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Section 0

Introduction
This course is about probability theory: the mathematical framework for formalising our

questions about random phenomena, and their mathematical study.
When we want to describe a random phenomena in the real world, we build a mathematical

model. This is itself an interesting process and a good model involves lots of well-chosen
simplifications and righteous choices - e.g. to model a coin toss, we usually discard the
possibility of it landing on the edge, or without further knowledge we consider the heads
and tails equiprobable, although that may not be the case for example already because of
different weight distributions. But this all is not the topic of this course.

In this course we will study the general mathematical framework and formulation of such
models and then discuss the mathematical tools necessary and useful to study such models.
Hopefully we also have some time to discuss some interesting models.
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Section 1

Basic framework
In this chapter we discuss some basic but important notions of probability theory:

• Probability space
• Random variables
• Independence

1.1 Probability space
Our first aim is to motivate the notion of a probability space or a probabilistic model. To

do this let us consider two examples:
(1) A random number with values in {1, 2, . . . , 12} e.g. something that comes from a

lottery.
(2) Describing the weather in Lausanne the day after.

In describing these two random phenomena we will still use everyday vocabulary / intuitions.
Thereafter we will give the mathematical definitions that will fix the vocabulary for the rest
of the course.

(1) Random number. To describe a random number mathematically, we basically need
three inputs:

• The set of all possible outcomes: in this case Ω = {1, 2, 3, . . . , 12}
• The collection of yes / no questions that we can answer about the actual outcome,
i.e. this random number. For example:
– Is this number equal to 3?
– Is this number even?
– Is this number smaller than 4?

To each of these questions we put in correspondence the subset of outcomes that
corresponds to the answer yes: {3}, {2, 4, 6, 8, 10, 12} or {1, 2, 3} respectively. We
call each such subset an event.
• Finally, to each event E ⊆ Ω we want to assign a numerical value P(E) ∈ [0, 1] that
we call the probability. This should correspond to the fraction of times an event
happens if the random number is given to us many times, e.g. if the lottery is played
many times. 2

Here the set of possible outcomes was easy and directly given by the problem. Also it is
natural to assume that each subset E ⊆ Ω is an event - or in other words that for each E we
can ask the question: is the number in E? This means that the we can take the collection
of events to correspond to all subsets of Ω.

Determining the probability really depends on what we want to model - e.g. if we are
trying to model the lottery, we may assume that all numbers are equally likely and then we

2In fact, one uses probabilistic models also to model phenomena that only happens once. In that case
probability measures somehow our degree of belief.
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rediscover the model from high-school: we set P(E) = |E|/|Ω|. However, if we wanted to
describe the sum of two dice, we would need to choose the numbers P(E) very differently! 3

Now, if we want our model to correspond to the intuitive notion of probability and to
predict the fraction of repeated experiments, then these choices are not quite free - we
need to add some constraints. E.g. we cannot put in an arbitrary function P: indeed, if
we have two events E1 ⊆ E2 then we should have P(E1) ≤ P(E2) as every time E1 hap-
pens, also E2 happens. We should also have P(Ω) = 1 as something always happens and
P(E ∪F ) = P(E) +P(F ) if E and F are disjoint (why?). Of course not all these constraints
are distinct - some might imply others and when giving the definition of a probability space
below we will purify and choose only some conditions that will then mathematically imply
all the others.

(2) Weather in Lausanne the day after. We would again want to make the three deci-
sions, but here the task is already harder at the very first step. What should be the state
space? A natural state space could probably be all possible microscopic states of the at-
mosphere up to 20km of height over Lausanne...but here we of course have many arbitrary
choices - why 20 km, how wide should we look over Leman etc? And in any case, any natural
state would be impossibly complicated!

Luckily, we do not actually need to worry about it - we only have to assign probabilities
to all the events in the collection of events. And we have some freedom in choosing this
collection events - it could be determined by our possibility to measure the states, e.g. we
are able to measure the temperature up to some precision, or the density of CO2 or water
molecules to some precision and this determines some subsets of the state space.

