Worksheet #9

Metric and Topological Spaces

November 12, 2024

Problem 1. Let (X, τ) be a topological space which is sequentially compact (Definition 3.4 in the notes). If $Y \subset X$ is closed, prove that Y is also sequentially compact (w.r.t. the subspace topology).

Problem 2. Prove that any compact and Hausdorff topological space (X, τ) is normal (Definition 3.17 in the notes).

Problem 3. Let (M,d) be a metric space. Prove that the following statements are true.

- a) $d: M \times M \to \mathbb{R}$ is continuous, where on $M \times M$, we consider the product topology induced by the metric topology on M, and on \mathbb{R} , we consider the usual topology.
- b) The metric topology on M is the coarsest topology on M making d continuous.
- c) Given $\emptyset \neq A \subset M$, the function $d(-,A): x \mapsto \inf_{y \in A} \{d(x,y)\}$ is continuous.
- d) The function in item c) is Lipschitz. Hence, it is uniformly continuous (for the definitions, see the bonus problems from worksheet 8).
- e) If $\emptyset \neq A \subset M$ is compact, then for any $x \in M$ we can find $y \in A$ such that d(x, A) = d(x, y). Here, you should use item c).

Problem 4. Determine which of the following subsets of $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ are compact (usual topology).

- (i) $O(n, \mathbb{R}) = \{ P \in M_n(\mathbb{R}) : P^t P = I_n \}.$
- (ii) The set of matrices $A \in M_n(\mathbb{R})$ such that $A^2 = I_n$.
- (iii) The set of diagonalizable matrices in $M_n(\mathbb{R})$.
- (iv) The set of matrices $A \in M_n(\mathbb{R})$ such that $A^2 3A + 2I_n = 0$.

Problem 5. Let (X,τ) be a locally compact and Hausdorff topological space. Prove that the one-point compactification of (X,τ) is also Hausdorff.

Problem 6. Prove that for any $n \ge 1$, the one-point compactification of \mathbb{R}^n is homeomorphic to the sphere $S^n = \{x \in \mathbb{R}^n \; | \; |x| = 1\}$ (usual topologies).