain the convergence the c.d.f at
all continuity points.

Lemma 6.22. Suppose that X,X1, X2, . . . are random variables. If for all smooth bounded
g with uniformly bounded derivatives up to 3rd order we have Eg(Xn)→ Eg(X) as n→∞,
then Xn converge in law to X.

Proof. This is on the exercise sheet. �

Proof of CLT:. Given random variables Xi of variance σ2, we have that X̂i := Xi−EXi

σ
are

zero mean and unit variance. Thus we can apply Proposition 6.21 and Lemma 6.22 to deduce
that n−1/2

∑n
i=1 X̂i converges to a standard Gaussian. But now multiplying everything by σ

gives the CLT. �

It remains to prove the proposition.

Proof of Lindeberg Exchange Principle: Let Y and Y1, Y2 . . . be i.i.d. standard Gaussians.
For k ≥ 1, write

Sn,k :=

∑k−1
i=1 Xi +

∑n
i=k Yi

n1/2
.

Notice that Sn,n+1 = Sn and Sn,1 = n−1/2
∑n

i=1 Yi ∼ N(0, 1). Thus we can write

(6.1) f(Sn)− f(Y ) =
n∑
k=1

f(Sn,k+1)− f(Sn,k).

Our aim will be to control each individual summand. To do this write further

S0
n,k :=

∑k−1
i=1 Xi +

∑n
i=k+1 Yi

n1/2
,
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where we have omitted the k-th term altogether.
By third-order Taylor’s approximation we can write a.s.

f(Sn,k+1) = f(S0
n,k) +

Xk

n1/2
f ′(S0

n,k) +
X2
k

2n
f ′′(S0

n,k) +
X3
k

6n3/2
f ′′′(x1),

with x1 between Sn,k+1 and S0
n,k and similarly

f(Sn,k) = f(S0
n,k) +

Yk
n1/2

f ′(S0
n,k) +

Y 2
k

2n
f ′′(S0

n,k) +
X3
k

6n3/2
f ′′′(x2).

Taking expectations, as Xk is independent of S0
n,k, we see that

Ef(Sn,k+1) = Ef(S0
n,k) + E

Xk

n1/2
E(S0

n,k) + E
X2
k

2n
Ef ′′(S0

n,k) + E
(

X3
k

6n3/2
f ′′′(x1)

)
.

Using further that Xk has mean zero, unit variance and E|Xk|3 <∞, we obtain that

Ef(Sn,k+1) = Ef(S0
n,k) +

1

2n
Ef ′′(S0

n,k) + Er,

with |Er| ≤ E
(
|Xk|3
6n3/2 |f ′′′(x1)|

)
= O(n−3/2) as by assumptions on f , we have that |f ′′′(x)| < C

and E|Xk|3 <∞. Similarly, as also Yk is independent of S0
n,k, we obtain that

Ef(Sn,k) = Ef(S0
n,k) +

1

2n
Ef ′′(S0

n,k) + Êr,

with |Êr| = O(n−3/2). Thus |Ef(Sn,k+1)− Ef(Sn,k)| = O(n−3/2). By the triangle inequality
we obtain

|E (f(Sn)− f(Y )) | ≤
n∑
k=1

|Ef(Sn,k+1)− Ef(Sn,k)| = O(n−1/2)

and the proposition follows. �

I wish there was more...but that’s all!
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