However, as with the probability function, also for the collection of events there are some
natural consistency conditions: we would assume that if one can observe if event E happened,
we should be also able to measure if its complement Ec happened. Or if we are able to say
if E happened or if F happened, we should be able to say if one of the two happened - i.e.
E ∪ F should also be an event. And in fact it comes out that this is all we need!

Naturally, setting up probabilities for this model is also horribly complicated - there are
no natural symmetry assumptions like the one we used for the uniform distribution. Also,
even the best physicist in the world will not be able to describe the natural probability
distribution of all microscopic states of the atmosphere, especially as it will heavily depend
on what is happening just before! Thus, our only choice basically is to try to somehow use the
combination of our knowledge about atmospheric processes together with our observations
from history to set up some estimates for the model; and then naturally we will try to
improve it with every next day. Luckily, this difficult task is not up to us but rather the
office of meteo and the statisticians!

Remark 1.1. Finally, before giving the mathematical definitions, let us stress again that all
three components of the model - the sample space, the set of events and their probabilities -
are inputs that we choose to build our model. When trying to model a real world phenomena
we usually make simplifications for each of these choices. For example, for the coin toss we
use only two outcomes: heads and tails, although theoretically edge is also possible. Also, we
usually set probabilities to be a half, although that is not exactly true either.

3See Exercise sheet 1.
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1.2 Mathematical definition of a probability space
We are now ready to use our mathematical filter and give a mathematical definition of a

probability space. In fact, we first use the mathematical purifier to come up with a definition
in the restricted setting where Ω is a finite set, and then generalize it further.

Indeed, the discussions above lead us directly to:

Definition 1.2 (Elementary probability space, Kolmogorov 1933 ). An elementary proba-
bility space is a triple (Ω,F ,P), where

• Ω is a finite set, called the state or sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2,∈ F , then also A1 ∪ A2 ∈ F .

F is called the collection of events and any A ∈ F is called an event.
• And finally, we have a function P : F → [0, 1] satisfying P(Ω) = 1 and additivity for
disjoint sets: if A1, A2 ∈ F are pairwise disjoint, then

P(A1 ∪ A2) = P(A1) + P(A2).

This function P is called the probability

Notice that some properties discussed above, like the fact that for events E1 ⊆ E2, we
have P(E1) ≤ P(E2), follow directly from the definition.4

Now, most phenomena in the real world can be described by finite sets just because we
are able to measure things only to a finite level of precision. However, like the notion of
a continuous or differentiable function helps to simplify our mathematical descriptions of
reality and thus improve our understanding, continuous probability spaces also make the
mathematical descriptions neater, simpler and thereby also make it easier to understand and
study the underlying random phenomena.

Some natural examples where infinite sample spaces come in: an uniform point on a line
segment e.g. stemming from breaking a stick into several pieces; the position on the street
where the first raindrop of the day falls; or the space of all infinite sequences of coin tosses.
In all these cases the mathematically natural state space is even uncountable. Countably
infinite state spaces can also come up: for example if we want to model the first moment
that a repeated coin toss comes up heads, the value might be 1, 2, 3 or with very very small
probability also 1010, so a natural state space would contain all natural numbers.

So let us state the general definition:

Definition 1.3 (Probability space, Kolmogorov 1933 ). A probability space is a triple
(Ω,F ,P), where

• Ω is a set, called the state or sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called the collection of events or a σ-algebra and any A ∈ F is called an event.
4See Exercise sheet 1.
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• And finally, we have a function P : F → [0, 1] satisfying P(Ω) = 1 and additivity for
disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

P(
⋃
n≥1

An) =
∑
n≥1

P(An).

This function P is called the probability

Notice the only differences are 1) we do not assume Ω to be finite 2) we assume that
the set of events is stable under countable unions 3) we assume also the additivity of the
probability under countable unions.

Exercise 1.1. Show that each elementary probability space is a probability space.

In fact probability spaces are an example of a general notion of measure spaces - probability
spaces are just measure spaces with total mass equal to 1.

Definition 1.4 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a
triple (Ω,F , µ), where

• Ω is a set, called the sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called a σ-algebra and any A ∈ F is called a measurable set.
• And finally, we have a function µ : F → [0,∞] satisfying µ(∅) = 0 and countable
additivity for disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An).

This function µ is called a measure. If µ(Ω) <∞, we call µ a finite measure.

