Worksheet #7

Topology I - point set topology

October 29, 2024

In this worksheet, if the topology in \mathbb{R}^n is not specified, we are considering the usual Euclidean topology. Problems marked with a (*) are optional; for those, you will need the following definitions.

Definition 1. Let (X, τ_X) and (Y, τ_Y) be two topological spaces. We say that two continuous functions $f, g: X \to Y$ are homotopic if there exists a family of continuous functions $h_t: X \to Y$ index by $t \in [0, 1]$ such that $h_0 = f$, $h_1 = g$ and $H: X \times [0, 1] \to Y$ given by $(x, t) \mapsto h_t(x)$ is continuous. We then say that the family $\{h_t\}$ is a homotopy from f to g.

Definition 2. A deformation retraction of a topological space (X, τ) onto a subspace A (with the subspace topology) is a homotopy from the identity on X to a retraction $r: X \to A$ (see Problem 4 below).

Problem 1. Are the following topological spaces simply-connected? Justify your answer.

(a) \mathbb{R}^n with the usual Euclidean topology,

(d) any convex subset of \mathbb{R}^n ,

(b) $\mathbb{R}^n \setminus \{0\} \subset \mathbb{R}^n$,

(e) $\mathbb{S}^1 \setminus \{(0,1)\} \subset \mathbb{R}^2$

(c) any set X with the indiscrete topology,

(f) the space Y from problem 7 in worksheet # 4.

Problem 2. Let (X, τ_X) and (Y, τ_Y) be two topological spaces and let $f: X \to Y$ be a continuous map. Pick $x \in X$ and $y \in Y$ with f(x) = y. Prove that $f_*: \pi_1(X, x) \to \pi_1(Y, y)$ defined by $f_*([\gamma]) = [f \circ \gamma]$ is a homomorphism of groups. Now, suppose that f is a homomorphism. Prove that f_* is an isomorphism.

Problem 3. Let (X, τ_X) and (Y, τ_Y) be two topological spaces and pick $x \in X, y \in Y$. Prove that we have an isomorphism of groups $\pi_1(X \times Y, (x, y)) \simeq \pi_1(X, x) \times \pi_1(Y, y)$.

Problem 4 (Retraction). Let (X, τ_X) be a topological space and let $A \subseteq X$. Consider A with its subspace topology and assume that there exists $r: X \to A$ a continuous map such that $r_{|A} = id_A$ (any such map r is called a retraction of X onto A). Pick $a \in A$, let $\iota: A \to X$ denote the inclusion and prove that if $\iota_*(\pi_1(A, a))$ is a normal subgroup of $\pi_1(X, a)$, then $\pi_1(X, a) \simeq \ker(r_*) \times \operatorname{im}(\iota_*)$ as groups.

Problem 5. Consider the unit circle \mathbb{S}^1 as a subspace of $\overline{B(0,1)}$, where $\overline{B(0,1)} \subseteq \mathbb{R}^2$ denotes the closed unit ball with the subspace topology, and on \mathbb{R}^2 we consider the usual Euclidean topology. Using the fact that $\pi_1(\mathbb{S}^1) = \mathbb{Z}$, prove that there cannot exist a continuous map $\overline{B(0,1)} \to \mathbb{S}^1$ that keeps \mathbb{S}^1 fixed point-wise.

Problem 6 (*). Show that the map $H: \mathbb{C}^{\times} \times [0,1] \to \mathbb{S}^1$ given by $(\lambda,t) \mapsto h_t(\lambda) \doteq \frac{\lambda}{(1-t)+t \cdot |\lambda|}$ defines a deformation retraction of \mathbb{C}^{\times} onto \mathbb{S}^1 . Deduce that $\pi_1(\mathbb{C}^{\times}) = \pi_1(\mathbb{S}^1) = \mathbb{Z}$. Here, we are considering the usual topologies.

Problem 7 (*). Let n > 2 and $k \le n - 2$. Let $V = \mathbb{R}^n$ and $W = \{(v_1, \dots, v_n) \in V : v_j = 0 \,\forall j \ge k + 1\}$. Construct a deformation retract of $X = V \setminus W$ onto $A = \{(v_1, \dots, v_n) \in V \setminus \{0\} : v_i = 0 \,\forall i \le k\}$. Deduce that $\pi_1(V \setminus W) = \mathbb{Z}$ if n - k = 2 and otherwise, $\pi_1(V \setminus W) = \{0\}$.