Geometrically we interpret:
• Ω as our space of points
• F as the collection of subsets for which our notion of volume can be defined
• µ our notion of volume: it gives each measurable set its volume.

It is important to make this link to measure theory as many properties of probability spaces
directly come from there. Yet it is also good to keep in mind that probability theory is not
just measure theory - as M. Kac has put it well, ’Probability is measure theory with a soul’
and we adhere to this philosophical remark.

Remark 1.5. You should compare the definition of a probability space / measure space with
the definition of a topological space: there also we use a collection of subsets with certain
properties to attach structure to the set. A question you should ask is: why do we use exactly
countable unions and intersections for the events, and not finite or arbitrary?

1.3 Some basic properties of probability spaces
We start by a few small remarks about the definition of a probability space:
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Remark 1.6. It is worth considering why ask for countable stability of the σ-algebra or
countable additivity of the probability measure. Whereas this is more a meta-mathematical
question, it is good to keep it in mind throughout the course. Let us here just offer two simple
observations.

First, countable sums naturally come up when we take limits of finite sums. In fact, count-
able additivity can be seen to be equivalent to certain form of continuity for the probability
measure (see below).

Second, allowing for arbitrary unions leads easily to power-sets, and sums of uncountably
many positive terms cannot be finite (see the exercise sheet).

Exercise 1.2. Show that the countable additivity in the axioms of a probability space can
be replaced with finite additivity plus the following statement: for any decreasing sequence of
events E1 ⊇ E2 ⊇ E3 . . . we have that P(∩ni=1Ei)→ 0 as n→∞.
? Does this hold in a general measure space?

Also we would like to remark another setting that explains well the usefulness of σ-algebras:

Remark 1.7. Often in real life we only obtain information about the world step by step,
and thus if we want to keep on working on the same probability space (which is helpful as
then P will only need to be extended not redefined), we can consider a sequence of σ-algebras
F1 ⊆ F2 ⊆ F3 . . . called a filtration - each day we can ask some more yes/no questions
because we already for example know what happened on the previous day and maybe also
have learned something new. All possible information is contained in the power set P(Ω).

Probability spaces are usually classified in two types:

Definition 1.8 (Discrete and continuous probability spaces). Probability spaces (Ω,F ,P)
with a countable sample space Ω are called discrete probability spaces and those with an
uncountable sample space are called continuous probability spaces.

In this course we will mainly work with discrete probability spaces, as they are technically
easier to deal with. However, continuous probability spaces come up naturally and we won’t
be able to fully avoid them either.

Their technical difference can be summoned in the following proposition, whose non-
examinable proof will be left for enthusiasts.

Proposition 1.9. Let Ω be countable and F a σ−algebra on Ω. Then one can find disjoint
events E1, E2, · · · ∈ F such that for every E ∈ F we can express E = ∪i∈IEEi.

Essentially, this says that for every discrete probability space it suffices to determine P(Ei)
for a countable collection of disjoint sets Ei, and thereafter for every other set E we can use
countable additivity to extend P. Notice that this means it is first easy to check whether
a given P satisfies all the axioms and even more importantly it is easy to check when two
probability measures are equal.

For continuous probability spaces this does not necessarily hold - the useful σ-algebras
are usually more complicated. To examplify why one doesn’t want to necessarily use the
power-set consider the following proposition, whose proof is in the appendix and relies on
the axiom of choice:

Proposition 1.10. There is no probability measure P on ([0, 1],P([0, 1])) that is invariant
under shifts, i.e. such that for any A ∈ P([0, 1]), α ∈ [0, 1), we have that P(A+α mod 1) =
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P(A), where here we denote A + α mod 1 := {a + α mod 1 : a ∈ A}, the set obtained by
shifting A by α, modulo 1.

In fact, it comes out that the only way to remedy this situation is to make the relevant
σ−algebra smaller. We would still want to be able to answer yes or no to questions like: is
my random number equal to {x} or is it in an interval (a, b)? Thanks to the fact that we
have only countable additivity, this does not imply that our σ-algebra would need to be the
power-set. And thanks to the properties of the σ−algebras, we can always construct at least
some σ−algebra containing all our favourite sets - see the exercise sheet.

Let us now state some immediate consequences of the definitions about the σ−algebras
and the probability measures:

Lemma 1.11 (Stability of the σ − algebra). Consider a set Ω with a σ-algebra F .
(1) If A1, A2, . . . ,∈ F , then also

⋂
n≥1An ∈ F .

(2) Then also Ω ∈ F and if A,B ∈ F , then also A \B ∈ F .
(3) For any n ≥ 1, if A1, . . . , An ∈ F , then also A1∪· · ·∪An ∈ F and A1∩· · ·∩An ∈ F .

Proof of Lemma 1.11. By de Morgan’s laws for any sets (Ai)i∈I , we have that⋂
i∈I

Ai = (
⋃
i∈I

Ac
i)

c.

Property (1) follows from this, as if A1, A2, · · · ∈ F , then by the definition of a σ-algebra
also Ac

1, A
c
2, · · · ∈ F and hence

(
⋃
i≥1

Ac
i)

c ∈ F .

For (3), again by de Morgan laws, it suffices to show that A1∪· · ·∪An ∈ F . But this follows
from the definition of a σ-algebra, as A1 ∪ · · · ∪ An =

⋃
i≥1Ai with Ak = ∅ for k ≥ n+ 1.

Point (2) is left as an exercise. �

In a similar vein, the basic conditions on the measure give rise to several natural properties:

Proposition 1.12 (Basic properties of a probability measure). Consider a probability space
(Ω,F ,P). Let A1, A2, · · · ∈ F . Then

(1) For any A ∈ F , we have that P(Ac) = 1− P(A).
(2) For any n ≥ 1, and A1, . . . , An disjoint, we have finite additivity

P(A1) + · · ·+ P(An) = P(A1 ∪ · · · ∪ An).

In particular if A1 ⊆ A2 then P(A1) ≤ P(A2).
(3) If for all n ≥ 1, we have An ⊆ An+1, then as n → ∞, it holds that P(An) →

P(
⋃

k≥1Ak).
(4) We have countable subadditivity (also called the union bound): P(

⋃
n≥1An) ≤

∑
n≥1 P(An).

(5) If for all n ≥ 1, we have An ⊇ An+1, then as n → ∞, it holds that P(An) →
P(
⋂

k≥1Ak).

Proof. Properties 1, 4 and second part of 2 were included in the Exercise sheet 1. The first
part of property 2 follows like in the lemma above by taking An+1 = An+2 = · · · = ∅ and
using countable additivity.
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So let us prove property 3: Write B1 = A1 and for n ≥ 2, Bn = An/An−1. Then Bn are
disjoint,

⋃N
n=1Bn = AN and

⋃
n≥1Bn =

⋃
n≥1An.

Thus by countable additivity

P(
⋃
i≥1

Ai) = P(
⋃
i≥1

Bi) =
∑
i≥1

P(Bi)

But P is non-negative, so ∑
i≥1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi)

By countable additivity again
n∑

i=1

P(Bi) = P(
n⋃

i=1

Bn) = P(An)

and (2) follows.
�

1.4 Random variables
In fact when studying a random phenomena we certainly don’t want to restrict ourselves

to yes and no questions. For example, in our model of a random number among {1, 2, . . . , 12}
the natural question is not ’Is this number equal to 5?’ but rather ’What number is it?’.
Similarly in our example of discussing the weather, it is more natural to ask ’What is the
temperature?’, ’How much rain will there be in the afternoon?’?

Such numerical observations about our random phenomena will be formalised under the
name of random variables. In essence they give a number for each state and thus as such are
just functions X : Ω→ R from the state-space to real numbers. However, we may not want
to include all such functions for consistency reasons. Indeed, we want to be able to ask yes
/ no questions about our random numbers, e.g. Is the random number equal to 3? Is the
temperature more than 18? But again the answer yes / no corresponds to certain subsets
of states in the universe and as such should be events in our model. Thus there is a link
between the collection of events, and and the collection of functions that can act as random
variables. Let us without further give the general definition:

Definition 1.13 (Random variable). Let (Ω,F ,P) be a probability space. We call a function
X : Ω → R a random variable if for every interval (a, b) the set X−1((a, b)) := {ω ∈ Ω :
X(ω) ∈ (a, b)} is an event on the original probabiliuty space, i.e. belongs to F .

There is a simplification in the case of discrete probability spaces:

Lemma 1.14 (Random variables on discrete probability spaces). Let (Ω,F ,P) be a discrete
probability space. Then X : Ω → R is a random variable if and only if for every y ∈ R we
have that X−1({y}) ∈ F .
Proof. This can be verified carefully from the definitions and will be on the exercise sheet. �

For the structurally minded the definition of a random variable might look somewhat
arbitrary. And indeed, I have been hiding one piece of information - the natural collection
of events on R that we alluded to a little bit already in the previous subsection. We will
directly state it on Rn.
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Definition 1.15 (Borel σ-algebra). The smallest σ-algebra on Rn that contains all open
boxes of the form (a1, b1)× · · · × (an, bn) is called the Borel σ-algebra. We denote it by FB

Remark 1.16. In fact this definition is even more general: given any topological space
(X, τ), the smallest σ-algebra containing all open sets is called the Borel σ-algebra. You will
see on the exercise sheet that this more general definition reduces to the previous one in the
case of Rn with its Euclidean topology.

Based on this an equivalent, possibly more structural definition of a random variable is as
follows: a function X : Ω→ R is a random variable if the preimage of every set in the Borel
σ−algebra under X is an event. 5

An important notion that comes with random variables is its law:
Lemma 1.17 (The law of a random variable). Let (Ω,F ,P) be a probability space and
X : Ω→ R a random variable.

Then there is a probability measure PX induced on (R,FB) by defining PX(F ) := P(X−1(F )
for every F ∈ FB. This probability measure PX is called the law (or distribution) of a random
variable X.

This is a lemma and not a definition as it needs to be proved that indeed PX is a probability
measure on (R,FB).

Proof of Lemma. We need to verify the axioms on a probability measure for a probability
space:

• We have PX(R) = P(Ω) = 1
• Similarly PX(F ) = P(X−1(F )) ∈ [0, 1] for all F ∈ FB

• Finally it remains to check countable additivity: let F1, F2, . . . be disjoint sets in FB.
Then
PX(

⋃
i≥1

Fi) = P(X−1(
⋃
i≥1

Fi)) = P(
⋃
i≥1

X−1(Fi)) =
∑
i≥1

P(X−1(Fi)) =
∑
i≥1

PX(Fi).

Here we used the definition in the first and last equality, the properties of preimages
in the second equality and the fact that X−1(Fi) are disjoint together with countable
additivity in the third equality.

�

In words we showed that each random variable X induces a probability measure on the real
numbers by just forgetting about the whole context and just concentrating on the number
we see. For example in the case of weather in Lausanne, the temperature will give us a
random variable and by just looking at its value and nothing else we have just a random
real-valued number. Or more simply, if if we throw two fair coins and count the nunmber of
heads, their sum will be a random variable that takes values in the set {0, 1, 2}. Thus the
notion of the law of random variable gives us a way to compare random quantities arising in
very different contexts.
Definition 1.18 (Equality in law). Let X, Y be two random variables defined possibly on
different probability spaces. We say that X and Y are equal in law or equal in distribution,
denoted X ∼ Y if for every E ∈ FE we have that PX(E) = PY (E).

5In measure theory such functions would be called measurable functions from (Ω,F) to (R,FB); notice
the similarity with the definition of continuous functions in your topology course.
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We stress that when looking at the law of random variable the context gets forgotten -
we only concentrate on the numerical value and the initial probability space (Ω,F ,P) only
helps to determine PX but plays no role thereafter. This means that we can nicely connect
different random phenomena between each other. For example the indicator functions of
all events that have probability p, independently on which probability space they have been
defined, have the same law. Or more concretely, for example the following random variables
have the same law:

• Number of heads in two independent tosses
• Number of prime factors when we choose uniformly a number among {1, 2, 3, 4}.

In some sense a large part of this course will be about studying and describing probability
laws of random variables.
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Section 2

Conditional probability and independence
In general, if we learn something new about our random phenomena, this knowledge

influences and often changes our predictions for the rest of the model.
• For example in the case of a uniform random number between 1 and 12, if someone
tells you that this number is even, then the probability of seeing 1 will suddenly be
0, but the probability of seeing 2 will rise from 1/12 to 1/6.
• In the case of weather in Lausanne, if someone tells us that it rains the whole day,
then it is less likely to also be above 35 degrees.

The aim of this section is to set up the vocabulary to talk about how the knowledge about
some event or random variable influences the probabilities we should assign to other events.
This leads us to talk about conditional probabilities and to discuss the case where events
do not influence each other, giving rise to an important notion of probability theory called
independence.

2.1 Conditional probability
We have already considered (in the course and on the example sheets) many unpredictable

situations where several events naturally occur either at the same time or consecutively: a
sequence of coin tosses or successive steps in a random walk, or different links or edges
in a random graph. In all these cases, the fact that one event has happened could easily
influence the others. For example, if you want to model the financial markets tomorrow, it
seems rather advisable to take into account what happened today. To talk about the change
of probabilities when we have observed something, we introduce the notion of conditional
probability:

Definition 2.1 (Conditional probability). Let (Ω,F ,P) be a probability space and E ∈ F
with P(E) > 0. Then for any F ∈ F , we define the conditional probability of the event F
given E (i.e. given that the event E happens), by

P(F |E) :=
P(E ∩ F )

P(E)
.

Recall that E ∩ F is the event that both E and F happen. Hence, as the denominator is
always given by P(E), the conditional probability given E is proportional to P(E ∩ F ) for
any event F . Here is the justification for dividing by P(E):

Lemma 2.2. Let (Ω,F ,P) be a probability space and E ∈ F with P(E) > 0. Then P (·|E)
defines a probability measure on (Ω,F), called the conditional probability measure given E.

Proof. First, notice that P is indeed defined for every F ∈ F . Next, P(∅|E) = P(∅)/P(E) = 0
and P(Ω|E) = P(E)/P(E) = 1. So it remains to check countable additivity.

So let F1, F2, . . .F be disjoint. Then also E ∩ F1, E ∩ F2, . . . are also disjoint. Hence

P(
⋃
i≥1

Fi|E) =
P((

⋃
i≥1 Fi) ∩ E)

P(E)
=

P(
⋃

i≥1(Fi ∩ E))

P(E)
=

∑
i≥1

P(Fi ∩ E)

P(E)
=

∑
i≥1

P(F1|E),
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and countable additivity follows.
�

It should be remarked that conditional probability of an event might sometimes be similar
to the initial probability (we will see more about this very soon), but it might also be
drastically different. A somewhat silly but instructive example is the following:

• Conditional probability of the event Ec, conditioned on E is always zero, no matter
what the original probability was;
• similarly the conditional probability of E, conditioned on E is always 1.

Or for a more senseful exercise consider the following:

Exercise 2.1 (Random walk and conditional probabilities). Consider the simple random
walk of length n.

• What is the probability that the walk ends up at the point n at time n? Now, suppose
that the first step was −1. What is the probability that the walk ends up at the point
n at time n now?
• Suppose that n is even. What is the probability that the walk ends up at the point 0
at time n? Now, suppose that the first step was −1. What is the probability that the
walk ends up at the point 0 at time n now?

One also has to be very careful about the exact conditioning, as two similarly sounding
conditionings can induce very different conditional probabilities. In general, we need to know
something extra about the relation of two events to know how the probability of one changes
when conditioned on the other.

There are some cases where these relations and thus conditional probabilities are easy:
• When E ⊆ F , then the conditional probability of F given E is just 1.
• When F ⊆ Ec, then the conditional probability of F given E is just 0.
• The third case is when F and E are so called independent: in that case P(F |E) =
P(E) basically by definition (we will come back to that).

In general, there are not many tools to calculate conditional probabilities, but there is one
very useful tool called the Bayes’ formula or the Bayes’ rule:

2.1.1 Bayes’ rule
Proposition 2.3 (Bayes’ rule). Let (Ω,F ,P) be a probability space and E,F two events of
positive probability. Then

P(E|F ) =
P(F |E)P(E)

P(F )

We will discuss this at a greater length next week.
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